蚁群优化理论在无人机战术控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无人机(Unmanned Aerial Vehicle,UAV)在现代战争中越来越广泛的应用,以及适应新军事变革要求的联合无人机作战概念的不断发展,无人机战术控制日益成为缩短无人机传感器到战术用户之间的信息决策链,实现跨建制、网络化、扁平化的无人机指挥与控制,发挥多无人机协同和集群优势的关键问题。无人机战术控制不仅涉及公共的信息标准、开放的体系结构和可重构的无人机任务规划与指挥控制功能组件等基本问题,而且还需要解决在复杂战场环境中多无人机协同执行多用户战术任务的高层协调控制问题,这对现有的优化理论和控制方法提出了挑战。
     本文以无人机战术控制为背景,开展蚁群优化理论在多无人机协同多任务规划、多用户情报分发路由、多无人机任务自组织控制等关键问题中的应用研究,改进基本蚁群算法、扩展蚁群优化机制,探索能够有效解决无人机战术控制这一类多主体协同控制与多目标优化问题的新方法。本文主要研究内容及成果如下:
     (1)提出了再励学习蚁群算法(Reinforcemant Learning Ant Colony Algorithm,RLACA);讨论了多子群蚁群优化思想,提出了有效降低算法复杂度的预编序号策略和控制配队策略。在基本蚁群算法基础之上,围绕信息素更新机制,针对当前改进算法蚁群信息利用不充分的问题,提出了信息素的再励学习(RL)更新机制。仿真实验证明,引入RL机制的RLACA算法体现出更快的收敛速度和更强的全局搜索能力。讨论了多子群蚁群算法,给出了求解不同子问题的异质多子群算法框架,分析了算法的复杂性;针对“子问题结合”空间搜索的指数级复杂性问题,提出了预编序号策略和控制配队策略,有效地将算法复杂度降低到特定规模。
     (2)开展了蚁群算法在无人机协同多任务规划中的应用研究。根据分层递阶控制的思想,将无人机协同多任务规划问题分解为协同多任务分配问题和航路规划问题,有效降低了原问题求解的复杂性。针对协同多任务分配问题,对通用CMTAP问题模型进行扩展,建立了协同多任务分配模型。在此基础上,基于异质多子群蚁群算法框架,引入预编序号策略,设计了基于分工机制的任务分配蚁群算法。仿真结果表明,基于分工机制的任务分配蚁群算法能够有效解决复杂约束条件下的协同多任务分配问题,并具有对动态变化任务需求响应的敏捷性。针对复杂环境下无人机航路规划问题,引入概率地图对战场环境进行拓扑化描述,在此基础上运用引入信息素再励更新机制的蚁群算法进行航路规划,提高了算法的求解效率。仿真实验结果表明算法具有较高的规划速度和良好的求解精度。
     (3)开展了蚁群算法在无人机情报分发路由中的应用研究。从最大程度满足用户需求、降低网络通信负载出发,给出了需求满足最大化的单播路由模型以及费用最小化的多播路由模型。在此基础上,针对情报单播分发的敏捷性要求,在RLACA算法的基础上调整了蚁群状态转移规则,设计了信息素的局部更新机制,提出了求解情报分发单播路由的蚁群算法。仿真实验表明,算法能快速获取问题的(近似)全局最优解。针对当前多播路由算法易陷入局部极值的问题,在异质多子群蚁群优化基础上引入控制配队策略,设计了配队蚁群算法(TMACA)。TMACA采用基于多播树结构的信息素广域再励更新机制,在提升收敛速度的同时保证了全局搜索能力;仿真实验结果表明,TMACA具有跳出局部极值的能力,而且能快速收敛到(近似)全局最优解,算法性能不随网络规模的增长而急剧变化。
     (4)提出了不确定环境下无人机任务自组织的分布式蚁群算法。就如何提高无人机对未来不确定战场环境的自主作战能力,通过分析蚁群中兵蚁的搜捕行为,设计了与无人机行为特性相适应的分布式搜捕蚁群算法(Distributed Raid-PatternAnt Colony Algorithm,DRPACA)。DRPACA采用无中心节点的体系结构,保证了复杂环境下系统的稳定性与生存能力。DRPACA以蚂蚁作为无人机代理,针对环境不确定性、无人机有限探测能力与多机任务效能最大化的矛盾,蚂蚁之间采取基于信息素的间接通信和基于数据链的直接通信,增强了蚂蚁对战场环境以及任务进展的感知能力;针对环境的动态特性以及打击目标的有限价值特性,提出了时变、全局/局部相结合的信息素更新机制,增强了算法的多任务覆盖能力;针对蚂蚁之间直接通信的延迟和数据丢失问题,提出了基于信息素分布的状态预估模型,增强了蚁群行为的协同性。仿真结果表明,该方法能够控制无人机集群在保证对任务区域的侦察覆盖的前提下,对敌方目标实施快速有效的压制打击,同时适应动态变化的战场环境和任务需求。
Since unmanned aerial vehicles (UAVs) are widely used in modern wars and the concept of UAVs joint combat develops which is suitable to the new revolution in military affairs, UAV tactical control (UAVTC) becomes a key problem in performing the swarm predominance of UAVs. UAVTC will shorten the decision making chain from payloads on the vehicle to tactical users, and the cross-organic, flat and network-based control of UAVs will be realized. UAVTC relates to not only public information standards, open architecture and the configurable functional components of mission planning and C2 (Command and Control), but also the cooperation and control of UAVs conducting tactical tasks in complicated battleground, which challenges the existing optimization theories and control methods.
     The dissertation researches some key problems of UAVTC based on ant colony optimization theory, including multiple UAVs cooperative mission planning, network routing in UAV intelligence dissemination and self-organization of UAVs. We improve the classic ant colony algorithm (ACA), extend ACA optimization mechanism to explore new methodologies to resolve the UAVTC, which is a problem of multi-objective optimization and multi-agent cooperative control. The main work and contributions of this dissertation are as follow:
     (1) A reinforcement learning ant colony algorithm (RLACA) is proposed, a pre-numbered strategy and a team-matching strategy are presented to simplify the complexity of multi-ant-colony optimization (MACO) in the dissertation. A reinforcement learning mechanism (RLM) for pheromone updating is presented to solve the problem of ant colony information utilized insufficiently in some other improved ACAs. Simulation results show that the RLACA, in which RLM is introduced, converges faster to a better resolution than some other algorithms. MACO is also discussed, and a framework of multi-difference-ant-colony algorithm (MDACA) is presented, the complexity is analyzed. The Pre-numbered strategy and the team-matching strategy are proposed to solve the "combination of sub-problems" in MDACA, so that the exponential complexity of computation declines to determined scale.
     (2) The application of ACA in multi-UAV cooperative mission planning is researched. In order to decrease the complexity of multi-UAV cooperative mission planning, the hierarchical and iterative strategy is applied. And then the problem is decoupled and decomposed into two coherent sub-problems, i.e. task allocation and vehicle route planning. Afterwards an extended mathematical model of task allocation based on the CMTAP is established, and an ACA on the basis of job-division mechanism is designed according to MDACA. A pre-numbered strategy is introduced into the algorithm to decrease the computational complexity. The simulation results show that the multi-tasks allocation problem under complex constraints can be solved effectively using the algorithm. Probabilistic road map (PRM) is introduced to describe the topology of battlefield, which can decrease the complexity of battlefield in vehicle route planning. Then another ACA, which introduce the reinforcement learning mechanism to enhance the search efficiency, is designed to plan the routes based on the topology description. The simulation results demonstrate that the algorithm can converge to a good feasible solution rapidly.
     (3) The application of ACA in UAV intelligence dissemination routing is researched. To satisfy tactical users (TUs) mostly and lighten the burden of the net, a unicast routing mathematical model, which maximizes the degree of TUs' satisfaction, and a multicast routing mathematical model, which minimizes the communicational cost, is established. Then a new ACA for intelligence dissemination unicast routing is designed based on RLACA. The state transition rule is improved and a new mechanism for local pheromone updating is designed in the algorithm to get a good fesaible route rapidly. The simulation results show that the algorithm can converge to a nearly optimal route quickly. A team-matching ant colony algorithm (TMACA) is designed based on MDACA, which introduce the team-matching strategy to overcome the prematurity of colony. TMACA adopts a wide-range pheromone updating mechanism based on the structure of multicast tree. Thus the algorithm can quickly converge to a feasible solution and keep the global search capacity. The simulation results show that TMACA can escape from the local optimum and then converge to the global best solution rapidly, and its performance will not be tempestuously influenced as the network size increases.
     (4) An ant colony algorithm for UAVs self-organization in the uncertain environment is designed. A distributed raid-pattern ant colony algorithm (DRPACA) on the basis of the raid behavior of ant-soldiers is designed according to the specialties of UAV. DRPACA will enhance UAVs' adaptive ability to the uncertain environment. To keep the stability and viability of the system, DRPACA takes a distributed, decentralized architecture. And there is indirect communication based on pheromone and direct communication via data link between ants, so that ants can effectively sense the environment and the task progress. A new mechanism of pheromone updating is presented, according to the dynamic environment and value-restricted targets. A state prediction model based on the distribution of pheromone is proposed to decrease the influence of delay and packet losses in the direct communication. With the mechanism, DRPACA can effectively perform different tasks. The simulation results demonstrate that the method can effectively coordinate the UAVs conducting reconnaissance and attack tasks over mission-area, and be adaptive to the dynamic environment and tasks.
引文
[1] USACOM, UAV Tactical Control System (TCS) Joint Concept of Operations (CONOPS) Version 1.2.2, TCS100,2000.
    
    [2] Schlecht J, Altenburg K, Ahmed B M, Nygard K E. Decentralized Search by Unmanned Air Vehicles using Local Communication[A]. In: Proceedings of the International Conference on Artificial Intelligence [C]. Las Vegas, NV, 2003,Vol.11: 757-762.
    
    [3] Ousingsawat A, Campbell M E. Multiple Vehicle Team Tasking for Cooperative Estimation[A]. In: Proceedings of the American Control Conference[C]. 2004.
    
    [4] Chandler P R, Pachter M, Nygard K E, Swaroop D. Cooperative Control for Target Classification[A]. Advances in Cooperative Control[M]. Kluwer Academic Publishers, 2002.
    
    [5] United States Air Force. AIR FORCE DOCTRINE DOCUMENT 2-5.3.1999,8,27.
    [6] Tactical Control System(TCS) System/Subsystem Specification [online].http://www.fas.org/irp/program/collect/docs/sss_20.pdf.
    [7] U.S. Office of the Secretary of Defense. Unmanned Aircraft Systems Roadmap.2005-2030. R. K. Heitman. Electronic Systems Center News highlights(AFMSS) .http://www.fas.org/.
    [8] John Pike. Intelligent Resource Program-Air Force Mission Support System AFMSS. http://www.fas.org/irp/program/core/afmss.htm.
    [9] AFMSS(Air Force Mission Support System)-Mission Planning System. 2000 BaeSystems Information & Electronic Systems Integration, Inc. PUBS-01-E75.
    [10] Naval Mission Planning Systems(NavMPS)—Navy Training System Plan.N88-NTSP A-50-9301D/P, 2001,4.
    
    [11] John Pike. AN-SYQ-21 Tactical Automated Mission Planning System (TAMPS).http://www.fas.org/man/dod-101/sys/ship/weaps/tamps.htm.
    
    [12] Force Level Automated Planning System (FLAPS). AD-A22089.
    
    [13] V Adam, R.Kohrs. On-Board Planning of 4D-Trajectories. AD-P007502,1992.
    
    [14] Raytheon Company. Global Hawk Integrated Sensor Suite and Ground Segment[online].http://www.raytheon.com/products/stellent/groups/iis/documen ts/content/cms04_017868.pdf.
    [15] Specification Guideline for the Joint Mission Planning System (JMPS) JMPS-SG-v4.1. Naval Air Systems Command. Electronic Systems Center, 1998.6.3.
    [16] CDR JEFF THOMAS. Naval Unmanned Combat Naval Unmanned Combat Air Vehicle(UCAV Air Vehicle (UCAV-N) N). 2002,5,21.
    [17] Col Earl Wyatt. DARPA/USAF Unmanned Combat Air Vehicle System Demonstration Program.2003,2.www.darpa.mil/ucav.
    [18]Rabbath C A,Gagnon E,Lauzon M.On the Cooperative Control of Multiple Unmanned Aerial Vehicles[J].IEEE.Canadian Review,2004(46):15-19.
    [19]Bellingham J,Tillerson M,Richards A,How J.Multi-Task Allocation and Path Planning for Cooperative UAVs[A].Cooperative Control:Models,Applications and Algorithms[M].Kluwer Academic Publishers,2003:23-41.
    [20]Beard R W,McLain T W,et al.Coordinated Target Assignment and Intercept for Unmanned Air Vehicles[J].IEEE Transactions on Robotics and Automation,2002,18(6):911-922.
    [21]Secrest B R.Traveling Salesman Problem for Surveillance Mission Using Particel Swarm Optimization[M.S.thesis].Air Force Institute of Technology,2003.
    [22]Philemon Sakamoto.UAV Mission Planning Under Uncertainty[M.S.thesis].Massachusetts Institute of Technology,2006.
    [23]Alighanbari M.Task Assignment Algorithms for Teams of UAVs in Dynamic Environments[M.S.thesis].Massachusetts Institute of Technology,2004.
    [24]Nygard K E,Chandler P R,Pachter M.Dynamic Network Flow Optimization Models for Air Vehicle Resource Allocation[A].In:Proceedings of the American Control Conference[C].Arlington,Texas,2001:1853-1856.
    [25]Robert W Harder.A Java Universal Vehicle Router in Support of Routing Unmanned Aerial Vehicles AIR Missions[M.S.thesis].Air Force Institute of Technology.2000.
    [26]Kevin P.O'Rourke.Dynamic Unmanned Aerial Vehicle(UAV) Routing with a Java-Encoded Reactive Tabu Search Metaheuristie[M.S.thesis].Air Force Institute of Technology.1999.
    [27]Darin T.Brown.Routing Unmanned Aerial Vehicles While Considering General Restricted Operating Zones[M.S.thesis].Air Force Institute of Technology,2001.
    [28]Shima T,Rasmussen S J,Sparks A G,Passino K M.Multiple Task Assignments for Cooperating Uninhabited Aerial Vehicles Using Genetic Algorithms[J].Computers and Operations Research,2006,33(11):3252-3269.
    [29]MacKenzie D C.Collaborative Tasking of Tightly Constrained Multi-Robot Missions[A].In:Proceedings of the Second International Workshop on Multi-Robot Systems[C].Washington D.C.,2003:39-50.
    [30]O'Rourke K P,Bailey T G,Hill R,Carlton W B.Dynamic Routing of Unmanned Aerial Vehicles Using Reactive Tabu Search[J].Military Operations Research Journal,2001(6):5-30.
    [31]Cruz Jr J B,Chen G S,Li D X,Wang X.Particle Swarm Optimization for Resource Allocation in UAV Cooperative Control[A].AIAA Guidance, Navigation,and Control Conference and Exhibit[C].Providence,USA,2004.AIAA-2004-5250.
    [32]Hart D M,Craig-Hart,Cybern,Reston.Reducing Swarming Theory to Practice for UAV Control[A].Proceedings of IEEE Aerospace Conferenc,2004,Vol.5:3050-3063.
    [33]Parunak,H.V.D.and Brueckner,S.Swarming Coordination of Multiple UAV's for Collaborative Sensing[A].In Proceedings of Second AIAA "Unmanned Unlimited" Systems,Technologies,and Operations Conference,AIAA,2003.
    [34]Atkinson M L.Contract Nets for Control of Distributed Agents in Unmanned Air Vehicles[A].2nd AIAA "Unmanned Unlimited" Systems,Technologies,and Operations-Aerospac[C].San Diego,California,2003.AIAA-2003-6532.
    [35]Pongpunwattana A.Real-time Planning for Teams of Autonomous Vehicles in Dynamic Uncertain Environments[Ph.D.dissertation].University of Washington,2004.
    [36]Dolgov D,Durfee E H.Satisficing Strategies for Resource-Limited Policy Search in Dynamic Environments[A].The First International Joint Conference on Autonomous Agents and Multi-Agent Systems:Part 3 Table of Contents[C].Bologna,Italy,2002:1325-1332.
    [37]Frazzoli E,Dahleh M A,Feron E.Real-Time Motion Planning for Agile Autonomous Vehicles[J].AIAA Journal of Guidance,Control,and Dynamics,2002,25(1):116-129.
    [38]Pettersson P O,Doherty P.Probabilistic Roadmap Based Path Planning for an Autonomous Unmanned Aerial Vehicle[A].the Workshop on Connecting Planning and Theory with Practice[C].ICAPS'2004.
    [39]高国华.大范围多路径规划问题研究[博士学位论文].长沙:国防科技大学,1999.
    [40]Jarle Anfinsen,Leif Hamang Bru.Flight Path Planning System for Autonomous Unmanned Aerial Vehicles.Project Report.Norwegian University of Science and Technology,2004.
    [41]Rathbun D,Kragelund S,Pongpunwattana A,Capozzi B.An Evolution Based Path Planning Algorithm for Autonomous Motion of a UAV Through Uncertain Environments[A].AIAA 21st Digital Avionics Systems Conference[C].Irvine,CA,2003.
    [42]Nikolos I K.et al.Evolutionary Algorithm Based Ottline/Online Path Planner for UAV Navigation[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2003,33(6):898-912.
    [43]Tom Schouwenaars.Safe Trajectory Planning of Autonomous Vehicles[Ph.D.Thesis].MIT,2005.
    [44]Foo J,Knutzon J,Oliver J,Winer E.Three-Dimensional Path Planning of Unmanned Aerial Vehicles Using Particle Swarm Optimization[A].AIAA-2006-6995.
    [45]UAV TACTICAL CONTROL SYSTEM(TCS).Versionl.2,1998.
    [46]避重就轻、浑然一体,美国陆军未来战斗系统[Online].http://tpbogie.spaces.live.com/blog/cns!3cbac67ab838c162!156.entry.
    [47]Air Force Research Laboratory.Prometheus:Enhancing the Quality of Service of the Joint Battlespace Infosphere.AFRL-IF-RS-TR-2006-148.Final Technical Report,April 2006.
    [48]Joseph Loyall,Jamie Lawson,Gary Duzan.Issues in Providing Quality of Service in a Joint Battlespace Infosphere[A].In:Object-Oriented Real-Time Dependable Systems 2005.2005,Page(s):49-58.
    [49]Peter Sholander,Glenn Frank,Sean Swank,et al.Multi-layer,Mission-Aware QoS Management Techniques for IP Applications in a Joint Battlespace Infosphere[A].In:Military Communications Conference[C],Monterey,California,October 31-November 3,2004.
    [50]蒋庆全.美陆军C4I系统发展扫描[J].现代防御技术,2003,31(1):38-45.
    [51]M.Elaoud,A.McQuley,G.Kim,J.Chennikara.CROSS-LAYER OPTIMIZED UNICAST AND MULTICAST ROUTING ON OVERLAY NETWORKS[A].In:Military Communications Conference,2005[C].2005,Vol.2:1122-1126.
    [52]Z.Wang and J.Crowcroft.Quality of Service Routing for Supporting Multimedia Applications,IEEE Journal On Selected Areas in Communications,Vol.14,No.7,Sept.1996,1228-1234.
    [53]Hussein F.Salama,Douglas S.Reeves and Yannis Viniotis,"A Distributed Algorithm for Delay-Constrained Unicast Routing",in Proc.IEEE INFOCOM'97,1997:84-91.
    [54]R.Windyono.The Design and Evaluation of Routing Algorithms for Real-Time Channels.Technical Report TR-94-024,University of California at Berkeley &International Computer Science Institute,June 1994.
    [55]Chen S,Nahrstedt K.On Finding Multi-Constrained Paths[C].In:IEEE ICC'98,1998:874-879.
    [56]Korkmaz T,Krunz M.A Randomized Algorithm for Finding a Path Subject to Multiple QoS Constraints[C].In:Proc of the IEEE GLOBECOM'99 Conference-Symposium on Global Internet:Application and Technology,1999:1694-1698.
    [57]P.Winter.Steiner Problem in Networks:A Survey[J].Networks,1987,17:129-167.
    [58]Kou L,Markousky G,Berman L.A Fast Algorithm for Steiner Trees[J].Acta Informatice,1981,15:141-145.
    [59]V.J.Rayward-Smith,A.Clare.On Finding Steiner Vertices[J].Networks,1986,16:283-294.
    [60] S. Al-Sharhan and F. Al-Anzi. A Population-based Multicast Routing Algorithm for Multimedia Communication. In Proceedings of The LASTED International Conference on Communication Systems and Networks (CSN'03), Malaga, Spain,September 8-10,2003, Pages:487-492.
    [61] Vachaspathi P. Kompella, Joseph C. Pasquale and George C. Polyzos. Multicast Routing for Multimedia Communication, IEEFIACM Trans On Networking,1993,1(3):286-292.
    [62] Bauer Fred, Varma Anujan. Degree Constrained Multicasting in Point to Point Networks[C]. In: Proc IEEE INFOCOM'95, Boston, Massachusettes, 1995:369-376.
    [63] Ali M.; Ramamurthy B; Deogun J.S. Routing Algorithms for All-Optical Networks with Powerconsiderations: the Unicast Case. Computer Communications and Networks, 1999. Proceedings. Eight International Conference, 1999, Page(s):237-241.
    [64] Chang Wook Ahn; Ramakrishna R.S.A Genetic Algorithm for Shortest Path Routing Problem and the Sizing of Populations Evolutionary Computation,IEEE Transactions on Volume 6, Issue 6, Dec 2002 Page(s): 566 - 579.
    [65] Gianni Di Caro, Frederick Ducatelle, Luca Maria Gambardella. An Adaptive Nature-Inspired Algorithm for Routing in Mobile Ad-Hoc Networks[J].European Transactions on Telecommunications, 2005,16(5):443-455.
    [66] G. Di Caro, F. Ducatelle, and L. M. Gambardella. AntHoc-Net: An Ant-Based Hybrid Routing Algorithm for Mobile Ad-Hoc Networks. Proc. 8th International Conf. on Parallel Problem Solving from Nature, 2004, Page(s):461-470.
    [67] Hakkimen, J; Lagerholm, M.; Peterson, C; Soderberg, B. Local Routing Algorithms Based on Potts Neural Networks. Neural Networks, IEEE Transactions on Volume 11, Issue 4, Jul 2000, Page(s):970 - 977.
    [68] Ravikumar C P, Bajpai R. Source-Based Delay-Bounded Multicasting in Multimedia Networks. Computer Communications, 1998,21(2): 126-132.
    [69] L. Barolli, A. Koyama, and H. Sawada. A New QoS Routing Approach for Multimedia Applications Based on Genetic Algorithms. In First International Symposium on Cyber Worlds, IEEE, 2002, Page(s):289-295.
    [70] Neve H, Mieghem P. TAMCRA: A Tunable Accuracy Multiple Constraints Routing Algorithm[J]. Computer Communications, 2000,23(11):667-679.
    [71] Oida K, Sekido M. An Agent-Based Routing System for QoS Guarantees[J].IEEE SMC'99 Conference Proceedings, 1999 , 3:833-838.
    [72] WAN G C J, PAUL N W. The Use of Artificial Neural Networks for Optimal Message Routing[J]. IEEE Network, 1995, 9(2):16-24.
    [73]Pornavalai,C.;Chakraborty,G.;Shiratori,N.A Neural Network Approach to Multicast Routing in Real-Timecommunication Networks[C].Proceedings International Conference on Network Protocols.November 7-10,1995,332-339.
    [74]John Bordeaux.Self-Organized Air Tasking:Examining a Non-Hierarchical Model for Joint Air Operations.SRA International.Jul,2004.
    [75]Parunak H V D,Purcell M,Connell P O.Digital Pheromones for Autonomous Coordination of Swarming UAVs[A].The First AIAA Unmanned Aerospace Vehicles,Systems,Technologies,and Operations Conference[C].2002.AIAA-2002-3446.
    [76]Parunak H V D,Brueckner S,Sauter J.Synthetic Pheromone Mechanisms for Coordination of Unmanned Vehicles[A].Autonomous Agents and Multi-Agent Systems[C].Bologna,Italy,2002.
    [77]Ian C Price.Evolving Self-Organized Behavior For Homogeneous and HeterogeneousUAV or UCAV Swarms[M.S.thesis].Air Force Institute of Technology.2006,3.
    [78]Guillermo Owen.Game Theory,the third edition.San Diego:Academic Press,1995.
    [79]Jose B Cruz Jr,Marwan A Simaan,Aca Gracic,Huihui Jiang.Game Theoretic Modeling and Control of Military Operations[J].IEEE Transactions on Aerospace and Electronic Systems.2001,37(4):1393-1405.
    [80]Yong Liu,Marwan A Simaan,Jose B Cruz Jr.Game Theoretic Approach to Cooperative Teaming and Tasking in the presence of an Adversary.2003American Control Conference,June 4-6,2003,Page(s):5375-5380.
    [81]Jose B Cruz Jr,Marwan A Simaan,Aca Gracic,Huihui Jiang,Modeling and Control of Military Operations Against Adversarial Control.39~(th) IEEE Conference on Decision and Control,December 12-15,2000,Page(s):2581-2586.
    [82]Richard S Sutton,Andrew G Barto.Reinforcement Leaming:An Introduction.Cambridge,MA:MIT Press,1998.
    [83]Platts J T,Howell,S E,et al.Increasing UAV Intelligence Through Leaming[A].AIAA 3rd "Unmanned Unlimited" Technical Conference,Workshop and Exhibit[C].Chicago,IL,USA,2004:1-13.
    [84]Berenji H R,et al.Learning,Cooperation,and Coordination in Multi-Agent Systems[R].Intelligent Inference Systems Corp,Tech Report IIS-00-10.2000.
    [85]Yang Y,Minai AA,Polycarpou M M.Decentralized Cooperative Search in UAV's using Opportunistic Learning[A].AIAA Guidance,Navigation,and Control Conference[C].Moterey,CA,2002.AIAA-2002-4590.
    [86]William M.McEneaney,Ben G.Fitzpatrick,Istvan G.Lauko.Stochastic Game Approach to Air Operations.IEEE Trans on Aerospace and Electronic Systems.2004,40:1191-1216.
    [87]Atkinson M L.Results Analysis of Using Free Market Auctions to Distribute Control of UAVs[A].AIAA 3rd "Unmanned Unlimited" Technical Conference[C].Chicago,Illinois,2004.AIAA2004-6558.
    [88]Kalra N,Ferguson D,Stentz A.Hoplites:A Market-Based Framework for Planned Tight Coordination in Multirobot Teams[A].In:Proceedings of the IEEE International Conference on Robotics and Automation[C].Barcelona,Spain,2005:1170-1177.
    [89]Colorni A,Dorigo M,Maniezzo V.Distributed Optimization by Ant Colonies[A].Proc 1st European Conf Artificial Life Plans[C].France:Elsevier,1991:134-142.
    [90]L.M.Gambardella and M.Dorigo.Ant-Q:A Reinforcement Learning Approach to The Traveling Salesman Problem[C].In A.Prieditis and S.Russell,editors,Proceedings of the Twelfth International Conference on Machine Learning(ML-95),pages 252-260.Morgan Kaufmann Publishers,Palo Alto,CA,1995.
    [91]M.Dorigo and L.M.Gambardella.Ant Colony System:A Cooperative Learning Approach to The Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
    [92]B.Bullnheimer,R.R Hard,and C.Strauss.A New Rank-Based Version of The Ant System:A Computational Study[J].Central European Journal for Operations Research and Economics,1999,7(1):25-38.
    [93]T.Stutzle and H.Hoos.The MAX-MIN Ant System And Local Search for The Traveling Salesman Problem[C].In T.Baeck,Z.Michalewicz,and X.Yao,editors,Proceedings of IEEE-ICEC-EPS'97,IEEE International Conference on Evolutionary Computation and Evolutionary Programming Conference.IEEE Press.1997:309-314.
    [94]E-G.Talbi,O.Roux,C.Fonlupt.Parallel Ant Colonies for Combinatorial Optimization Problems.Parallel and distributed Processing,1999,239-247.
    [95]B.Bullnheimer,G.Kotsis,C.Strauss:Parallelization Strategies for the Ant System.High Performance Algorithms and Software in Nonlinear Optimization,1998,24:87-100.
    [96]Rene Michel,Martin Middendorf.An Island Model Based Ant System with Lookahead for the Shortest Supersequence Problem[C].In:Proceedings of the 5th International Conference on Parallel Problem Solving from Nature[A].1998,1498:692-701.
    [97]Martin Middendorf,Frank Reischle,Hartmut Schmeck.Information Exchange in Multi Colony Ant Algorithms[A].In:Proceedings of the 15 IPDPS 2000Workshops on Parallel and Distributed Processing[C].2000,1800:645-652.
    [98]杨沛,古德祥.蚁群的信息系统[J].昆虫知识,2001,38(1):23-25.
    [99]段海滨.蚁群算法原理及应用.科学出版社,2005,12.
    [100]V.Maniezzo,A.Colorni,and M.Dorigo.The Ant System Applied to the Quadratic Assignment Problem[R].Technical Report IRIDIA/94-28,Universite Libre de Bruxelles,Belgium,1994.
    [101]D.Costa and A.Hertz.Ants can Color Graphs[J].Journal of the Operational Research Society,1997,48:295-305.
    [102]B.Bullnbeimer,R.F.Hard,and C.Strauss.Applying the Ant System to the Vehicle Routing Problem[J].IN 1.H.Osman S.V6,S.Martello and C.Roucairol,editors,Meta-Heuristics:Advances and Trends in Local Search Paradigms for Optimization,pages 109-120.Kluwer Academics,1998.
    [103]T White,et al.Ant-based Load Balancing in Telecommunications Networks.Adaptive Behavior,1996,5(2):169-207.
    [104]E Bonabeau,et al.Routing in Telecommunication Networks with "Smart" Ant-Like Agents Telecommunication Applications.In Proceedings.Of IATA'98Second Int.Work Shop on Intelligent Agents for Telecommunication Applications.Lectures Notes in AI vol.Springer Verlag,1998.1437.
    [105]G Di Caro,M Dorigo.Extending AntNet for Best-effort Quality-of-Service Routing.Proc.ANTS' 98-First International Workshop on Ant Colony Optimization.Brussels,Belgium,1998:15-16.
    [106]肖秦琨,高晓光.基于空间改进型Voronoi图的无人机路径规划研究[J].计算机工程与应用,2005,(26):204-207.
    [107]叶媛媛.多UCAV协同任务规划方法研究[博士学位论文].长沙:国防科学技术大学,2005.
    [108]郑昌文,丁明跃,周成平,苏康,袁鸿翼,金惠香.多飞行器协调航迹规划方法[J].宇航学报,2003,24(2):115-120.
    [109]王和平,柳长安,李为吉.基于蚁群算法的无人机任务规划[J].西北工业大学学报,2005,23(1):98-101.
    [110]余舟毅,陈宗基,周锐.基于遗传算法的动态资源调度问题研究[J].控制与决策,2004,19(11):1308-1311.
    [111]龙涛.多UCAV协同任务控制中分布式任务分配与任务协调技术研究[博士学位论文].长沙:国防科学技术大学,2006.
    [112]王征应,石冰心,赵尔敦.QoS组播路由的启发式遗传算法[J].电子学报,2001,2(2):253-257.
    [113]姚金涛,林亚平,孔宇彦,陈志平,童调生.基于决策图贝叶斯的多目标QoS组播路由算法[J].系统仿真学报,2005,17(2):457-461.
    [114]潘达儒,杜明辉.基于粒子群优化的QoS组播路由算法[J]计算机工程与应用,2006,1:138-140.
    [115]王颖,谢剑英.一种基于蚁群算法的多媒体网络多播路由算法[J].上海交通大学学报,2002,36(4):526-529.
    [116]朱淼良,张新晖,王寻羽,唐文彬.基于自组织结构的自主智能机器人集成系统.软件学报[J],2000,11(3):368-371.
    [117]路海明,潘东,卢增祥,李衍达.分布式多Agent局部控制下形成的宏观自组织.清华大学学报(自然科学版).2002,42(3):414-416.
    [118]吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10).
    [119]吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1-6.
    [120]王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33.
    [121]萧韵诗,李炳宇,吴启迪.求解TSP问题的模式学习并行蚁群算法[J].控制与决策,2004,19(8):885-888.
    [122]徐精明,曹先彬,王煦法.多态蚁群算法[J].中国科学技术大学学报,2005,35(1):59-65.
    [123]章春芳,陈凌,陈娟.求解频率分配问题的自适应的多种群蚁群算法[J].小型微型计算机系统,2006,27(5):837-841.
    [124]李士勇等.蚁群算法及其应用.哈尔滨工业大学出版社,2004.
    [125]M.Dorigo,V Maniezzo,and A.Colomi.The Ant System:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybemetics-Part B,1996,26(1):29-41.
    [126]吕勇.蚁群优化算法及在网络路由中的应用研究[博士学位论文].杭州:浙江大学,2005.
    [127]覃刚力,杨家本.自适应调整信息素的蚁群算法[J].信息与控制,2002,31(3):198-202.
    [128]陈凌,秦岭,陈宏建,徐晓华.具有感觉和知觉特征的蚁群算法[J].系统仿真学报,2003,15(10):1418-1425.
    [129]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003.
    [130]阎平凡.再励学习—原理、算法及其在智能控制中的应用[J].信息与控制,1996,25(1):28-34
    [131]张汝波,周宁,顾国昌,张国印.基于强化学习的智能机器人避碰方法研究[J].机器人,1999,21(3):204-209.
    [132]郭茂祖,陈彬,王晓龙.加强学习[J].计算机科学,1993,25(3):13-15.
    [133]Tesauro G J,TD-Gammon.A Self-Teaching Backgammon Program,Achieves Master-Level Play[J].Neural Computation,1994,6(2):215-219.
    [134]刘向东,崔晓婷,王华,张宇河.TD再励学习在卫星姿态控制中的应用[J].北京理工大学学报,2006,26(3):248-250.
    [135]王华,崔晓婷,刘向东,张宇河.基于Q-学习的卫星姿态在线模糊神经网络控制[J].北京理工大学学报,2006,26(3):226-229.
    [136]蒋国飞,吴沧浦.基于Q学习算法和BP神经网络的倒立摆控制[J].自动化学报,1998,24(5):662-666.
    [137]万旭,林健良.基于移动代理的多类蚂蚁算法在路由中的应用[J].计算机应用,2004,24(12):70-72.
    [138]张素兵.IP网与通信网中的QoS路由研究[博士学位论文].北京:北京邮电大学,2001.
    [139]方开泰,马长兴.正交试验与均匀试验[M].北京:科学出版社,2001.
    [140]牛长山.试验设计与数据处理[M].西安:西安交通大学出版社,1998.
    [141]Schumacher CJ,Chandler PR,Rasmussen SJ.Task Allocation for Wide Area Search Munitions[C].American Control Conference,Anchorage,AK.2002.
    [142]马云红,周德云.基于遗传算法的无人机航路规划[J].电光与控制,2005,12(5):24-27.
    [143]Szczerba R J.et al.Robust Algorithm for Real-time Route Planning[J].IEEE Transaction on Aerospace and Electronic System,2000,36(3):869-878.
    [144]Geand S S,Cui YJ.New Potential Function for Mobile Robot Path Planning[J].IEEE Transactions on Robotics and Automation,2000,16(10):615-619.
    [145]戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望.控制工程,2005,12(3):198-202.
    [146]朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136.
    [147]董玉成,陈义华.基于蚂蚁算法的移动机器人路径规划[J].重庆大学学报,2003,26(3):49-51.
    [148]叶文,范洪达.基于改进蚁群算法的飞机低空突防航路规划[J].飞行力学,2004,22(3):35-38.
    [149]张汝波,郭必祥,熊江.基于遗传蚁群算法的机器人全局路径规划研究[J].哈尔滨工程大学学报,2004,25(6):724-727.
    [150]Israel A.Wagner,Michael Lindenbaum,Alfred M.Bruckstein.Distributed Covering by Ant-Robots Using Evaporating Traces[J].IEEE Transactions On Robotics and Automation,1999,10,15(5):918-933.
    [151]TAN Hao,LiYu-feng,WANG Jin-yan.AC-PSO Algorithm for UAV Mission Planning[J].Transaction of Nanjing University of Aeronautics & Stronautics,2005,22(3):265-270.
    [152]Lee S J.Routing and Multicasting Strategies in Wireless Mobile Ad hoc Networks:[Ph.d dissertation].Computer Science Department,University of California,2000.
    [153]M.Elaoud,A.McQuley,G.Kim,J.Chennikara.SELF-INITIATED AND SELF-MAINTAINED OVERLAY NETWORKS(SIMONS) FOR ENHANCING MILITARY NETWORK CAPABILITIES[A].Military Communications Conference,2005[C].Piscataway,NJ,USA,2005,Vol.2:1147-1151.
    [154]U.S.Marine Corps.Marine Air-Ground Task Force Intelligence Dissemination [Online].Available:http://www.fas.org/irp/doddir/usmc/mcrp2-1c.pdf.
    [155]林玉侠,朱惠玲,马正新,刘旭明.QoS路由度量参数的选择问题研究[J].电信科学,2003,(7):22-27.
    [156]候孟书,卢显良.QoS测量综述[J].计算机科学,2004,31(10):42-45.
    [157]刘晏兵,李秉智,刘蕾.IP宽带网络QoS的定量分析研究[J].计算机工程与应用,2003,33:175-177.
    [158]华蓓.基于IP网络的服务质量(QoS)参数研究[J].小型微型计算机系统,2001,22(9):1130-1134.
    [159]Andreas K.Apostolopoulos,Riley O.Tisdale.Dissemination and Storage of Tactical Unmanned Aerial Vehicle Digital Video Imagery at the Army Brigade Level[M.S.thesis].Naval Postgraduate School,1999.
    [160]张品.网络中QoS路由问题的研究[博士学位论文].成都:电子科技大学,2004.
    [161]郑彦兴,田菁,窦文华.基于遗传算法的有矢量约束的多播路由计算[J].计算机学报,2003,26(6):746-752.
    [162]朱晓丽,董春玲,郑明春.一种新的基于Dijstra算法的QoS组播树启发式算法[J].计算机工程与应用,2004,34:162-164.
    [163]崔勇,吴建平,徐恪,徐明伟.互联网络服务质量路由算法研究综述.软件学报,2002,13(11):2065-2075.
    [164]杨冬,王正欧.改进的蚂蚁算法求解任务分配问题[J].天津大学学报,2004,37(4):373-376.
    [165]李士勇.蚁群优化算法及其应用研究进展[J].计算机测量与控制,2003,11(12):911-914.
    [166]邹鹏,周智,陈国良,江贺,顾钧.求解QAP问题的近似骨架导向快速蚁群算法[J].软件学报,2005,16(10):1691-1698.
    [167]王颖,谢剑英.一种基于改进蚁群算法的多点路由算法[J].系统工程与电子技术,2001,23(8):98-101.
    [168]高坚.基于自适应蚁群算法的多受限网络QoS路由优化[J].计算机工程,2003,29(19):40-42.
    [169]CHU C,Gu J,HOU XD.A Heuristic Ant Algorithm for Solving QoS Multicast Routing Problem[A].Proceedings of the 2002 Congress on Evolutionary Computation[C],2002,9,Page(s):1630-1635.
    [170]杨云.基于TCP/IP的QoS路由算法的研究[博士学位论文].南京:南京理工大学,2003.
    [171]李汉兵.计算机网络路由算法[博士学位论文].西安:西安电子科技大学,2000.
    [172]Salama H F,Reeves D S,Viniotis Y.Evaluation of Multicast Routing Algorithms for Real-Time Communication on High-Speed Networks[J].IEEE JSAC,1997,15(3):332-245.
    [173]王思兵.因特网中的QoS路由算法研究[博士学位论文].上海:上海交通大学,2001.
    [174]王征应,石冰心.基于启发式遗传算法的QoS组播路由问题求解[J].计算机学报,2001,24(1):55-61.
    [175]冯杰,杨即春,夏尊铨.基于模糊信息的多QoS约束组播路由算法研究.运筹与管理,2005,14(3):22-27.
    [176]Coveney,Peter V.Self-Organization and Complexity:A New Age for Theory,Computation and Experiment".The Royal Society,May 2003,361:1057-1079.
    [177]Heylighen,F.Self-Organization.Principia Cybernetica Web,January 1997.
    [178]E Bonabeau.Marginally Stable Swarms are Flexible and Efficient[J].J.Phys,1996(6):309-320.
    [179]J-L Deneubourg et al.The Blind Leading the Blind:Modelling Chemically Mediated Army Raid Patterns[J].J.Insect Behavior,1989(2):719-725.
    [180]N R Franks,et al.The Blind Leading the Blind in Army Ant Raid Patterns:Testing A Model of Self-Organiation(Hymenoptera:Formicidae)[J].J.Insect Behavior,1991(4):583-607.
    [181]John A.Sauter,et al.Performance of Digital Pheromones for Swarming Vehicle Control[A].AAMAS'05[C],Utrecht,Netherlands.2005,903-910.
    [182]Chandler P R,Pachter M.Distributed Control for Multiple UAVs with Strongly Coupled Tasks[A].AIAA Guidance,Navigation,and Control Conference[C].Austin,Texas,2003.AIAA-2003-5799.
    [183]Chandler P R.Decentralized Control for an Autonomous Team[A].2nd AIAA "Unmanned Unlimited" Systems,Technologies,and Operations-Aerospac[C].San Diego,California,2003.AIAA 2003-6571.
    [184] Sousa J B, Varaiya P, Simsek T. Distributed Control of Teams of Unmanned Air Vehicles[A]. Mathematical Theory of Networks and Systems[M]. 2004.
    
    [185] Beard R W, Stepanyan V. Synchronization of Information in Distributed Multiple Vehicle Coordinated Control[A]. In: Proceedings of the IEEE Conference on Decision and Control[C]. Maui, Hawaii. 2003: 2029-2034.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700