乌兰布和沙漠东北部沙区农田和林地土壤微生物及酶活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探讨乌兰布和沙漠东北部沙区农田和林地土壤的生物学性质,本研究以流沙地为对照,对籽瓜、玉米、葵花和苜蓿农田以及二白杨、新疆杨、小美旱杨、香花槐、沙枣、柠条、沙棘、花棒、和柽柳林地的0~20 cm和20~40 cm土层的3大类土壤微生物(细菌、放线菌和真菌)数量、土壤呼吸强度和7种土壤酶(蔗糖酶、脲酶、过氧化氢、碱性磷酸酶、蛋白酶、多酚氧化酶和纤维素酶)活性的生态分布特征进行了研究,并结合相关性分析和主成分分析等方法,对农田和林地土壤生态肥力质量进行了评价。从而为沙区农业生产和植树造林活动提供了理论参考。主要研究结论如下:
     1.研究区农田土壤三大菌数量级大小顺序为:细菌(107)>放线菌(105)>真菌(103);各农田微生物总数和土壤呼吸强度均随土层的加深呈减少趋势;与其他农田相比,籽瓜地微生物总数最多,土壤呼吸强度最高;研究区苜蓿地土壤蔗糖酶、脲酶和碱性磷酸酶活性高于其它农田,玉米地过氧化氢酶活性最大,籽瓜地的蛋白酶活性最大,葵花地的纤维素酶活性最大;蔗糖酶、脲酶、蛋白酶和纤维素酶活性随土层加深而降低,其中,降幅最大的是蔗糖酶活性。过氧化氢酶活性则表现为随土层加深而增加。碱性磷酸酶和多酚氧化酶活性随土层深度变化不明显。
     2.林地土壤三大菌数量级大小顺序为:细菌(106)>放线菌(105)>真菌(103)。各林地土壤微生物总数均呈0~20 cm土层最高,随土层加深呈明显减少趋势;柠条、沙枣和沙棘林地土壤中细菌数量较多,二白杨林地中放线菌数量最多,花棒和柠条林地土壤中真菌数量较多。研究区乔、灌林地间微生物数量存在明显差异,整体而言,灌木林地土壤微生物总数比乔木林地多,其中,沙枣、柠条、沙棘和花棒等具有固氮能力的树种林地的土壤微生物总数更多。各林地各层次上土壤呼吸强度均高于对照。除小美旱杨和香花槐外,其余林地土壤呼吸强度均上层高于下层。其中沙枣和沙棘林地土壤呼吸强度较其他林地要高。在0~40 cm土层,二白杨林地蔗糖酶和多酚氧化酶活性最大;小美旱林地脲酶和过氧化氢酶活性均较高;沙棘和沙枣林地中碱性磷酸酶活性较高;新疆杨、小美旱和花棒林地蛋白酶活性比较高;小美旱杨、沙枣和沙棘林地纤维素酶活性较高。过氧化氢酶和多酚氧化酶活性变化随土层的加深无规律性,蔗糖酶、脲酶、碱性磷酸酶、蛋白酶和纤维素酶活性均随土层加深而降低,其中,脲酶活性降幅最大。
     3.蔗糖酶、脲酶、过氧化氢酶、碱性磷酸酶、蛋白酶和纤维素酶活性均与有机质含量之间有较好的线性相关关系,且这6种酶活性均随土壤有机质含量的增加而增加,其中增幅最大的是脲酶活性,其次为过氧化氢酶活性,碱性磷酸酶活性增幅最小。多酚氧化酶活性却随有机质含量增加而减小。
     4.细菌、放线菌和真菌之间达到显著甚至极显著正相关;细菌和放线菌只与蛋白酶的相关系数最大,达到显著水平;真菌与蔗糖酶、脲酶和蛋白酶均呈显著正相关;蔗糖酶与碱性磷酸酶和蛋白酶之间表现出高度一致的平行关系,相关系数分别为0.681和0.684,达到显著水平;脲酶与蛋白酶、蔗糖酶之间分别达到显著、极显著水平;多酚氧化酶除与过氧化氢酶之间呈极显著正相关外,与其余酶活性间均呈负相;纤维素酶与蔗糖酶达极显著正相关,与过氧化氢酶达极显著负相关。
     5.研究区各农田土壤综合主成分值大小依次为:苜蓿(F_(MX)= 2.791)>葵花(F_(KH)= 2.687)>玉米(F_(YM)= 2.499)>籽瓜(F_(ZG)= 0.289)。各林地土壤综合主成分值大小依次为:小美旱杨(F_(XMH)=4.354)>沙枣(F_(SZ)=0.809)>二白杨(F_(EBY)=0.453)>沙棘(F_(SJ)=0.295)>柠条(F_(NT)=0.077)>香花槐(F_(XHH)= -0.398)>新疆杨(F_(XYJ)= -0.700)>花棒(F_(HB)= -2.021)>柽柳(F_(CL)= -2.862)。
In order to explore the biological property of farmland and woodland in the northeast sandy area of Ulan Buh Desert, In this paper, take the desert land as the comparison. the soil bacteria, actinomycetes, fungus and sucrase, urease, catalase, alkaline phosphatase, protease, polyphenol oxidase, cellulase activities of 4 kinds of typical farmlands and 9 kinds of typical artificial woodlands in 0~20, 20~40 cm soil layers in the northeast of Ulanbuh Desert have been studied.In combination with correlation analysis and principal component analysis method, Has carried on the appraisal to the farmland and the woodland soil ecology fertility quality . this can provide a theoretical reference for agriculture and planting trees .The main conclusions are as follows:
     1. Microorganism magnitude: bacteria(107)> actinomycetes(105)>fungi(103). the number of microbes and soil respiration under the seed watermelon farmland was most. The total number of soil microbial and respiration decreasing with the soil depth increased. the activities of soil invertase、urease and alkaline phosphatase under alfalfa farmland were higher than those of others.Soil catalase activity of corn farmland was highest, soil protease activity under seed watermelon farmland was relatively high. cellulase activities of sunflower farmland were higher than those of others.Invertase, urease, protease and cellulase activity decreased with depth, of which the largest decline is invertase activity. Catalase activity is shown as increasing with depth. Alkaline phosphatase and polyphenol oxidase does not show regular with depth.
     2.In the study area microorganism magnitude: bacteria(106)> actinomycetes(105)>fungi(103). In the 0~40 cm soil layer, The number of microbes in the surface layer was maximum, and clearly decreased with the soil depth. The bacteria numbers under Caragana korshinskii Kem. Elaeagnus angustifolia L.and Hippophae rhamnoides Linn.were most in 0~40cm soil layer. The actinomycetes under P. gansuensis numbered most, The fungi numbers under Hedysarum scoparium Fisch. and Caragana korshinskii Kem. were bigger than those of others.The number of microbes under the bush forest land was more than under the tree forest land. And they significantly different between the microorganisms. All levels of the forestland soil respiration were higher than control. Except that Populus and Robinia, the remaining surface soil respiration were higher than the lower. Where the average Elaeagnus angustifolia and Hippophae forest soil respiration is higher than other woodlands.in 0~40cm soil layer, the activity of soil invertase under P. gansuensis was higher than those of others. the activities of soil urease and catalase under Populus simonii×(Populuspyramidalis +Salixmatsudana)cv. Poplaris’were highest. Soil alkaline phosphatase under Hippophae rhamnoides Linn. and Elaeagnus angustifolia L. were relatively high. P. alba L.var. pyramidalis Bunge, Populus simonii×(Populuspyramidalis +Salixmatsudana)cv. Poplaris’and Hedysarum scoparium Fisch.have higher protease activity; polyphenol oxidase activity was highest under P. gansuensis .In study region, the soil enzyme activities had obvious vertical distribution characteristics, decreasing with the soil depth except the soil catalase and polyphenol oxidase. especiallysoil urease had the sharpest decrease.
     3. Invertase, urease, catalase, alkaline phosphatase, protease and cellulase enzyme activities and organic matter has a good linear relationship, also these 6 kind of enzyme activities increased along with the soil organic matter content increase, which of the largest increase is urease activity, followed by catalase activity, the smallest increase is alkaline phosphatase activity. Polyphenol oxidase activity was decreased with increasing organic matter content.
     4. Between the Bacteria, actinomycetes and fungi is the significant or very significant positive correlation; bacteria and actinomycetes only with protease correlation coefficient was significant, while fungi and invertase, urease and protease were significant positive correlation; The invertase displays the highly consistent parallel relations with between the alkalinity phosphatase and the protease, the correlation coefficient respectively is 0.681 and 0.684, achieved remarkable level. Between the urease and the protease, the invertase the correlation coefficient respectively is 0.734, 0.957, respectively achieved significant, very significant; polyphenol oxidase and catalase than among highly significant positive correlation was outside, with the rest of the enzyme activity had significant negative correlation. Cellulase and invertase activity reached a very significant positive correlation with catalase highly significant negative correlation.
     5. Study area various farmlands soil synthesis principal components value is in turn: alfalfa (F_(MX) = 2.791)> sunflower (F_(KH) = 2.687)> Corn (F_(YM) = 2.499)> seed watermelon (F_(ZG) = 0.289). Various forest lands soil synthesis principal components value is in turn: Populus simonii×(Populuspyramidalis +Salixmatsudana)cv. Poplaris’(F_(XMH)=4.354)> Elaeagnus angustifolia L. (F_(SZ)=0.809)> P. gansuensis (F_(EBY)=0.453)> Hippophae rhamnoides Linn. (F_(SJ)=0.295)> Caragana korshinskii Kem. (F_(NT)=0.077)> Robinia idaho (F_(XHH)= -0.398)> P. alba L.var. pyramidalis Bunge. (F_(XYJ)= -0.700)> Hedysarum scoparium Fisch. (F_(HB)= -2.021)> Tamarix chinensis Lour.(F_(CL)= -2.862).
引文
安韶山,黄懿梅,郑粉莉. 2005.黄土丘陵区草地土壤脲酶活性特征及其与土壤性质的关系.草地学报, 13(3):233~237
    白慧强. 2009.主成分分析法在SPSS中的应用——以文峪河河岸带林下草本群落为例.科技情报开发与经济, 9
    白文明,左强,李保国. 2001.乌兰布和沙区紫花苜蓿根系吸水模型.植物生态学报, 25 (4): 431~ 437
    包梅荣,托亚,刘瑞军,秦佳琪. 2006.乌兰布和沙漠东北部土壤水分变化特征的研究.内蒙古农业大学学报, 27(1): 64~68
    包耀贤. 2008.黄土高原坝地和梯田土壤质量特征及评价. [博士学位论文].陕西:西北农林科技大学
    蔡晓布,钱成,张永清.2007.退化高寒草原土壤生物学性质的变化.应用生态学报, 18(8):1733~ 1738
    蔡艳,薛泉宏,侯琳,等. 2002.黄土高原几种乔灌木根区土壤微生物区系研究.陕西林业科技, (1): 4~10
    曹慧,孙辉,杨浩,孙波,赵其国. 2003.土壤酶活性及其对土壤质量的指示研究进展.应用环境生物学报, 9(1):105~109
    程丽娟,薛泉宏,韦革宏,等.2002.微生物学实验技术.西安:世界图书出版公司
    程晓莉,安树青,陈兴龙,李国旗,刘世荣.2001.鄂尔多斯草地荒漠化过程与植被生物量变迁的关系. 37(2): 13~19
    崔燕,吕贻忠,李保国. 2004.鄂尔多斯沙地土壤生物结皮的理化性质.土壤, 36 (2): 197~202
    戴伟,陈晓东. 1995.北京低山地区土壤酶活性与土壤理化性质的关系.河北林学院学报, 10(1): 13~ 18
    樊军. 2001.黄土高原旱地长期定位试验土壤酶活性研究. [硕士学位论文].陕西:中科院水土保持研究所
    范君华,刘明. 2006.塔里木极端干旱区5种土地利用方式对土壤微生物多样性与酶活性的影响.农业环境科学学报, 25: 131~135
    高明,周保童,魏朝富,等. 2004.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究.应用生态学报, 15(7): 1177~1181
    高祥斌,刘增文.2005.岷江上游典型森林生态系统土壤酶活性初步研究.西北林学院学报, 20 (3) : 1~5.
    高亚军. 2007.陕北农牧交错带土地荒漠化演化机制及土壤质量评价研究. [硕士学位论文].陕西:西北农林科技大学
    顾峰雪,文启凯,潘伯荣,等. 2000.塔克拉玛干沙漠腹地人工植被下土壤微生物的初步研究.生物多样性, 8(3): 297~303
    关松荫. 1986.土壤酶及其研究法.北京:农业出版社.
    郭银宝,许小英,等. 2005.祁连林区不同植被类型下三种土壤微生物群落的数量分布.青海农林科技,(3):16~18
    郝玉光,刘芳,张伟华,乌拉. 2009.乌兰布和沙区人工绿洲土壤养分动态研究.干旱区资源与环境, 23(7): 176~181
    胡亚林,汪思龙,颜绍馗. 2006.影响土壤微生物活性与群落结构因素研究进展.土壤通报, , 37(1): 170~176
    吉艳芝,冯万忠.等, 2008.落叶松混交林根际与非根际土壤养分、微生物和酶活性特征.生态环境, 17(1):339~343.
    李清河,赵英铭,江泽平,王志刚. 2005.乌兰布和沙漠东北部绿洲灌区水资源供需平衡及其承载力研究.水土保持通报, 25(6): 24~27
    林海明,张文霖. 2005.主成分分析与因子分析详细的异同和SPSS软件.统计研究,3:65~69
    林杰斌,林川雄,刘明德,等. 2006. SPSS12.0统计建模与应用实务.北京:中国铁道出版社,383~423,495~518.
    刘芳,王冰. 2008.山东省各地市公用事业水平的主成分分析与评价.科技与管理, 6
    刘建国,张伟,李彦斌,孙艳艳,卞新民.2009.新疆绿洲棉花长期连作对土壤理化性状与土壤酶活性的影响.中国农业科学, 42(2):725~733.
    刘世贵,葛绍荣,龙章富. 1994.退化草地土壤生化活性研究.草业学报, 3(4): 70~76
    刘拓等. 1999.世界防治荒漠化和干早日专题报道.中国林业, (6): 6~12
    刘占锋,傅伯杰,刘国华,朱永官.2006.土壤质量与土壤质量指标及其评价.生态学报, 26(3): 901~913.
    龙健,李娟,滕应,黄昌勇. 2003.贵州高原喀斯特环境退化过程土壤质量的生物学特性研究.水土保持学报, 17(2): 47~50
    路明. 2002.我国沙尘暴发生成因及其防御策略.中国农业科学, 35(4): 440~446
    罗明,单娜娜,文启凯,潘伯荣. 2002.几种固沙植物根际土壤微生物特性研究.应用与环境生物学报, 8(6): 618~622
    骆伯胜,钟继洪,陈俊坚. 2004.土壤肥力数值化综合评价研究.土壤, 36(1):104~106
    马效国,樊丽琴,陆妮,沈禹颖. 2005.不同土地利用方式对苜蓿茬地土壤微生物生物量碳、氮的影响.草业科学, 22(10):13~17
    聂馥霖. 2007.浅谈统计综合评价中主成分分析法的应用.陕西综合经济, 5: 46~48
    庞学勇. 2002.川西亚高山针叶林不同演替阶段土壤特性比较研究. [硕士学位论文].四川:四川农林大学
    史衍玺,唐克丽. 1998.人为加速侵蚀下土壤质量的生物学特性变化.水土保持学报, (1): 28~33
    苏永中,赵哈林,张铜会,文海燕. 2002.农田沙摸化演变中土壤质量的生物学特性变化.干旱区研究, 19(4):64~68
    孙波,赵其国,张桃林. 1997.土壤质量评价的生物学指标.土壤, 5: 225~23
    孙波,赵其国.1999.红壤退化中的土壤质量评价指标及评价方法.地理科学进展, 18(2): 118~128
    唐艳,杨林林,叶家颖.1999.银杏园土壤酶活性与土壤肥力的关系研究.广西植物, 9(3): 277~281
    万忠梅,吴景贵. 2005.酶活性影响因子研究进展.西北农林科技大学学报(自然科学版), 33(6): 1087~1092
    汪远品,何腾兵. 1994.贵州主要耕作土壤的脲酶活性研究.热带亚热带土壤科学研究, 3(4): 226~232
    肖育贵.1996.不同林型凋落物土壤微生物数量动态的研究.北京:林业科技通讯,17(l):28~29
    徐阳春,沈其荣,冉炜. 2002.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报, 39(1):89~96.
    许光辉,郑洪元.1986.土壤微生物分析手册.北京农业出版社
    薛立,邝立刚,陈红跃,谭绍满. 2003.不同林分土壤养分、微生物与酶活性的研究.土壤学报, 40(2): 280~285
    薛立,赖日石,陈红跃,等.2002.不同坡位造林地酶活性与土壤养分的关系.土壤通报, 33(4): 278~280
    杨芳,徐秋芳.2002.土壤微生物多样性研究进展.浙江林业科技, 22(6): 39~41, 55
    杨俊平. 2000.中国荒漠化状况与防治对策研究.干早区资源与环境, 14(3):15~23
    杨涛,徐慧,方德华,朱教君. 2006.樟子松林下土壤养分、微生物及酶活性的研究.土壤通报, 37(2): 253~256
    叶存旺,翟巧绒,郭梓娟,宋西德,赵宏刚,叶彦辉.2007.沙棘-侧柏混交林土壤养分、微生物与酶活性的研究.西北林学院学报, 22(5): 1~6.
    叶冬梅,秦佳琪,韩胜利,田有亮,郭连生.2005.乌兰布和沙漠流动沙地土壤水分动态、土壤土壤水势特征的研究.干旱区资源与环境.19(3):126-130
    余彬彬,金则新,李钧敏. 2008.常绿阔叶林次生演替系列群落土壤微生物生物量及酶活性.西北林学院学报,.23(5): 30~33.
    俞慎,李勇,王俊华,车玉萍,潘映华,李振高. 1999.土壤微生物生物量作为红壤质量生物指标的探讨.土壤学报, 36(3): 413~421
    袁志发,周静芋. 2002.试验设计与分析.北京:科学出版社,128~138
    岳庆玲,常庆瑞,刘京,等. 2007.黄土高原不同土地利用方式对土壤养分与酶活性的影响.西北农林科技大学学报(自然科学版), 35(12): 103~108.
    张超兰,徐建民. 2004.外源营养物质对表征土壤质量的生物学指标的影响.广西农业生物科学, 23(1):81~85
    张国红,任华中,高丽红,张福墁,曹之富,张振贤. 2005.京郊日光温室土壤微生物状况和酶活性.中国农业科学, 38(7):1447~1452
    张庆费,宋永昌,由文辉.1999.浙江天童植物群落次生演替与土壤肥力的关系.生态学报, 19(2):174~178
    张桃林,潘剑君,赵其国. 1999.土壤质量研究进展与方向.土壤, (1):1~7
    章家恩,廖宗文. 2000.试论土壤的生态肥力及其培育.土壤与环境, 9(3): 253~256
    赵林森,王九龄. 1995.杨槐混交林生长及土壤酶与肥力的相互关系.北京林业大学学报, 17(4): 1~7
    中国科学院南京土壤研究所微生物室. 1985.土壤微生物研究法.北京:科学出版社
    中元村,张克斌,王贤. 2001.荒漠化.北京:中国环境科学出版社
    周礼恺. 1987.土壤酶学.北京:科学出版社
    周晓飞,张庆国. 2007.不同耕作模式下农田土壤呼吸变化初步研究.安徽农学通报, 13(8): 64~65
    朱宏,赵成义,李君,李玉杰,王锋. 2007.柽柳和梭梭林地土壤呼吸研究.保持学报, 21(1): 148~151
    朱俊凤,朱震达等. 1999.中国荒漠化防治.北京:中国林业出版社
    Alvarez S., Guerrero M . C. 2000. Enzymatic activities associated with decomposition of particulate organic matter in two shallow ponds. Soil Biol. Biochem., 32:1941~1951
    Arnold. 1997. World Atlas of Desertification, 2nd edn, N. Middleton and D.Thomas,London, 32(2): 23~25 Brown A L. 1978. Ecology of Soil Organisms. Heinamann Educational Books Ltd, 65~43
    Carter M P. 1993. Soil Sampling and Methods of Analysis. Lewis Publishers, 263~274
    Dick R P A, 1992. Review: long-term effects of agricultural systems on soil biochemical and microbial parameters.AgriculturaI Ecosystem Environment, 40: 25~36
    Dick R P, Break will D,Turco R. 1996. Soil enzyme activities and biodiversity measure-ments as integrating boilogical indicators.In:Doran et al eds. Handbook of Methods for Assessment Soil QualityMadison:SSSA Special Pub.49.Soil Sci Soc Am Spec Publ, 247~272
    Dick W A, Tabatabai M A. 1993.Significance and Potential uses of soil enzymes. Soil Microbial Ecology Application in Agricultural and Environmental Management, Marcel Dekker, New York, 95~127
    Doran J W, Parkin T B.1994. Defining and assessing soil quality. Defining Soil Quality for a Sustainable Environment.Madison, WI: SSSA Spec.Publ.35.Am.Soc.Agron., 3~21
    Edgerton D L, Harris J A, Brich P. 1995. Linear relationship between aggregate stability and microbial in three restored soil. Soil Biol, 27:1499~1501
    Elfstrand S., Hedlund K., Martensson A. 2007. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl. Soil Ecol., 35:610~621.
    Groffman P M, McDowellb W H, Myers J C.,et al. 2001. Soil microbial biomass and activity in tropical riparian forests.Soil Biol.Biochem.,33(10):1339~1348
    Kennedy A C, Papendick R I. 1995. Microbial characteristics of soil quality. Soil Water conserve, 5: 243~ 247
    Martin J K. 1975. Comparison of agar media for counts of viable soil bacteria . Soil Biol.Biochem, 7: 401~402
    Parkhust C E. 1997.Bio-indicators of soil health United Kingdon.Oxon: CAB International Rodrigo S S, Emmanuel J M C, Uday B N. 2005. Fuzzy modeling of farmers’knowledge for land suitability classification. Agricultural Systems, 83: 49~75.
    Running S W, Nenani R R.1988. Relating seasonal paltterns of the AVHRR vegetation index to simulate photosynthesis and transpiration of forests in different climates.Remote Sensing of Environment, 24(2):347~367
    Spedding T A, Hamel C, Mehuys G R. 2004. Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biology & Biochemistry, 36: 499~512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700