银锰分子筛的制备、结构以及对甲醛和氮氧化物的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了银锰分子筛(Ag-OMS-2)的结构,及其在治理空气污染物甲醛和氮氧化物的催化性能研究。
     本论文采用回流法成功合成了氧化锰八面体分子筛纳米棒,并在分子筛孔道内掺杂了银原子和银离子(Ag0-OMS-2和Ag+-OMS-2),利用同步辐射X射线吸收精细结构谱(XAFS)和X射线衍射的全谱拟合对银锰分子筛的结构进行了精细解析。TEM和XRD研究结果表明Ago成功掺杂于OMS-2分子筛的孔道中,形成了高分散的单原子Ag结构,这一结果的发现对金属单原子分散的研究上具有创新意义。ICP表征发现Ag0-OMS-2中K+相对载体K-OMS-2中K含量并未减少,说明Ag进入孔道并非通过离子交换的形式,而是通过占据OMS-2空的孔道。
     比较Ag0-OMS-2, Ag+-OMS-2, K-OMS-2三种催化剂催化甲醛完全氧化的性能,发现Ag0-OMS-2具有最高的催化活性。H2-TPR结果同时表明,Ago具有Ag0-OMS-2较好的低温还原性能。比表面积BET测试表明三种催化剂具有相似的外表面。因此,银锰分子筛催化氧化甲醛的吸附位和活性位点主要发生在孔口。Ag0-OMS-2具有较高催化氧化能力的原因:位于孔口的Ag0可极大地促进氧的活化,进一步将吸附在孔口的甲醛氧化,最终达到提高K-OMS-2催化完全氧化甲醛的目的。
     此外,本论文还研究了银锰分子筛在NH3-SCR反应上的构效关系。研究表明,NH3-SCR反应主要发生在银锰分子筛催化剂的外表面半孔道结构上,孔道中掺杂的金属原子/离子对NH3-SCR反应的影响不大。NH3-SCR反应机理在银锰氧分子筛的反应机理为:半孔道上的高活性晶格氧是锰氧分子筛具有优异NH3-SCR反应性能的主要原因。
In this work, the fine structures of Ag-doped manganese oxide octahedral molecular sieves (Ag-OMS-2) were studied. Using an fluidized bed reactor system, we investigated the structure-activity relationships of the catalysts for complete oxidation of formaldehyde and NH3-SCR reactions.
     Manganese oxide octahedral molecular sieve nanorods were synthesized by a refluxing method. Silver atoms or silver ions were inserted in the tunnels of the molecular sieve (noted as Ag0-OMS-2 and Ag+-OMS-2 respectively). The fine structures of silver manganese molecular sieves were analyzed by synchrotron radiation X-ray absorption fine structure (XAFS) and X-ray diffraction whole-pattern fitting method, which showed that both silver atoms and silver ions were successfully inserted in the molecular sieve tunnels to form single atom arranged. Moreover, the silver atoms migrated gradually from silver particles on the outer surface of K-OMS-2 nanorods into the tunnels of molecular sieve after calcination. Whole-parttern fitting results also showed that there were two kinds of crystal structures in Ag0-OMS-2, K1.33Mn8O16 and Ag1.8Mn8O16 (41.8% and 58.2% respectively, mass percentage). ICP analysis showed that the K content in Ag0-OMS-2 did not reduce with the addition of Ag, indicating that the process of Ag nanoparticles into the channels was not ion exchange. Silver nanoparticles migarate into the molecular sieve tunnels can be described as:with a slow calcination, the silver particles anchored on the outer surface of nanorods moved along the semi-tunnels of OMS-2 to the ends of nanorods, and ultimately migrated into the tunnels, and the Ag single atom is stabilized by four O atoms in the tunnels with a square-planar coordination of Ag-O.
     By comparing the ability of complete oxidation of formaldehyde over the Ag0-OMS-2, Ag+-OMS-2, K-OMS-2 catalysts, we found that Ag0-OMS-2 had the highest catalytic activity, despite that the catalysts have the similar outer surface structure. The oxidation of formaldehyde by Ag-OMS-2 occurrs mainly in the tunnels ports (formaldehyde molecules can be adsorbed on the pores) and the reason why Ag0-OMS-2 had a higher oxidation capacity of formaldehyde is that:the Ag0 species filled in the pore can greatly promote the activation of lattice oxygen of the pore, which can further oxidate the formaldehyde moleculars adsorbed, and ultimately achieved the higher activities for formaldehyde oxidation. H2-TPR results also have the similar results, which showed that hydrogen spillover phenomenon occured on the surface of Ag0, which indicated that Ag0 in the pore could have the higher redox property.
     In addition, we also investigated the structure-activity relationship of NH3-SCR reaction over silver manganese oxide octahedral molecular sieves. The results showed that, NH3-SCR reaction occured mainly on the surface semitunnl structures of Ag-OMS-2. The structure-activity relationship revealed that both efficient semitunnel structured external surfaces and high active surface lattice oxygen atoms predominantly accounted for the high catalytic activities of Ag-OMS-2. Either modified by metal atoms/ions or not do not make significant difference.
引文
[1]Richter A, Burrows J P, Nuss H, Granier C, Niemeier U. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature,2005,437(7055):129-132.
    [2]唐幸福.锰-铈固溶体催化剂上甲醛完全氧化反应的研究[D].中国科学院大连化学物理研究所,2006:
    [3]李峰.甲醛及其衍生物:[M].北京:化学工业出版社,2006:46-49.
    [4]Salthammer T, Mentese S, Marutzky R. Formaldehyde in the indoor environment[J]. Chemical Reviews,2010,110(4):2536-2572.
    [5]将文.甲醛的危害与防治[J].环境教育,2009,(3):70-71.
    [6]Solomons K, Cochrane J W C. Formaldehyde toxicity. Part Ⅱ. Review of acute and chronic effects on health[J]. South African Medical Journal,1984,66(3):103-106.
    [7]Bosetti C, McLaughlin J K, Tarone R E, Pira E, La Vecchia C. Formaldehyde and cancer risk: a quantitative review of cohort studies through 2006[J]. Annals of Oncology,2008,19(1): 29-43.
    [8]Marsh G M, Youk A O. Reevaluation of mortality risks from nasopharyngeal cancer in the formaldehyde cohort study of the National Cancer Institute[J]. Regulatory Toxicology and Pharmacology,2005,42(3):275-283.
    [9]Administration E I, International energy outlook.2006:Washington D C.
    [10]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M].北京:化学工业出版社,2007.
    [11]Yang J J, Li D X, Zhang Z J, Li Q L, Wang H Q. A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2000,137(2-3):197-202.
    [12]Liu H M, Lian Z W, Ye X J, Shangguan W F. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide[J]. Chemosphere,2005,60(5):630-635.
    [13]Liu H M, Ye X J, Lian Z W, Wen Y G, Shangguan W F. Experimental study of photocatalytic oxidation of formaldehyde and its by-products[J]. Research on Chemical Intermediates,2006, 32(1):9-16.
    [14]Chuang K T, Zhou B, Tong S M. Kinetics and mechanism of catalytic oxidation of formaldehyde over hydrophobic catalysts[J]. Industrial & Engineering Chemistry Research,1994,33(7): 1680-1686.
    [15]Imamura S, Uchihori D, Utani K, Ito T. Oxidative decomposition of formaldehyde on silver-cerium composite oxide catalyst[J]. Catalysis Letters,1994,24(3-4):377-384.
    [16]Alvarez-Galvan M C, Pawelec B, O'Shea V A D, Fierro J L G, Arias P L. Formaldehyde/methanol combustion on alumina-supported manganese-palladium oxide catalyst[J]. Applied Catalysis B-Environmental,2004,51(2):83-91.
    [17]Zhang C B, He H, Tanaka K. Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature[J]. Catalysis Communications,2005,6(3):211-214.
    [18]Imamura S, Uematsu Y, Utani K, Ito T. Combustion of formaldehyde on Ruthenium/Cerium(IV) oxide catalyst[J]. Industrial & Engineering Chemistry Research,1991,30(1):18-21.
    [19]Sekine Y. Oxidative decomposition of formaldehyde by metal oxides at room temperature[J]. Atmospheric Environment,2002,36(35):5543-5547.
    [20]赵坚行.热动力装置的排气污染与噪声[M].北京:科学出版社,1995:81-112.
    [21]苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2005: 70-148.
    [22]杨飏.氮氧化物减排技术与烟气脱硝工程[M].北京:冶金工业出版社,2007:46-52.
    [23]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,1998:244-287.
    [24]田耀鹏,嵇鹰.低NOx燃烧和排放控制技术的研究进展[J].电力环境保护,2009,25(1):27-30.
    [25]沈伯雄,姚强.天然气再燃脱硝的原理和技术[J].热能动力工程,2002,17(1):7-9.
    [26]Resini C, Montanari T, Nappi L, Bagnasco G, Turco M, Busca G, Bregani F, Notaro M, Rocchini G. Selective catalytic reduction of NOx by methane over Co-H-MFI and Co-H-FER zeolite catalysts: characterisation and catalytic activity[J]. Journal of Catalysis,2003,214(2): 179-190.
    [27]荆国华Fell(EDTA)络合吸收结合生物转化脱除NO研究[D].杭州:浙江大学,2004:7.
    [28]Nikolopoulos A A, Stergioula E S, Efthimiadis E A, Vasalos I A. Selective catalytic reduction of NO by propene in excess oxygen on Pt- and Rh-supported alumina catalysts[J]. Catalysis Today,1999,54(4):439-450.
    [29]An W Z, Zhang Q L, Chuang K T, Sanger A R. A hydrophobic Pt/fluorinated carbon catalyst for reaction of NO with NH3[J]. Industrial & Engineering Chemistry Research,2002,41(1): 27-31.
    [30]Richter M, Fricke R, Eckelt R. Unusual activity enhancement of NO conversion over Ag/Al2O3 by using a mixed NH3/H2 reductant under lean conditions[J]. Catalysis Letters,2004,94(1-2): 115-118.
    [31]Bentrup U, Richter M, Fricke R. Effect of H2 admixture on the adsorption of NO, NO2 and propane at Ag/Al2O3 catalyst as examined by in situ FTIR[J]. Applied Catalysis B-Environmental,2005,55(3):213-220.
    [32]Richter M, Bentrup U, Eckelt R, Schneider M, Pohl M M, Fricke R. The effect of hydrogen on the selective catalytic reduction of NO in excess oxygen over Ag/Al2O3[J]. Applied Catalysis B-Environmental,2004,51(4):261-274.
    [33]Bosch H, Janssen F, Vandenkerkhof F M G, Oldenziel J, Vanommen J G, Ross J R H. The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia[J]. Applied Catalysis,1986,25(1-2):239-248.
    [34]Kapteijn F, Singoredjo L, Andreini A, Moulijn J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B-Environmental,1994,3(2-3):173-189.
    [35]Park T S, Jeong S K, Hong S H, Hong S C. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature[J]. Industrial & Engineering Chemistry Research,2001,40(21):4491-4495.
    [36]Kang M, Yeon T H, Park E D, Yie J E, Kim J M. Novel MnOx catalysts for NO reduction at low temperature with ammonia[J]. Catalysis Letters,2006,106(1-2):77-80.
    [37]Wu Z, Jiang B Q, Liu Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B-Environmental,2008,79(4):347-355.
    [38]Qi G S, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B-Environmental,2004,51(2):93-106.
    [39]Zhao Q S, Xiang J, Sun L S, Su S, Hu S. Adsorption and Oxidation of NH3 and NO over Sol-Gel-Derived CuO-CeO2-MnOx/gamma-A12O3 Catalysts[J]. Energy & Fuels,2009,23: 1539-1544.
    [40]Long R Q, Yang R T. Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. Journal of Catalysis,2000,194(1):80-90.
    [41]唐晓龙,郝吉明,易红宏,宁平,李俊华.活性炭改性整体催化剂上低温选择性还原NOx[J].中国环境科学,2007,27(6):845-850.
    [42]Deguzman R N, Shen Y F, Neth E J, Suib S L, Oyoung C L, Levine S, Newsam J M. Synthesis and characterization of octahedral molecular sieves (OMS-2) having the hollandite structure[J]. Chemistry of Materials,1994,6(6):815-821.
    [43]Luo J, Zhang Q, Garcia-Martinez J, Suib S L. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts[J]. Journal of the American Chemical Society,2008,130(10):3198-3207.
    [44]Tang X F, Huang X M, Shao J J, Liu J L, Li Y G, Xu Y D, Shen W J. Synthesis and catalytic performance of manganese oxide octahedral molecular sieve nanorods for formaldehyde oxidation at low temperature[J]. Chinese Journal of Catalysis,2006,27(2):97-99.
    [45]Chen H M, He J H, Zhang C B, He H. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde[J]. Journal of Physical Chemistry C,2007,111(49):18033-18038.
    [46]Xia G G, Yin Y G, Willis W S, Wang J Y, Suib S L. Efficient stable catalysts for low temperature carbon monoxide oxidation[J]. Journal of Catalysis,1999,185(1):91-105.
    [47]Luo J, Zhang Q H, Huang A M, Suib S L. Total oxidation of volatile organic compounds with hydrophobic cryptomelane-type octahedral molecular sieves[J]. Microporous and Mesoporous Materials,2000,35-6:209-217.
    [48]Chen T, Dou H Y, Li X L, Tang X F, Li J H, Hao J M. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde[J]. Microporous and Mesoporous Materials,2009, 122(1-3):270-274.
    [49]Smirniotis P G, Pena D A, Uphade B S. Low-temperature selective catalytic reduction (SCR) of NO with NH3 by using Mn, Cr, and Cu oxides supported on Hombikat TiO2[J]. Angewandte Chemie-International Edition,2001,40(13):2479-+.
    [50]Sreekanth P M, Smirniotis P G. Selective reduction of NO with CO over titania supported transition metal oxide catalysts[J]. Catalysis Letters,2008,122(1-2):37-42.
    [51]Pena D A, Uphade B S, Smirniotis P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3I. Evaluation and characterization of first row transition metals[J]. Journal of Catalysis,2004,221(2):421-431.
    [52]Wallin M, Forser S, Thormahlen P, Skoglundh M. Screening of TiO2-supported catalysts for selective NOx reduction with ammonia[J]. Industrial & Engineering Chemistry Research, 2004,43(24):7723-7731.
    [53]Roy S, Viswanath B, Hegde M S, Madras G. Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-delta (M= Cr, Mn, Fe, Co, Cu)[J]. Journal of Physical Chemistry C,2008,112(15):6002-6012.
    [54]Wang C, Sun L A, Cao Q Q, Hu B Q, Huang Z W, Tang X F. Surface structure sensitivity of manganese oxides for low-temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis B-Environmental,2011,101(3-4):598-605.
    [55]Chen X, Shen Y F, Suib S L, O'Young C L. Catalytic decomposition of 2-propanol over different metal-cation-doped OMS-2 materials[J]. Journal of Catalysis,2001,197(2):292-302.
    [56]Cai J, Liu J, Willis W S, Suib S L. Framework doping of iron in tunnel structure cryptomelane[J]. Chemistry of Materials,2001,13(7):2413-2422.
    [57]Chen X, Shen Y F, Suib S L, O'Young C L. Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants[J]. Chemistry of Materials,2002,14(2):940-948.
    [58]Chang F M, Jansen M. Ag1.8Mn8016: square planar coordinated Ag+ Ions in the Channels of a Novel Hollandite Variant[J]. Angewandte Chemie-International Edition in English,1984, 23(11):906-907.
    [59]Li L Y, King D L. Synthesis and characterization of silver hollandite and its application in emission control[J]. Chemistry of Materials,2005,17(17):4335-4343.
    [60]Chen J L, Tang X F, Liu J L, Zhan E S, Li J, Huang X M, Shen W J. Synthesis and characterization of Ag-hollandite nanofibers and its catalytic application in ethanol oxidation[J]. Chemistry of Materials,2007,19(17):4292-4299.
    [61]Zhang L, Zhang C B, He H. The role of silver species on Ag/Al2O3 catalysts for the selective catalytic oxidation of ammonia to nitrogen[J]. Journal of Catalysis,2009,261(1):101-109.
    [62]Zhang L, He H. Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3[J]. Journal of Catalysis,2009,268(1):18-25.
    [63]Imamura S, Sawada H, Uemura K, Ishida S. Oxidation of carbon-monoxide catalyzed by manganese silver composite oxides[J]. Journal of Catalysis,1988,109(1):198-205.
    [1]Vicat J, Fanchon E, Strobel P, Qui D T. The structure of K1.33Mn8O16 and cation ordering in hollandite-type structures[J]. Acta Crystallographica Section B-Structural Science,1986,42: 162-167.
    [2]Post J E, Vondreele R B, Buseck P R. Symmetry and cation displacements in hollandites: structure refinements of hollandite, cryptomelane, and priderite[J]. Acta Crystallographica Section B-Structural Science,1982,38:1056-1065.
    [3]Bystrom A, Bystrom A M. The crystal structure of hollandite, the related manganese oxide minerals, and alpha-MnO2[J]. Acta Crystallographica,1950,3(2):146-154.
    [4]Li L Y, King D L. Synthesis and characterization of silver hollandite and its application in emission control[J]. Chemistry of Materials,2005,17(17):4335-4343.
    [5]胡蓉蓉,程易,谢兰英,王德峥.掺Ag对氧化锰八面体分子筛催化CO氧化性能的影响[J].催化学报,2007,28(5):463-468.
    [6]Gac W. The influence of silver on the structural, redox and catalytic properties of the cryptomelane-type manganese oxides in the low-temperature CO oxidation reaction[J]. Applied Catalysis B-Environmental,2007,75(1-2):107-117.
    [7]Xia G G, Yin Y G, Willis W S, Wang J Y, Suib S L. Efficient stable catalysts for low temperature carbon monoxide oxidation[J]. Journal of Catalysis,1999,185(1):91-105.
    [8]Chen J L, Tang X F, Liu J L, Zhan E S, Li J, Huang X M, Shen W J. Synthesis and characterization of Ag-hollandite nanofibers and its catalytic application in ethanol oxidation[J]. Chemistry of Materials,2007,19(17):4292-4299.
    [9]Chang F M, Jansen M. Ag1.8Mn8016: square planar coordinated Ag+ Ions in the Channels of a Novel Hollandite Variant[J]. Angewandte Chemie-International Edition in English,1984,23(11): 906-907.
    [10]隋美霞,牟晓玲,刘海霞,杨赵伟,王宇星,任燕锋,刘大森.同步辐射X射线吸收精细结构(XAFS)技术在元素研究中的应用[J].核农学报,2009,23(6):1032-1035.
    [1]Chen T, Dou H Y, Li X L, Tang X F, Li J H, Hao J M. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde[J]. Microporous and Mesoporous Materials,2009,122(1-3):270-274.
    [2]Dyer A, Pillinger M, Newton J, Harjula R, Moller T, Amin S. Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides[J]. Chemistry of Materials,2000,12(12):3798-3804.
    [3]Chen X, Shen Y F, Suib S L, O'Young C L. Catalytic decomposition of 2-propanol over different metal-cation-doped OMS-2 materials[J]. Journal of Catalysis, 2001,197(2):292-302.
    [4]Chen X, Shen Y F, Suib S L, O'Young C L. Characterization of manganese oxide octahedral molecular sieve (M-OMS-2) materials with different metal cation dopants[J]. Chemistry of Materials,2002,14(2):940-948.
    [5]Li L Y, King D L. Synthesis and characterization of silver hollandite and its application in emission control[J]. Chemistry of Materials,2005,17(17): 4335-4343.
    [6]Zhang L, He H. Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3[J]. Journal of Catalysis,2009,268(1):18-25.
    [7]Zhang L, Zhang C B, He H. The role of silver species on Ag/Al2O3 catalysts for the selective catalytic oxidation of ammonia to nitrogen[J]. Journal of Catalysis,2009,261(1):101-109.
    [8]Chen J L, Tang X F, Liu J L, Zhan E S, Li J, Huang X M, Shen W J. Synthesis and characterization of Ag-hollandite nanofibers and its catalytic application in ethanol oxidation[J]. Chemistry of Materials,2007,19(17):4292-4299.
    [9]Vicat J, Fanchon E, Strobel P, Qui D T. The structure of K1.33MngO16 and cation ordering in Hollandite-type structures [J]. Acta Crystallographica Section B-Structural Science,1986,42:162-167.
    [10]Chang F M, Jansen M. Ag1.8MngO16-square-planar coordinated Ag+ ions in the channels of a novel Hollandite variant[J]. Angewandte Chemie-International Edition,1984,23(11):906-907.
    [11]Pauling L. Atomic radii and interatomic distances in metals[J]. Journal of the American Chemical Society,1947,69(3):542-553.
    [12]Shannon R D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976,32(SEP1):751-767.
    [13]Wang C, Sun L, Cao Q Q, Hu B Q, Huang Z W, Tang X F. Surface structure sensitivity of manganese oxides for low-temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis B-Environmental,2011, 101(3-4):598-605.
    [14]Barcaro G, Fortunelli A. Structure and diffusion of small Ag and Au clusters on the regular MgO (100) surface[J]. New Journal of Physics,2007,9:22.
    [15]Smit R H M, Untiedt C, Yanson A I, van Ruitenbeek J M. Common origin for surface reconstruction and the formation of chains of metal atoms[J]. Physical Review Letters,2001,87(26):266102.
    [16]Kapteijn F, Singoredjo L, Andreini A, Moulijn J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric-oxide with ammonia[J]. Applied Catalysis B-Environmental,1994,3(2-3):173-189.
    [17]Andrews L, Wang X F. Infrared spectra and structures of the stable CuH2-, AgH2-, AuH2-, and AuH4- anions and the AuH2 molecule [J]. Journal of the American Chemical Society,2003,125(38):11751-11760.
    [18]Chabre Y, Pannetier J. tructural and electrochemical properties of the proton gamma-MnO2 system[J]. Progress in Solid State Chemistry,1995,23(1): 1-130.
    [19]Tang X F, Li J H, Sun L, Hao J M. Origination of N2O from NO reduction by NH3 over beta-MnO2 and alpha-Mn2O3[J]. Applied Catalysis B-Environmental, 2010,99(1-2):156-162.
    [1]Kincaid B M, Eisenberger P, Hodgson K O, Doniach S. X-ray absorption spectroscopy using synchrotron radiation for structural investigation of organometallic molecules of biological interest[J]. Proceedings of the National Academy of Sciences of the United States of America, 1975,72(6):2340-2342.
    [2]C K D, R P. X-Ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES[M]. German:John Wiley and Sons,Inc.,1988:211-254.
    [3]Greegor R B, Lytle F W, Chakoumakos B C, Ewing R C, Livak R J, Clinard F W, Crozier E D, Alberding N, Seary A J, Arnold G W, Weber M J, Wong J, Weber W J. Application of various XAFS techniques to the investigation of structurally damaged materials[J]. Physica B-Condensed Matter,1989,158(1-3):498-500.
    [4]Teo B K, Lee P A, Simons A L, Eisenberger P, Kincaid B M. EXAFS:approximation, parameterization, and chemical transferability of amplitude functions[J]. Journal of the American Chemical Society,1977,99(11):3854-3856.
    [5]Eisenberger P, Kincaid B M. EXAFS:new horizons in structure determinations[J]. Science,1978, 200(4349):1441-1447.
    [6]Rehr J J, Albers R C. Theoretical approaches to x-ray absorption fine structure[J]. Reviews of Modern Physics,2000,72(3):621-654.
    [7]Rehr J J, Ankudinov A L. Progress in the theory and interpretation of XANES[J]. Coordination Chemistry Reviews,2005,249(1-2):131-140.
    [8]韦世强,谢亚宁,徐法强,胡天斗,刘文汉,涛刘.同步辐射讲座第一讲同步辐射XAFS实验站及其应用[J].物理,2002,31(1):40-44.
    [9]Debye P, Scherrer P. Interference on inordinate orientated particles in roentgen light[J]. Physikalische Zeitschrift,1916,17:277-283.
    [10]Debye P, Scherrer P. Interference on inordinate orientated particles in x-ray light. III[J]. Physikalische Zeitschrift,1917,18:291-301.
    [11]Hanawalt J D, Rinn H W, Frevel L K. Chemical analysis by x-ray diffraction-Classification and use of x-ray diffraction patterns[J]. Industrial and Engineering Chemistry-Analytical Edition, 1938,10:0457-0512.
    [12]Borgia C, Olliges S, Spolenak R. Rapid qualitative phase analysis in highly textured thin films by x-ray diffraction[J]. Review of Scientific Instruments,2008,79(4).
    [13]Jones J L, Slamovich E B, Bowman K J. Domain texture distributions in tetragonal lead zirconate titanate by x-ray and neutron diffraction[J]. Journal of Applied Physics,2005,97(3).
    [14]Rietveld H M. Line profiles of neutron powder diffraction peaks for structure refinement[J]. Acta Crystallographica,1967,22:151.
    [15]Rietveld H M. A profile refinement method for nuclear and magnetic structures[J]. Journal of Applied Crystallography,1969,2:65.
    [16]马礼敦.X射线粉末衍射的新起点—Rietveld全谱拟合[J].物理学进展,1996,16(2):251-271.
    [17]马礼敦.近代X射线多晶体衍射-实验技术与数据分析[M].北京:化学工业出版社,2004:419-430.
    [18]Lutterotti L, Scardi P. Simultaneous structure and size-strain refinement by the rietveld method[J]. Journal of Applied Crystallography,1990,23:246-252.
    [19]Lutterotti L, Gialanella S. X-ray diffraction characterization of heavily deformed metallic specimens[J]. Acta Materialia,1998,46(1):101-110.
    [20]Lutterotti L, Wenk H R. MAUD:a friendly Java program for material analysis using diffraction[J]. Newsletter of the CPD,1999,21:14-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700