引水隧洞施工通风模拟分析与施工方案优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引水隧洞爆破开挖施工过程是极其复杂的,施工方案的优化是一项重要的研究课题。施工期通风问题是制约施工进度的重要因素,需要先进的理论方法对通风过程进行计算分析,以达到制定合理施工组织方案的目的。本文融合水利水电工程科学、系统工程、地理信息系统和计算流体力学等多个交叉学科的先进理论方法与技术,提出了引水隧洞爆破开挖施工期通风CFD数值模拟分析方法和基于通风模拟的施工方案优化技术,主要获得了以下四项研究成果:
     (1)提出了基于CFD模拟的通风参数确定方法,建立了引水隧洞爆破开挖施工期通风数学模型。采用数学模型解析的方法得到了定量的施工期通风时间参数,克服了传统分析中通风时间参数依据定性工程类比和经验确定的弊端,为施工仿真和施工方案优化提供了理论基础。
     (2)建立了基于k-ε模型的三维非稳态拟单相流模型及三维非稳态两相流模型。在粉尘扩散模型的动量源项中考虑了相间曳力、升力和虚拟质量力的作用,在CO运移模型的动量方程中考虑了浮力的影响。利用拟单相流模拟粉尘在开挖进尺为50m的引水隧洞内的迁移,其趋势和速度与两相流模型的模拟结果基本一致,通风达标时间也接近。因此,本文采用拟单相流模型对引水隧洞爆破过程中粉尘扩散和CO运移进行模拟,对模型进行了可靠性分析。
     (3)提出了基于CFD通风数值模拟的施工方案优化技术。在CFD通风数值模拟的基础上,集可视化仿真技术、网络计划分析与优化技术于一体,建立了引水隧洞爆破开挖施工全过程可视化动态仿真模型,为综合分析施工工期、施工强度、交通运输以及各工序之间的相互联系和制约,进而进行施工方案的优化提供了有效的技术手段。
     (4)以某水电站引水隧洞爆破开挖施工期通风为实例,模拟了不同开挖进尺的引水隧洞施工通风过程,分析了风流、风压、CO浓度分布和粉尘浓度分布规律,并采用数据拟合的方法得到通风时间与开挖进尺之间的关系;基于优化的通风时间,应用仿真技术深入研究了引水隧洞爆破开挖施工仿真与进度优化,获得了合理的施工工期、优化的施工进度以及施工强度等重要参数;对施工方案进行了综合优化分析,有效提高了施工方案的可靠性和合理性。
The construction scheme optimization is an important research problem and the construction of the diversion tunnel is extremely complex. Construction ventilation, which is an important restriction factor of construction schedule, needs advanced theory to optimize construction scheme. The theoretical analysis of numerical simulation for the ventilation in the diversion tunnel and optimization of construction sccheme based on the ventilation simulation are presented. It integrates with advanced theories and methods from the hydraulic and hydroelectric engineering science, systems engineering, geographical information system and computational fluid dynamics.
     In general, the following four achievements are obtained in this dissertation:
     (1) Determination method of ventilation parameters based on CFD is presented. And the construction ventilation models for diversion tunnel are set up. The quantitative construction ventilation time is obtained by solving mathematical model. It overcomes disadvantages of the qualitative engineering analogy and empirical method of ventilation time. It offers the theoretical basis to construction schedule simulation and construction scheme optimization.
     (2) The 3-D transient quasi-single phase models and a 3-D two phase flow model are proposed together with k-εequations. The effect of inter-phase drag, lift force and virtual quality force are considered in the momentum source of dust diffusion model. The effect of buoyancy is considered in the momentum equation of the CO transport model. The 3-D dust concentration field in the diversion tunnel with 50m long is simulated using the 3-D quasi-single phase models and a 3-D two phase flow model. The simulated results show that the trend of the dust migration and velocity based on the 3-D transient quasi-single phase models is well in agreement with that based on 3-D two phase flow model. Compared with the two phase flow model and the 3-D transient quasi-single phase models, the time reaching the standard of ventilation is almost the same. Consequently, the dust diffusion in explosion processes of the diversion tunnel is simulated using a 3-D quasi-single phase models. The reliability of the models is analyzed.
     (3) The optimization of construction scheme based on the numerical simulation of ventilation is presented. Based on the numerical simulation of ventilation, a new method called the visual dynamic simulation technique for construction process is presented, which combines visualization simulation technology, and network plan and optimum technique. It provides powerful technical measures for comprehensive analysis of the interaction and restriction of the construction duration, the intensity of excavation, the traffic of construction site and the construction scheme optimization.
     (4) The diversion tunnel of a hydropower station is taken as a case. The ventilation in different excavation progresses is simulated. The distributions of the wind velocity, wind pressure, CO concentration and dust concentration are analyzed respectively. Using the data-fitting method, the relation between ventilation time of blasting of the diversion tunnels and excavation progress is established. The construction simulation and schedule optimization are researched based on the optimized ventilation time. The feasible construction period, reasonable construction scheduling and optimized construction intensity are obtained to optimize the construction scheme.
引文
[1]水利电力部水利水电建设总局.水利水电工程施工组织设计手册(第二卷)[M].北京:水利电力出版社.1990.
    [2]钟登华,郑家祥,刘东海等.可视化仿真技术及其应用[M].北京:中国水利水电出版社.2002.
    [3] Likar J., Cadez J. Ventilation design of enclosed underground structures[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 477~480.
    [4] Chow W.K. On smoke control for tunnels by longitudinal ventilation[J]. Tunnelling and Underground Space Technology, 1998, 13(3): 271~275.
    [5] Li J.S.M., Chow W.K. Numerical studies on performance evaluation of tunnel ventilation safety systems[J]. Tunnelling and Underground Space Technology, 2003, 18: 435~452.
    [6] Baskaran A., Kashef A. Investigation of air flow around buildings using computational fluid dynamics techniques[J]. Engineering Structures, 1996, 18(11):861~875.
    [7] Pospisil J., Katolicky J., Jicha M. A comparison of measurements and CFD model predictions for pollutant dispersion in cities[J]. Science of the Total Environment, 2004, 334–335: 185~195.
    [8] Wong N.H., Heryanto S. The study of active stack effect to enhance natural ventilation using wind tunnel and computational fluid dynamics (CFD) simulations[J]. Energy and Buildings, 2004, 36: 66~678.
    [9]王海桥,施式亮,刘荣华等.独头巷道射流通风流场CFD模拟研究[J].中国安全科学学报.2003,13(1):68~71.
    [10]王海桥,施式亮,刘荣华等.独头巷道附壁射流通风流场数值模拟研究[J].煤炭学报.2004,29(4):425~428.
    [11]郭鸿志,张欣欣,刘向军.传输过程数值模拟[M].北京:冶金工业出版社.1998.
    [12] M.T.Parra, J.M.Villafruela, F.Castro. Numerical and experimental analysis of different ventilation systems in deep mines[J]. Building and Enviroment, 2006, 41(2), 87-93.
    [13] Spalart PR, Allmaras SR. A one-equation turbulent model for aerodynamic flows[J]. AlAA paper 92-0439, 1992.
    [14] J.Mourech, D.Flick. Airflow characteristics within a slot-ventilated enclosure[J]. International Journal of Heat and Fluid Flow, 2005, 26: 12~24.
    [15]梁栋,周西华.矿井空调热力过程的数值模拟研究[D].辽宁工程技术大学硕士论文.1999.
    [16]周西华,梁栋,王树刚等.空度因法求解含不流通区域的流场[J].辽宁工程技术大学学报(增刊).1997.
    [17]张超昌,厉彦忠.高温矿井掘进面降温技术研究与气流组织数值模拟[D].西安交通大学硕士论文.2003.
    [18]吴强,梁栋.CFD技术在通风工程中的运用[M].徐州:中国矿业大学出版社.2001.
    [19] Nakayama. In-situ measurement and simulation by CFD of methane gas distribution at a heading faces[J]. Shigen-to-Sozai, 1998, 114(11): 769-775.
    [20]李安桂,雷勇刚.塔里木河水利枢纽工程地下水电站厂房通风气流组织模式优化数值模拟[D].西安建筑科技大学硕士论文.2004.
    [21]李安桂,孙磊.地下水电站高大空间气流组织数值计算与模型试验研究[D].西安建筑科技大学硕士论文.2000.
    [22]韩玲,郑洁,郭建辉.彭水地下水电站厂房通风数值模拟及方案比较[J].建筑热能通风空调.2005,23(3):76-79.
    [23]龙天渝,蔡增基,董宏明.水电站地下主厂房通风气流的优化设计[J].重庆建筑大学学报.2000,22(4):56~60.
    [24]龙天渝,蔡增基,董宏明.水电站地下主厂房通风气流组织的数值模拟[J].建筑热能通风空调.2000,(4):15-18.
    [25]李安桂,孙磊,伍国有等.白色地下水电站高大建筑空间气流组织的数值模拟与热态模型试验研究[J].1016~1019.
    [26]卢军,付祥钊,王惠光等.溪洛渡水电站地下厂房通风空调方案模拟分析[J].重庆大学学报(自然科学版).2002,25(8):44~47.
    [27]王智伟,万荣.地下电站高大厂房气流组织数值模拟[D].西安建筑科技大学硕士论文.2004.
    [28] Nielsen P.V. The selection of turbulence models for prediction of room airflow[J]. ASHRAE Trans, 1998, 104(1): 1119~1127.
    [29]范厚彬,樊志华,董明刚.公路长隧道污染物的运移机理及一维解析分析[J].交通运输工程学报.2002,2(3):57~59.
    [30]祝兵,关宝树,郑道坊.公路长隧道纵向通风的数值模拟[J].西南交通大学学报.1999,34(2):133~137.
    [31] L. Gidhagen, C. Johansson. J. Str?m. Model simulation of ultrafine particles inside a road tunnel[J]. Atmospheric Environment, 2003, 37(15): 2023~2036.
    [32]舒宁,徐建闽,钟汉枢等.计算流体力学在纵向式公路隧道火灾通风中的仿真.水动力学研究与进展(A辑).2001,16(4):511~516.
    [33]魏金风,曾德顺,黄自萍.NS方程在隧道通风工程中的应用[J].力学季刊.2001,22(3):383~388.
    [34] Bedford A., Drumbeller D.S. Theories of Immiscible and Structured Mixtures[J]. Int. J. Eng. Sci., 1983, 21(18): 863~960.
    [35] Kelly P.D. A Reacting Continuum[J]. Int. J. Eng. Sci., 1964, 2:129~153.
    [36] Murray J.D. On the Mathematics of Fluidization, Part 1: Fundamental Equations and Wave Propagation[J]. J. Fluid Mech., 1965, 21(3): 465~493.
    [37] Murray J.D. On the Mathematics of Fluidization, Part 2: Study motion of fully developed bubbles[J]. J. Fluid Mech., 1965, 22(1): 57~80.
    [38] Ishii M. Thermo-Fluid Dynamic Theory of Two-phase Flow[D]. Eyrolles, 1975.
    [39] S.Laslandes, C.Sacé. Transport of particles by a turbulent flow around an obstacle-a numerical and a wind tunnel approach[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76, 577~587.
    [40] R. Klemens, P. Kosinski, P. Wolanski.et al. Numerical study of dust lifting in a channel with vertical obstacles[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(6): 469~473.
    [41] Y.S. Chen, S.W. Kim. Computation of turbulent flows using an extendedκ?εturbulence closure model[J]. NASA CR-179204, 1987.
    [42]杨胜来.综采工作面粉尘运移和粉尘浓度三维分布的数值模拟研究[J].中国安全科学学报.2001,11(4):61-64.
    [43]杨胜来,黄元平.综采工作面粉尘浓度分布的数值解法[J].中国安全科学学报.1996,6(增刊):64~68.
    [44]刘毅,蒋仲安,蔡卫等.综采工作面粉尘浓度分布的现场实测与数值模拟[J],煤炭科学技术.2006,34(4):80~82.
    [45]王晓珍,蒋仲安,刘毅.抽出式通风煤巷掘进面过程中粉尘浓度分布规律的数值模拟[J].中国安全生产科学技术.2006,2(5):24~28.
    [46] Halpin. D. H. CYCLONE-method for modeling job site processes[J]. J. Coustr. Div., ASCE, 1977, 103(3):489~499.
    [47] Zeigler, B. P. Hierarchical. Modular discrete-event modeling in an object-oriented environment[J]. simulation, 1987, 49(5):219~230.
    [48] Shi, J., AbouRizk S. M. Resource-based modeling for construction simulation[J]. J. Constr. Engrg. and Mgmt., ASCE, 1997, 123(1):26~33.
    [49] AbouRizk, S. M., Mather, K. Simplifying simulation modeling through integration with 3D CAD. J. Constr Eng. and Mgmt, ASCE, 2000,126(6):475~483.
    [50]钟登华.隧洞循环施工过程模拟研究[D].天津大学硕士学位论文,1987.
    [51]钟登华.循环随机网络在隧洞施工中的应用[J].土木工程学报, 1994, 27(4):70~74.
    [52]钟登华,张伟波,郑家祥.大型地下洞室群施工系统仿真[J].水利学报,2001,(9):86~91.
    [53]宋令广.大型地下洞室群施工系统分析[D].天津大学硕士学位论文,1998.
    [54]张伟波.大型地下洞室群施工通风系统仿真及进度研究[D].天津大学硕士学位论文,1999.
    [55]陈立华,申明亮,余雷.基于OpenGL地下厂房洞室群施工仿真系统研究[J].人民长江,2007,38(4):97~99.
    [56]申明亮,黄建红,张春燕等.清江水布垭水电站地下厂房洞室群施工系统仿真研究[J].水利水电快报,2004,25(24):16~19.
    [57]李景茹.不确定型网络进度仿真研究[J].基建优化,2007,28(2):43~46.
    [58]李景茹,钟登华,刘东海等.水利水电工程三维动态可视化仿真技术与应用[J].系统仿真学报,2006,18(1):116~124.
    [59]钟等华,王忠耀,李明超等.复杂地下洞室群工程地质三维建模与动态仿真分析[J].计算机辅助设计与图形学学报,2007,19(11):1436~1441.
    [60]钟登华,刘奎建.基于实时仿真的地下洞室群施工进度预测与控制[J].天津大学学报,2007,40(6):721~725.
    [61]武锦涛.利用CFD可以获得更多的益处[J].化学反应工程与工艺.2003,19(2):140~141.
    [62]周力行,陈文芳,林文漪.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社.1994.
    [63]王绍亭,陈涛.动量、热量与质量传递[M].天津:天津科学出版社.1986.
    [64]陈景仁.湍流模型及有限元分析法[M].上海:上海交通大学出版社.1989.
    [65]陈玉璞.流体动力学[M].南京:海河大学出版社.1990.
    [66]陈矛章.粘性流体力学理论及湍流工程的计算[M].北京:北京航空出版社.1986.
    [67]王晓彤.多污染源置换通风的数值模拟[D].西安建筑科技大学硕士论文.2003.
    [68]周力行.多相湍流反应流体力学[M].北京:国防工业出版社.2002.
    [69]张兆顺.湍流[M].北京:国防工业出版社.2002.
    [70]铁道部第二工程局.铁路工程施工技术手册(隧道)[M].北京:中国铁道出版社.1981.
    [71] Hanaiic H. Advanced Turbulence Closure Models: a view of Current status and future prospects[J]. Int J of Heat and Fluid Flow, 1994, 15(3): 178~203.
    [72] Kleiser L., Zang A. T. Numerical Simulation of Transition in wall-bounded Shear Flows[J]. Annu. Rev. Fluid Mech., 1991, 23: 495~537.
    [73]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社.1991.
    [74] Silvester S. The integration of CFD and VR methods to assist auxiliary ventilation practice[D]. Ph.D. thesis, University of Nottingham, 2002.
    [75]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社.2001.
    [76] Ishii M. Thermo-Fluid Dynamic Two-Phase Flow[M]. Pairs: Eyroll, 1975.
    [77] Gosman, A.D., Issa, R.I., Lekakou, C., Looney, M.K., and Politis, S. Mulitidimensionsl modeling of turbulent two-phase flows in stirred vessels[J]. AICHE Journal, 1992, 38(12): 1946~1956.
    [78] Auton, T.R., Hunt, J.C.R., and Prud’homme, M. The force exerted on a body in inviscid unsteady non-uniform rotational flow[J]. J.Fluid mech., 1988, 197: 241~257.
    [79] Lance, M., and Bateille, J. Turbulence in liquid and phase of a uniform bubbly air-water flow[J]. J. fluid mech., 1991, 222: 95~118.
    [80] Lance. M, Bateille. J. Turtulence in liquid and phase of a uniform bubbly air-water flow[J]. journal of fliud mechanics, 1991, 222: 95~118.
    [81] Launder. B. E., Spalding. D. B. The numberical computation of turbulent flows[J]. Computer methods and engineering, 1974, 3(2): 26.
    [82] Rodi, W. Inflence of buoyancy and rotation on equations for the turbulent length scale[J]. Proc. 2nd symp. On Turbulent Shear Flows, 1979.
    [83]金忠青.N-S方程的数值解和紊流模型[M].南京:河海大学出版社.
    [84] Computational Fluid dynamics Softeware STAR-CD Version 3.10, Computational Dynamics Limited, 1999.
    [85] M. Peric. Finit volume method for the prediction of three dimensional fluid flow in complex ducts [D]. London: Imperial College, 1985.
    [86] Demirdzic. A Finit volume method for computation of fluid flow in Complex turbulent flow in complex geometries [D]. London: Imperical College, 1987.
    [87] Nakamura S .,Spradling M .L.,et al. A Grid Generating System for Automobile Aerodynamic Analysis. SAE Paper 910598.
    [88] White J. A. Elliptic Grid Generation with Orthogonality and Spacing Control on an Aritray Number of Boundaries. AIAA90-1568, 1990.
    [89]刘顺隆,郑群.计算流体力学[M].哈尔滨:哈尔滨工程大学出版社.1998.
    [90]陶文铨.计算传热学的近代进展[M].北京:北京科学出版社.2000.
    [91] Patankar S V. Numerical Heat Transfer[J]. 1979, 2: 556~562.
    [92] Launder B E, Spalding D B. Mathematical Models of Turbulence[M]. London &New York: Academic Press, 1972.
    [93] Fletcher CAJ. Computational technology for fluid dynamics: specific techniques for different flow categories. springer-verlag[J], 1988, 2: 1~20.
    [94] Harlow F H, Welch J E. Numerical Calculation of time-dependent viscous incompressible flow with free surface.phys[J]. Fluids, 1965, 80: 2182~2189.
    [95] Hirsch C. Numerical Computation of internal and external flow: Computational methods for in viscid and viscous flow[J]. Wiley, New York, 1990, 2: 300~400.
    [96] Lai Y G, So R M C, Puzekwas A J. Turbulent transonic flow simulation using a pressure-based method[J]. Int. J. Eng. Sci., 1995, 33(4): 469~483.
    [97]孙庆新.数值分析[M].沈阳:东北大学出版社.1990.
    [98] Stone H L. Society for Industrial &Applied Mathematics J[J]. on Numerical Analysis. SIAM J. Numer. Anal., 1968, 5: 530~541.
    [99] Watts J. W. J. Society of Petroleum Engrs[J]. An Iterative Matrix Solution Method Suitable for Anisotropic Problems, 1971, 11: 47~51.
    [100]陈景仁.湍流模型及有限元分析法[M].上海:上海交通大学出版社.1989.
    [101] Issa, R.I. Solution of the implicitly discretised fluid flow equations byoperator-splitting[J]. J. Comp. Phys., 1986, 62: 40~65.
    [102] Patankar S V, Spalding D B. A Calculation Problems for heat,mass and momentum transfer in three-dimensional parabolic flows[J]. Int.J. Heat Mass Transfer, 1972, 15: 1787~1806.
    [103]王汉青.通风工程[M].北京:机械工业出版社.2005.
    [104]杨庆学.基于GIS的复杂工程施工系统仿真研究[M].天津:天津大学.2001.
    [105]胡丹华.水工长引水隧洞通风方式选择[J].水利水电施工.1998,67(4):20~23.
    [106]苏利军.大型地下洞室群施工中的通风散烟问题研究[M].武汉:武汉水利电力大学.2000.
    [107]蔡小文,戴海英.引水隧洞开挖施工的通风设计与实践[J].浙江水利科技.2005,137(1):71~76.
    [108]铁道部第二勘测设计院.铁路工程设计技术手册(隧道).北京:中国铁道出版社.1981.
    [109]《井巷工程施工手册》编写组.井巷工程施工手册[M].北京:煤炭工业出版社,1979.
    [110]承伯仁.独头巷道工作面有效通风的风量计算方法[J].中国矿业大学学报.1956,4:41~54.
    [111]承伯仁.独头巷道压入式通风时各种风量计算公式的比较[J].中国矿业大学学报.1957,3:61~68.
    [112]杨立新,陆茂成,赵军喜.隧道施工爆破后通风排烟风量计算的探讨[J].西部探矿工程.2000,62(1):55~56.
    [113]卢玉英.单线铁路隧道施工通风的研究[M].成都:西南交通大学.1999.
    [114]孙来成.隧洞通风管的漏风量、风压损失与隧洞通风换气[J].水利水电技术.1996,8:10~12.
    [115]郭汉生.小型水利工程施工技术[M].北京:水利电力出版社.1980.
    [116]苏利军,卢文波.地下巷道钻爆开挖过程中炮烟扩散及通风[J].爆破.2000,1(17):1~6.
    [117]赵益芳.矿井防尘理论与技术[M].北京:煤炭工业出版社.1995.
    [118]王海桥,刘荣华,陈世强.独头巷道受限贴附射流流场特征模拟试验研究[J].中国工程科学.2004,6(8):45~49.
    [119]王海桥,施式亮,刘荣华等.压入式受限贴附射流流场特征及参数计算[J].黑龙江科技学院学报.2001,11(4):4~7.
    [120]刘荣华,王海桥,施式亮等.压入式通风掘进工作面粉尘分布规律研究[J].煤炭学报.2002,3(27):233~236.
    [121] E. Rodhal. The point of separation for cool jets flowingalong the ceiling. Proceedings of the CLIMA 2000 Conference, Belgrad, Yugoslavia, 1977, 219~228.
    [122] A.T. Kirkpatrick, A.T. Malmsrom, K. Knapmiler. Use of low temperature air for cooling of buildings[J]. Proceedings of the Building Simulation Conference, Sophia-Antipolis, France, 1991, 62~66.
    [123] Alain Triboix, Daniel Marchal. Stability analysis of the mechanism of jet attachment to walls[J]. International Journal of Heat and Mass Transfer, 2002, 45: 2769~2775.
    [124]周谟仁.流体力学泵与风机(第三版)[M].北京:中国建筑工业出版社,1985,161~182.
    [125]周谟仁,流体力学泵与风机(第三版)[M].北京:中国建筑工业出版社.1985,75~76.
    [126]赖涤泉.隧道施工通风与防尘[M].北京:中国铁道出版社.1994.
    [127]王英敏.矿内空气动力学与矿井通风系统[M].北京:冶金工业出版社.1994.
    [128]吴中立.独头巷道爆破后通风[M].北京:冶金工业出版社.1959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700