紫色土区农林复合生态系统的能值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫色土区人口密度大,人均耕地少,农林复合生态系统作为合理开发利用土地资源的模式,是解决紫色土区生态环境问题的有效途径,也是紫色土区实现可持续发展的重要手段,本文以紫色土区农林复合生态系统为研究对象,对其模式进行分类并分析结构特征,应用能值分析方法对农林复合生态系统进行评价和比较分析,主要得出以下结论:
     (1)紫色土区农林复合生态系统可分为台地农林果复合系统,坡地林带复合系统,沟底农林复合系统和庭院林农牧复合系统。垂直结构主要包括双层结构、三层结构和多层结构,水平结构主要包括带状间作、周边种植、带状混交、块状混交和块状镶嵌等。
     (2)梨-农复合、核-农复合、柚-农复合生态系统的能投结构相似,投入的不可更新自然资源占不可更新资源的比例分别为:8.21%~8.42%、11.25%~11.80%、13.19% ~14.60%,定量说明水土保持在紫色土区农林复合生态系统中具有不可低估的作用。
     (3)三种农林复合系统均投入了大量的劳力能值和化肥能值。劳力能值占有机辅助能值的51.66%~69.69%、52.68%~68.27%和49.18%~72.39%;化肥能值占无机辅助能值的99.41%~99.51%、98.06%~98.87%、98.71%~98.84%。人力是主要的动力来源,科学技术水平低下。大量化肥的投入不利于当地农林复合生态系统的长期发展。
     (4)紫色土区农林复合生态系统的经济发展程度较高,其中,柚-农复合系统的净能值产出率最高,产品在价格上最具有竞争优势。梨-农复合系统的能值投资率最高。三种农林复合系统的能值自给率均较小,系统生产受市场的影响大,独立发展的能力不强。紫色土区农林复合系统的生产对环境系统的压力较小,其中,核-农复合系统的环境负载率最低,最具有发展潜力。紫色土区农林复合系统正在发展而且相对具有活力,系统的发展是可持续的。柚-农复合系统的能值可持续性指标最大。
     (5)梨树-油菜-玉米、核桃-油菜-玉米、柚子-油菜-玉米模式分别是各复合系统中当前最优的一种模式,表现在系统的生产效率最高,产品在价格竞争上最有优势,生产受市场影响最小,独自发展能力最强,并有一定的可持续发展潜力;梨树-小麦-红薯、核桃-小麦-红薯、柚子-小麦-红薯模式分别是各复合系统中最具有发展潜力的模式,表现在对自然可更新环境资源的利用程度最低,自然环境负荷程度最小。
     (6)陈家湾流域的农业生产处于传统封闭式农业的阶段,农民的平均生活水平不高。农业生产对整个环境生态系统的压力较小,系统生产效率较高,但经济不发达。
The basic situation of purple soil area was a large population density and little farmland for every person on an average. The agroforestry ecosystem,as a model of reasonable exploitation and utilization of the land resource,was an important method to solve the ecological environment problem and an effective approach to achieve sustainanble development in purple soil area. This paper took the agroforestry ecosystem in purple soil area as the research objective. The major contents were classifying agroforestry models,analyzing strcture characteristics,and using emergy analysis method to make valuation and comparative on different agroforestry systems. The main coclusions of the study were as follows:
     (1)The agroforestry ecosystem in purple soil area can be classified as terrace agroforestry system,slopingfield agroforestry system,gully bottom agroforestry system,and courtyard agroforestry system. The vertical structure of agroforestry included double layer construction,three layer construction,and multilayer construction. The horizontal structure included strip intercropping,peripheral planting,belt mixing,block mixing,and block inlaying and so on.
     (2)The energy input structures were similar in the three agroforestry systems. The ratio of non-renewable environment resource to non-renewable resource were 8.21%~8.42% for pear tree -crop intercropping system,11.25%~11.80% for walnut-crop intercropping system,and 13.19%~14.60% for shaddock-crop intercropping system. This result showed that soil and water conservation take an important role in agroforestry ecosystem in purple soil area.
     (3)There were a great deal of the emergy input of labor and fertilizer in the three agroforestry ecosystem. The ratio of labor emergy to oganic supplemental emergy were 51.66%~69.69% for pear tree-crop intercropping system,52.68%~68.27% for walnut-crop intercropping system,and 49.18%~72.39% for shaddock-crop intercropping system. The ration of fertilizer emergy to inorganic supplemental emergy were 99.41%~ 99.51%,98.06%~98.87%,and 98.71%~98.84%,respectively. The human labor was the main power. The level of science and technology is backward. Meanwhile,excessive use of fertilizer is not beneficial for the long-time develop of agroforestry ecosystem at the local.
     (4)There was a higher economic development level in agroforestry ecosystem in purple soil area. The shaddock-crop intercropping system had the highest net emergy yield ratio and the most advantageous in price competition. The pear tree-crop intercropping system had the highest emergy investment ratio. The emergy self-suifficiency ratio of these three agroforestry ecosystems were all small,and it was illustrated that the production was hugely influenced by market and the self-development power was weak. The agroforestry ecosystem in purple soil area was friendly to the environment. The walnut-crop intercropping system had the lowest environment load ration and showed the most potential in development. The agroforestry ecosystem in purple soil area was growing and relatively vigorous. The development of it was sustainable. The shaddock-crop intercropping system had the highest emergy sustainable indices.
     (5)The pear-rape-corn model,walnut-rape-corn model,and shaddock-rape-corn model were the best model in each agroforestry ecosystem at present,and it was embodied particularly in the highest production efficiency,the most advantageous in price-competition,the smallest influence from market,the most powerful in self-development,and had sustainable development potential in to some extent. The pear-wheat-sweet potato model,walnut-wheat-sweet potato model,and shaddock-wheat-sweet potato model had the most develop potential in each agroforestry ecosystem , because of the lowest renewable environment resource utilization and the smallest environment load.
     (6)The agricultural eco-economic system in Chenjiawan was in the stage of traditional agriculture. The living standard of the local people was low. The agriculture production was less stressful for the whole environment ecosystem. The agricultural eco-economic system had a higher production efficiency,but economically underdeveloped.
引文
安德森,蒋忐学,温世生. 1987.环境生态学.沈阳:辽宁大学出版社
    蔡国军,张仁陟,莫保儒,等. 2008.定西安家沟流域3种典型农林复合模式的评价研究.水土保持研究,15(5):120~124
    陈代昌. 1996.湖南省农林复合经营的主要模式.生态经济,1:53~55
    陈东景. 2002.徐中民干旱区农业生态经济系统的能值分析——以黑河流域中游张掖地区为例.冰川冻土,24(4):374~379
    陈理,杨中平. 2003.城市固态废弃物决策支持系统的研究.西北农林科技大学学报,31(6):169~172
    陈敏刚,金佩华,黄凌霞,等. 2006.中国蚕桑生态系统能值分析.应用生态学报,17(2):233~236
    陈义相,侯勇,夏中梅等. 2009.粮经果复合垄作改善紫色土坡耕地土壤的研究.安徽农业科学,37(23):11137~11138
    崔丽娟,赵欣胜. 2004.鄱阳湖湿地生态能值分析研究.生态学报,24(7):1480~1485
    崔屹林. 2007.辽西复合农林生态系统分类、结构和功能研究. [硕士学位论文].北京:北京林业大学:1~2
    董孝斌,高旺盛,严茂超. 2004.黄土高原典型流域农业生态系统生产力的能值分析——以安塞县纸坊沟流域为例.地理学报,59(2):223~229
    费世民. 1993.农林业系统分类研究综述.四川林业科技,14(2):27~32
    费世民. 1994.四川盆地浅丘区农林复合系统空间结构的景观生态学初步分析.四川林业科技,15(1):1~7
    冯宗炜,王效科,吴钢,等. 1992.农林业系统结构与功能——黄淮海平原豫北地区研究.北京:中国科学技术出版社:14
    花利忠,贺秀斌,朱波. 2007.川中丘陵区小流域土壤侵蚀空间分异评价研究.水土保持通报,27(3):111~115
    黄枢,沈国舫. 1993.中国造林技术.北京:中国林业出版社:501~505
    黄闰泉,刘贵开,袁传武,等. 2000.三峡库区坡面农林复合结构对土壤养分分布的影响.水土保持学报,14(3):41~45
    黄闰泉,李建军. 2003.三峡库区土地单元间农林复合结构对土壤水分分布的影响.中国水土保持,2003,1(3):26~30
    姬瑞华,康文星. 2006.南方丘陵区县域农业生态经济系统的能值分析——以衡东县为例.中南林学院学报,26(6):49~55
    蓝胜芳. 1992.能量、环境与经济:系统分析导引.北京:东方出版社
    蓝盛芳、钦佩. 2001.生态系统的能值分析.应用生态学报,12(1):129~131
    蓝盛芳,钦佩,陆宏芳. 2002 .生态经济系统能值分析.北京:化学工业出版社
    李文华,赖世登. 1994.中国农林复合经营.北京:科学出版社
    李海涛,严茂超,沈文清,等. 2001.新疆生态经济系统的能值分析与可持续发展研究.干旱区地理,24(4):289~295
    李海玲,陈乐蓓,方升佐,等. 2009.不同杨—农间作模式碳储量及分布的比较.林业科学,45(11):9~14
    李双成,傅小锋,郑度. 2001.中国经济持续发展水平的能值分析.自然资学报,16(4):297~304
    李双成,蔡运龙. 2002.基于能值分析的土地可持续利用态势研究.经济地理,22(3):346~349
    李加林,张正龙,曾昭鹏. 2003.江苏环境经济系统的能值分析与可持续发展对策研究.中国人口·资源与环境,13(2):73~78
    李加林,张忍顺. 2003.宁波市生态经济系统的能值分析研究.地理与地理信息科学,19(2):73~76
    李海涛,廖迎春,严茂超. 2003.江西生态经济系统的能值分析.江西农业大学学报,25(1):93~98
    李建刚,王继和,蒋志荣. 2007.庄浪县林农和林草间作模式经济效益评价.中国水土保持科学,5(4):56-61
    梁玉斯,蒋菊生,曹建华. 2007.农林复合生态系统研究综述.安徽农业科学,35(2):567~569
    梁玉斯. 2007.橡胶园农林复合生态系统评价研究. [硕士学位论文].海南:华南热带农业大学:7
    刘浩,王青,李秀娟,等. 2008.辽宁省生态经济系统能值分析.应用生态学报,19(3):627~633
    刘淼,胡远满,常禹,等. 2008.四川省汶川县生态经济系统能值分析.生态学杂志,27(11):1997~2001
    刘兴宇,曾德慧. 2007.农林复合系统种间关系研究进展.生态学杂志,26(9):1464~1470
    刘玉振. 2008.基于能值的开封市农业生态系统投入产出分析.河南大学学报,38(3):266~270
    陆宏芳,蓝胜芳,李牟召,等. 2000.农业生态系统能值分析方法研究.韶关大学学报,21(4):74~78
    陆宏芳,彭少麟,蓝盛芳,等. 2003.基塘农业生态工程模式的能值评估.应用生态学报,14(10):1622~1626
    陆宏芳,叶正,赵新锋,等. 2003.城市可持续发展能力的能值评价新指标.生态学报,23(7):1363~1368
    陆宏芳,蓝盛芳,俞新华,等. 2005.城市复合生态系统能值整合分析研究方法论.城市环境与城市生态,18(4):34~37
    陆宏芳,陈烈,林永标,等. 2005.顺德产业生态系统能值动态分析.生态学报,2005,25(9):2188~2196
    卢琦,慈龙骏. 1996.农用林业研究的回顾与展望.世界林业研究,2:39~49
    罗双林. 2004.红壤丘陵区混农林经营模式数据库的建立及其应用. [硕士学位论文].武汉:华中农业大学:6~7
    孟平. 1996.农林复合模式蒸散耗水的研究.林业科学研究,9(3):221~226
    孟平,张劲松,樊巍,等. 2003.中国复合农林业研究.北京:中国林业出版社:40~68
    孟庆岩,叶旭君,严力蛟,等. 1999.中国热带地区胶-茶-鸡农林复合模式生态效益研究.浙江农业学报,11(4):193~195
    孟庆岩,王兆骞,余盛兴,等. 2001.胶-茶-鸡农林复合模式资金流分析.生态经济,2:49~51
    孟庆岩,王兆骞,余盛兴. 2001.我国热带地区胶-茶-鸡农林复合模式社会经济效益分析.中国人口·资源与环境,11(52):44~46
    莫保儒,蔡国军,于洪波,等. 2006.定西黄土丘陵沟壑区农林复合系统主要类型及其模式设计.甘肃农业科技,3:31~34
    木村允. 1981.陆地植物群落的生产量测定法.姜恕译. 1981.北京:科学出版社
    庞家平,陈明勇,唐建维,等. 2009.橡胶-大叶千斤拔复合生态系统中的植物生长与土壤水分养分动态.山地学报,27(4):433~441
    彭鸿嘉,莫保儒,蔡国军,等. 2004.甘肃中部黄土丘陵沟壑区农林复合生态系统综合效益评价.干旱区地理,27(3):367~372
    戚英,虞依娜,彭少麟. 2007.广东鹤山林-果-草-鱼复合生态系统生态服务功能价值评估.生态环境,16(2):584~591
    钦佩,安树青,颜京松. 2002.生态工程学.南京:南京大学出版社
    裘福庚,方嘉兴. 1996.农林复合经营系统及其实践.林业科学研究,9(3):318~322
    尚玉昌. 2002.普通生态学.北京:北京大学出版社
    沈善瑞,陆宏芳,赵新锋,等. 2004.能值研究的几个前沿命题.热带亚热带植物学报,12(3):268~272
    沈善瑞,陆宏芳,蓝盛芳,等. 2004.三水市农业生态系统经济能值投入产出分析.生态环境,13(4):612~615
    石培礼,杨修,钟章成. 1997.桤柏混交林种群生物量动态与密度调节.应用生态学报,8(4):341~346
    史东梅,陈晏. 2008.紫色丘陵区农林混作模式的土壤抗冲性影响因素.中国农业科学,41(5):1400~1409
    宋兆民,游有林. 1990.农林业的概念、发展与研究.中国农业气象,(8):4~7
    宋兆民,孟平. 1993.中国林业的结构与模式.世界林业研究,6(5):77~82
    宋西德,刘粉莲,张永. 2004.黄土高原丘陵沟壑区林农复合生态系统立体经营模式研究.西北林学院学报,19(4):43~46
    粟娟,蓝盛芳. 2000.评估森林综合效益的新方法——能值分析法.世界林业研究,13(1):32~37
    隋春花,蓝盛芳. 1999.城市生态系统能值分析(EMA)的原理与步骤.重庆环境科学,21(2):13~15
    隋春花,陆宏芳,郑凤英,等. 2006.基于能值分析的广东省生态经济系统综合研究.应用生态学报,17(11):2147~2152
    孙飞达,于洪波,陈文业. 2009.安家沟流域农林草复合生态系统类型及模式优化设计.草业科学,26(9):190~194
    万猛,田大伦,樊巍,等. 2009.豫东平原杨农复合系统物质生产与碳截存.林业科学,45(8):27~33
    万树文,钦佩,谢民. 1999.用能值分析辅以生理指标测定研究狐毛草的耐盐性.生态学杂志,18(4):1~5
    王汉杰. 1999.农林复合生态系统与低层大气间的通量研究.应用生态学报,10(5):534~538
    王玲玲. 2002.三峡库区陡坡耕地生物篱埂和农林复合经营建设模式与效益研究. [硕士学位论文].重庆:西南农业大学:9
    王玲玲,何丙辉,杨邦柱. 2003.三峡库区农林复合经营的结构与主要模式.中国水土保持,6:38~39
    王丽梅,邵明安,郑纪勇,等. 2005.渭北旱塬两种类型农林复合经营生态系统环境效应评价.农业环境科学学报,24(5):940~944
    王建源,薛德强,田晓萍,等. 2007.山东省农业生态系统能值分析.生态学杂志,26(5):718-722
    王闰平,荣湘民. 2008.山西省农业生态经济系统能值分析.应用生态学报,19(10):2259~2264
    王闰平,荣湘民,侯希红. 2009.能值分析在农业生态系统中的应用——以山西省为例.湖南农业大学学报,35(3):331~334
    王婷婷,王辉,李飞,等. 2009.甘肃景电灌区枸杞与玉米生产模式的能值分析.生态科学,28(1):43~48
    魏勇,赵永艳,李自锋,等. 2000.山东省海岸带复合农林业的经营类型及模式优化研究初报.南京林业大学学报,24(1):81~85
    闻大中. 1985.农业生态系统能流的研究方法(一).农村生态环境:47~52
    闻大中. 1986.我国东北地区农业生态系统的力能学研究I.松嫩平原一个典型农业生态系统的能流分析.生态学杂志,5(4):15~20
    闻大中. 1989.农林业系统的清查及调查设计:农林业系统研究进展之二.生态学进展,6(1):7~11
    温熙胜,何丙辉,张洪江. 2007.灰色关联度分析方法在三峡库区农林复合种植模式评价中的应用.西南大学学报,29(7):111~115
    吴刚. 2001.三峡库区农林复合生态系统结构与功能研究. [博士学文论文].北京:中国科学院生态环境研究中心
    吴刚,魏晶,张萍,等. 2002.三峡库区农林复合生态系统的效益评价.生态学报,22(2):233~239
    吴玉琴. 2009.农地可持续利用的能值方法探讨.科技进步与对策. 26(15):45~47
    夏永久,王静. 2007.基于能值分析理论的芜湖市生态经济系统可持续发展研究.安徽农业科学,35(36):12084~12086
    夏青. 2006.紫色土区农林复合生态系统效益研究. [硕士学文论文].重庆:西南大学:1~2
    谢京湘,于汝元,胡涌. 1988.农林复合生态系统研究概述.北京林业大学学报,10(1):104~108
    熊文愈. 1991.生态系统工程与现代化混农林业生产体系.生态学杂志,(1):21~26
    熊文愈,薛建辉. 1991.混农林业:一条发展林业的有效途径.世界林业研究,4(2):27~31
    徐创军,杨立中,唐家良,等. 2008.紫色土坡地不同种植模式生态经济效益综合评价.中国生态农业学报,16(1):196~199
    严茂超,Odum HT. 1998.西藏生态经济系统的能值分析与可持续发展研究.自然资源学报,13(2):116~125
    严茂超. 2001.知识经济时代货币购买力指标的国际比较研究.资源科学,23(4):63~67
    严茂超,李海涛,程鸿,等. 2001.中国农林牧渔业主要产品的能值分析与评估.北京林业大学学报,23(6):66~69
    严忠海,胥耀平. 2005.陕南秦巴山区农林复合模式效益评价及优化. [硕士学位论文].杨凌:西北农林科技大学
    杨忠信,张秀华,尤飞,等. 1998.榆林沙区农林复合经营的主要模式.陕西林业科技,3:2~5
    杨丙山. 2006.能值分析理论及应用. [硕士学位论文].长春:东北师范大学:6
    杨德伟,陈治谏,倪华勇. 2006.基于能值分析的四川省生态经济系统可持续性评估. 15(3):303~309
    杨松,孙凡,刘伯云. 2007.重庆市农业生态经济系统能值分析.西南大学学报,29(8):49~54
    姚作芳,葛大兵,陈云飞,等. 2008.绥宁县生态示范区农业生态系统能值分析.中国生态农业学报,16(3):732~736
    叶晓伟,张放,方志根. 2007.丘陵山区梨-草-鸡复合系统的生态经济分析——浙江南部丘陵山区农林复合模式.农机化研究,2:70~72
    余剑如,刘载生. 1988.长江上游的水土流失与河流泥沙.水土保持学报,2(1):1~15
    曾觉民. 1993.西南山区的农用林业类型及其评价.生态经济,(6):30~38
    张镜滨,钱晓燕. 1988.农林牧复合生态系统优化结构模式探讨.南京气象学院学报,473~482
    张耀辉,蓝盛芳,陈飞鹏. 1999.海南省农业能值分析.农村生态环境,15(1):5~9
    张晟途,钦佩,万树文. 2000.从能值效益角度研究互米花草生态工程资源配置.生态学报,20(6):1045~1049
    张纪林,褚保金,孙明华,等. 2000.东台市复合农林业产业结构的优化.南京林业大学学报,24(2):83~87
    张希彪. 2005.泾河流域农业生态经济系统的能值研究.干旱地区农业研究,23(5):196~ 201
    张希彪. 2005.甘肃农业生态经济系统的能值研究. [硕士学位论文] .杨凌:西北农林科技大学:5
    张伟,康文星. 2008.基于能值理论的衡东县生态足迹研究.中南林业科技大学学报,28(2):57~62
    张薇薇,李红,霍霄妮,等. 2009.基于能值分析的农业土地利用强度.农业工程学报,25(7):204~210
    张月丛. 2009.基于能值方法的承德市农业生态系统分析.河北师范大学学报,22(4):551~556
    赵晟,李自珍. 2004.甘肃生态经济系统的能值分析.西北植物学报,24(3):464~470
    中国科学院成都分院土壤研究室. 1991.中国紫色土.上篇.北京:科学出版社
    周刚,倪爱平,袁正科,等. 2000.衡阳县英南试验示范区防护林农林复合经营系统结构优化方案研究.湖南林业科技,27(3):53~59
    周波. 2005.陇南山区农林复合模式划分与种植结构研究.水土保持研究,12(5):203~205,220
    周建,齐安国,袁德义. 2008.湖南省生态经济系统的能值分析.中国生态农业学报,16(2):488~494
    周萍,刘国斌,候喜禄. 2009.黄土丘陵区退耕前后典型流域农业生态经济系统能值分析.农业工程学报,25(6):266~273
    朱清科,肖斌. 1994.淳化泥河沟流域农林复合生态经济系统优势分析.西北林学院学报,9(1):52~57
    朱清科,朱金兆,沈应柏,等.1998.论黄土区农林复合生态经济系统结构与发展.土壤侵蚀与水土保持学报,4(4):72~76
    朱清科,沈应柏,朱金兆. 1999.黄土区农林复合系统分类体系研究.北京林业大学学报,21(3):36~40
    朱首军,丁艳芳. 1999.渭北旱塬农林复合生态系统土壤水扩散率研究.水土保持通报,19(3):26~28
    朱洪光,钦佩,万树文,等. 2001.江苏海涂两种水生利用模式的能值分析.生态学杂志,20(1):38~44
    朱波,彭奎,高美荣,等. 2001.川中丘陵区土地利用变化的生态环境效应——以中国科学院盐亭紫色土农业生态试验站集水区为例.山地学报,19增:14~19
    Lan Shengfang, Odum Howard, Liu Xinmao. 1998. Energy Flow and Emergy Analysis of the Agroecosystems of China.生态科学, 17(1): 32~39
    Maynard M, Hufschmidl. 1988.过孝民,张慧勤等译.环境、自然系统和发展-经济评价指南.北京:烃加工出版社
    Odum HT. 1993.蒋有绪,徐德应译.系统生态学.北京:北京科学出版社:373~432
    Abel N, Prinsley R, Jarvis PG. 1991. Rapid appraisal for agroforestry research and extension-The Shurugwi experience. Forest Ecology and management, 45(4): 337~349
    Bene JG, Beall HW, Cote A. 1977. Tree, Food and People. Ottawa, Canada: IDRC
    Bosserman RW. 1989. Sensitivity of cycling measure derived from ecological flow analysi. Ecological Modelling, 8: 45~64
    Brandt-Williams, S. L. 2002. Handbook of Emergy Evaluation: A Compendium of Data for emergy Computation Issued in a Series of Folios. Folio 4. Emergy of Florida Agriculture. Center for Environmental Policy, University of Florida, Gainesville, FL, USA, http:// www. emergysystems. org/ downloads/Folios/Folio 4.pdf.
    Brown MT, Odum HT. 1992. Emergy synthesis perspectives, sustainable development, and public policy options for Papua New Guinea. In: A Research Report to the Cousteau Society. Gainsville, FL: Center for wetlands, University of Florida
    Brown MT, Herendeen RA. 1996. Embodied energy analysis and emergy analysis: a comparative view. Ecol Econ, 19: 219~325
    Brown MT, McClanahan TR. 1996. Emergy Analysis Perspectives of Thailand and Mekong River Dam Proposals. Ecological Modelling, (91): 105~130
    Brown MT, Ulgiuti S. 1997. Emergy-based indices and rations to evaluate sustainability: monitoring economics and technology toward environmentally sound innovation. Ecol Eng, 9: 51~70
    Brown MT, Buranakarn V. 2000. Emergy Evaluations of Material Cycles and Recycle Options. In: BrownMT ed. Emergy Synthesis: Theory and Application of the Emergy Methology. Gainesville: Department of Environmental Engineering Sciences: 141~154
    Brown M T, Ulgiati S. 2002. Emergy evaluations and Environmental loading of electricity production systems. Journal of Cleaner production, (10): 321-334
    Brown MT, Ulgiati S. 2004. Emergy analysis and environmental accounting. Encyclopedia Energy, (2):329-354
    Carlowitze PG. 1987. ICRAF′s multipurpose tree: an shrub information system. Agroforestry systems, 5(4):19~338
    Cavalett O, de Queiroz JF, Ortega E. 2006. Emergy assessment of integrated production systems of gains, pig and fish in small farms in the South Brazil. Ecological Modelling, 193:205-224.
    Chen GQ, Jiang MM, Chen B, et al. 2006. Emergy analysis of Chinese agriculture. Agriculutre Ecosytems & Environment, 115(1-4):161-173.
    Doherty SJ. 1990. Policy perspectives on resource utilization in Papua New Guinea using techniques of emergy analysis. Masters Project Paper, Dept. of Urban and Regional Planning. Univ. of Florida, Gainesville. Center for Wetlands: 72
    Gronlund E, Klang A, Falk S, et al. 2004. Sustainability of wastewater treatment with microalge in cold
    climate,evaluated with emergy and socio-ecological principles. Ecologica1 Engineering, 22: 155~174 Fisher SG, Likens GE. 1973. Energy flow in bear brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs, 43(4): 421~439.
    Franklin JF. 1992. Scientific basis for new perspectives in forests and streams. Naiman RJ. Watershed management: balancing sustainability and environmental change. New York: Springer Verlag: 25~72
    Garcia-de Ceca JL, Gebremedhin KG. 1991. A decision support system for planning agroforestry systems. Forestry Ecology and Management, 45(3): 199~206
    Harris CD, Ullman EL. 2000. The Nature of City and society. New York: The Free Press: 67~74
    Huang SL, Chen CS. 1990. A system to analyze environmental carrying capacity for managing urban growth of the Taipei metropolitan region. J Envir Manag,31: 46~60
    Huang SL, Lai HY, Lee CL. 2001. Energy hierarchy and urban landscape system. Landscape and urban Planning, 53(1-4): 145~161
    King KFS. 1968. Agri-silviculture (the taungya system). Nigeria: Department of Forestry, University of Ibadan
    King KFS. 1978. Agroforestry. Paper to 15th Tropical Agriculture day, Royal Tropical Institute, Amsterdam Holland
    Lan SF, Odum HT. 1993. Emergy synthesis of the ecol-economical systemsis of China and its sustainable development. In: Sustainable Development and Ecology. Beijing: China Science and Technology Press: 189~197
    Lan Sheng fang, Odum HT. 1994. Energy Synthesis of the Environmental Resource Basis and Economy of China. Ecological Science, (13): 63~74
    Lee SM, Odum HT. 1994. Emergy Analysis Overview of Korea. Journal of the Korean Environmental Sciences Society, 3(2):165~175
    Liu X W, Chen B M. 2007. Efficiency and sustainability analysis of grain production in Jiangsu and Shaanxi Provinces of China. Journal of Cleaner Production, 15: 313~322
    Lundgren BO, Raintree JB. 1982. The defination of agroforestry. In: Nair PKR(eds). Agroforestry systems in the Tropies. Netherlands: Kluwer Academic Publishers: 11~15
    Lundgren BO. 1987. ICRAF’s First Ten Years. Agroforestry Systems, 5: 197~218
    Monteith JL, Ong CK, Corlett JE. 1991. Microclimatic interactions in agroforestry systems. Forest Ecology and Management, 45(l): 31~44
    Nair PKR. 1985. Classification of agroforestry systems. Agroforestry system, 3(2): 97~128
    Nair PKR. 1989. Agroforestry defined. Agroforestry Systems in the Tropics. Netherlands: Academic Publishers: 13~20.
    Nilsson C. 1992. Conservation management of riparian communities. In: Ecological Principles of Nature Conservation (Hansen L, ed. ). London, England: Elsevier Applied Science: 352~372
    Odual PA, Muraya P, Fernandes ECM. 1987. The agroforestry systems database at ICRAF. Agroforestry Systems, 6(30): 253~270
    Odum HT, Odum EC. 1981. Energy Basis for Man and Natuer, 2nd ed. NewYork: McGraw-Hill
    Odum HT. 1984. Embodied energy, foreign trade and welfare of nations. In: Jasson AM ed. Integration of Economy and Ecology: an outlook for the Eighties. Stockholm: Asko Laboratory, Univ of Stokholm: 185~199
    Odum HT. 1986a. Environmental Accounting: Emergy and Environmental Decision Making. New York: John Wiley and Sons: 5~293
    Odum HT. 1986b. Emergy in ecosystems. In: Ecosystem Theory and Application, ed. by N. Poluin. Wiley New York: 337~369
    Odum HT. 1987a. Living with complexity. In: Crafoord Prize in the Biosciences, Crafood Lecture, Stockholm: Royal Swedish Academy of Sciences: 19~87
    Odum HT. 1987b. Models for National, International, and Global Systems Policy Economic-Ecological Modelling. Chap 13. New York: Elsevier Science Publishing:203~251
    Odum HT, Odum EC. 1987. Ecology and Economy:“Emergy”analysis and Public in Texas. The Office of Natural Resource and Texas Department of Agriculture: 163~171
    Odum HT. 1988. Self-organization, Transformity, and Information. Science: 1132~1139
    Odum HT. 1994. Ecological and General Systems. Niwot: Univ Colorado Press. Recision of Systems Ecology. New York: John Wiley & Sons
    Odum HT. 1996. Environmental accounting: Emergy and Environmental Decision Making. New York:John Wiley and Sons
    Odum HT, Odum EC, Browm M.1998. Environment and Society in Florida. Boca Racon: Lewis Publishers
    Ong CK, Corlett JE, Singh RP. 1991. Above and below ground interactions in agroforestry systems. Forest Ecology and Management, 45(l): 45~57
    Prinsley RT. 1992. The role of trees in sustainable agriculture-an overview. Agroforestry Systems, 20(1): 87~115
    Raintree JB. 1987. The state of the art of agroforestry diagnoses and design. Agroforestry Systems, 5(3): 219~250
    Shepherd G. 1985. Social Forestry in 1985: Lessons Learnt and Topics to be Addressed. ODI Social Forestry Network
    Steppler HA, Nair PKR (ed.). 1987. Agroforestry: a decade of development. Nairobi: ICRAF
    Scienceman DM. 1987. Energy and emergy. In: Pillet G and Murota Teds.Environment Economics. Geneva: Reland Leimgruber: 257~275
    Szott LT, Fernandes ECM, Sanchez PA. 1991. Soil Plant interactions in agroforestry systems. Forest Eeology and Management, 45(2): 127~152
    Scherr SJ. 1992. The role of extension in agroforestry development: evidence from western Kenva. Agroforestry systems, 18(1): 47~67
    Schofield HJ. 1992. Tree planting for dry land salinity control in Australia. Agroforestry systems, 20(1): 1~23
    Ulgitai S, Odum HT, Bastianoni S. 1994. Emergy use, environmental loading and sustainability. an emergy analysis of Italy. Ecological Modelling, 73:215~268
    Ulgiati S, Brown MT. 1998. Monitoring Patterns of Sustainability in Natural and Man-made Ecosystems. Ecological Modelling, 108: 23~36
    Vergara NT. 1981. Integral agroforestry: a potential strategy for stabilizing shifting cultivation and sustaining productivity of the natural environment. Working paper. East-Wesr Center Honolulu, Hawaii: Environment and Policy Instistute
    Young A. 1989. 10 hypotheses for soil-agroforestry research. Agroforestry Today, 1(1): 13~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700