母体血浆中胎儿DNA点突变新型检测技术在无创性产前诊断中价值的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:近年来研究发现在妊娠过程中母体血浆中存在游离胎儿DNA,这一发现为基于母体外周血的无创性产前诊断开辟了新的领域。胎儿DNA一半来自于母亲,另一半来自于父亲,目前已报道利用母体血浆DNA来检测胎儿父系来源的致病基因,可应用于父亲为常染色体显性遗传病患者的胎儿无创性产前诊断,而且将这种检测方法应用于父亲为常染色体隐性遗传病携带者的产前诊断,也可使50%的胎儿避免了传统的绒毛吸取或羊膜腔穿刺检查。但由于母体血浆总DNA量少,且在血浆总DNA中胎儿DNA所占的比例甚微,母体等位DNA片段可干扰胎儿DNA的检测,因此对这种低丰度胎儿DNA检测必须采用高灵敏度和高特异性的分析系统。点突变或单核苷酸多态性(single nucleotide polymorphism,SNP)的检测是目前DNA分子诊断中的主要研究内容,对母体血浆中的这些单核苷酸差异的检测在技术上要求更高,目前所用的检测方法仍不够理想。DNA连接酶对单个核苷酸差异具有很强的鉴别能力,其核心在于它可以把与模板完全配对的两相邻寡核苷酸片段连接起来,如果连接处出现一个碱基错配,连接反应就不能进行。以该酶为基础的技术如空隙-连接酶链反应(gap ligase chain reaction,Gap-LCR)和连接酶检测反应(ligase detection reaction,LDR)在低丰度基因单核苷酸差异检测方面具有很强的应用潜力。因此本研究拟以β地中海贫血的常见突变和雌激素受体α的SNP位点(c.454-397T>C)作为研究对象,在Gap-LCR或LDR技术的基础上,结合荧光定量PCR、毛细管电泳和纳米金新型通用型芯片来检测低丰度基因的单核苷酸差异,探索检测母体血浆中胎儿父系来源DNA点突变的新方法,为胎儿遗传性疾病的无创性产前诊断寻求新的有效途径。
     主要方法与结果如下:
     第一部分:母体血浆DNA实验模型的建立
     1.用反向斑点杂交技术检测β地中海贫血IVS-Ⅱ-654(C→T)、CD17(A→T)、CD26(G→A)、CD41-42(-CTTT)和CD71-72(+A)突变的外周血标本,然后进行DNA序列分析,结果发现反向斑点杂交技术在突变位点周围存在SNP时可造成误诊。
     2.利用pVUⅡ限制酶酶切方法鉴定雌激素受体α基因SNP(c.454-397T>C)分型,
Background and purposes: Free fetal DNA has been found in maternal plasma recently, which facilitates the development of noninvasive prenatal diagnostic approaches based simply on the analysis of a maternal blood sample.The detection of the paternally transmitted pathogenic allele in maternal plasma has been reported to be applicable to the prenatal diagnosis of paternally inherited autosomal dominant traits. If a similar approach is used for the prenatal assessment of autosomal recessive conditions, an invasive prenatal diagnostic procedure would be avoided in 50% of these pregnancies, in whom the lack of inheritance of the paternal mutation by the fetus is confirmed by maternal plasma analysis. However, the low quantity of fetal DNA in the maternal circulation and interference from an excessive amount of maternal DNA makes detection of fetal mutations difficult. The diagnostic reliability depends on the absolute sensitivity and specificity of the assay system. Present clinical DNA diagnosis mainly concentrates on detection of point mutation and single-nucleotide polymorphism (SNP). The technique detecting the discrimination of single-nucleotide differences between fetal DNA and maternal DNA is challenging and demands the adoption of more highly sensitive and specific analytical systems. However, reported diagnostic procedures are still beyond our satisfaction. DNA ligase has the capacity to accurately discriminate a single nucleotide polymorphism. Two adjacent oligonucleotide primers hybridized to a single strand of target DNA will be ligated by ligase only if there is an exact match to the target sequence. Ligation will not occur in the presence of a mismatch. The fidelity of DNA ligases proviedes the basis for developing ligase-based technologies to highly sensitively detect low abundance point mutations. Gap-gap ligase chain reaction (gap-LCR) and ligase detection reaction (LDR) achieve both signal detection and amplification through repeated strand reactions catalyzed by DNA ligase. The aim of the study is to detect low abundance point mutations by using Gap-LCR and real-time PCR and
引文
1. 李庆业,刘筱娴.出生缺陷的研究进展.国外医学社会医学分册.2001;18(2) :64-67
    2. 李雅珍,赵强.出生缺陷监测的进展.中国优生与遗传杂志.1997;5(4):6-8
    3. 李新虎,王劲峰,郑晓瑛,等.出生缺陷发生的环境因素研究进展. 中国公共卫生.2005; 21(10):1158-1160
    4. 逢 锦 忠 , 钦 伦 , 汤 钊 猷 . 人 类 基 因 组 单 核 苷 酸 多 态 性 及 其 医 学 应 用 . 肿瘤.2005;25(4):401-403
    5. 张思仲 . 人类基因组的单核苷酸多态性及其医学应用 . 中华医学遗传学杂志.1999;16(2) :119-122
    6. Syv?nen AC.Toward genome-wide SNP genotyping. Nat Genet.2005;37 Suppl:S5-S10
    7. Guetta E,Simchen MJ,Mammon-Daviko K ,et al. Analysis of Fetal Blood Cells in the Maternal Circulation: Challenges, Ongoing Efforts, and Potential Solutions. Stem-Cells-Dev.2004;13:93–99
    8. Simpson,JL, Bischoff F.Cell-free fetal DNA in maternal blood: evolving clinical applications. JAMA. 2004;291(9): 1135-1137
    9. LoYM,Corbetta N,Chamberlain PF,et al.Presence of fetal DNA in maternal plasma and serum.Lancet. 1997;350(9076):485-487
    10. Chiu RW, Lo YM. Recent developments in fetal DNA in maternal plasma. Ann N Y Acad Sci. 2004;1022:100-104
    11. Lo YM, Tein MS,Lau TK,et al.Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4): 768-775
    12. Ding C, Chiu RW, Lau TK,et al. MS analysis of single-nucleotide differences in circulating nucleic acids:Application to noninvasive prenatal diagnosis.Proc Natl Acad Sci USA. 2004;101(29):10762-10767
    13. Chiu RW, Lo YM. The biology and diagnostic applications of fetal DNA and RNA in maternal plasma.Curr Top Dev Biol. 2004;61:81-111
    14. Rijnders RJ, Christiaens GC, Bossers B, et al. Clinical applications of cell-free fetal DNA from maternal plasma. Obstet Gynecol. 2004;103(1):157-164
    15. Harper TC, Finning KM, Martin P, et al. Use of maternal plasma for noninvasive determination of fetal RhD status. Am J Obstet Gynecol. 2004;191(5):1730-1732
    16. Gonzalez-Gonzalez MC,Garcia-Hoyos M,Trujillo MJ,et al.Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma.Prenat Diagn.2002;22:946-948
    17. Fucharoen G,Tungwiwat W,Ratanasiri T,et al. Prenatal detection of fetal hemoglobin E gene from maternal plasma. Prenat Diagn. 2003; 23(5): 393-396
    18. Chiu RW,Lau TK,Leung TN,et al.Prenatal exclusion of beta thalassaemia major by e xamination of maternal plasma. Lancet. 2002; 360(9338): 998-1000
    19. Nasis O,Thompson S, Hong T,et al. Improvement in sensitivity of allele-specific PCR facilitates reliable noninvasive prenatal detection of cystic fibrosis.Clin Chem.2004;50(4): 694-701
    20. AbravayaK, Carrino JJ, Muldoon S, et al. Detection of point mutations with a modified ligase chain reaction(Gap-LCR). Nucleic Acids Res. 1995;23(4):675-682
    21. Harden SV, Thomas DC, Benoit N, et al. Real-time gap ligase chain reaction: a rapid semiquantitative assay for detecting p53 mutation at low levels in surgical margins and lymph nodes from resected lung and head and neck tumors. Clin Cancer Res. 2004;10(7):2379–2385
    22. Masasyesva BG, Tong BC, Brock MV, et al. Molecular margin analysis predicts local recurrence after sublobar resection of lung cancer. Int J Cancer. 2005;113(6):1022–1025
    23. Khanna M, Park P, Zirvi M, et al. Multiplex PCR/LDR for detection of K-ras mutations in primary colon tumors. Oncogene.1999;18:27–38
    24. Gerry NP, Witowski NE, Day J,et al. Universal DNA microarray method for multiplex detection of low abundance point mutations. J Mol Biol.1999;292:251–262
    25. Cao W.DNA ligases and ligase-based technologies.Clin Appl Immunol Rev.2001; 2:33–43
    26. Favis R, Day JP, Gerry NP, et al. Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat Biotechnol.2000;18:561–564
    1. LoYM,Corbetta N,Chamberlain PF,et al.Presence of fetal DNA in maternal plasma and serum.Lancet. 1997;350(9076):485-487
    2. Simpson,JL, Bischoff F.Cell-free fetal DNA in maternal blood: evolving clinical applications. JAMA. 2004;291(9): 1135-1137
    3. Chiu RW, Lo YM. Recent developments in fetal DNA in maternal plasma. Ann N Y Acad Sci. 2004;1022:100-104
    4. Lo YM, Tein MS,Lau TK,et al.Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4): 768-775
    5. 卢圣栋.主编.现代分子生物学技术.北京:中国协和医科大学出版社.第一版.1999.101-109
    6. [美]J.萨姆布鲁克,E.F 主编.分子克隆实验指导.北京:科学出版社. 第 2版.1993.204-313
    7. 蔡仕萍,张基增,黄道华,等. β 地中海贫血产前诊断的简易途径. 第一军医大学学报. 1988, 68(9):506-508
    8. 邓兵,张锦.四川东部地区 β 地中海贫血分子基础及产前诊断基因诊断 11 例.中国小儿血液.1997;2(3):99-100
    9. 黄海玲,韦叶生,黄海妮,等.雌激素受体-a 基因多态性与子宫内膜异位症的相关性研究.生殖与避孕.2005;25(1):8-21
    10. Weiderpass E, Persson I, Melhus H, et al. Estrogen receptor alpha gene polymorphisms and endometrial cancer risk.Carcinogenesis.2000;21(4): 623-627
    11. Shin A, Kang D, Nishio H, et al. Estrogen receptor alpha gene polymorphisms and breast cancer risk. Breast Cancer Res Treat.2003;80(1):127-31
    12. 陈竺.主编. 医学遗传学.北京:人民卫生出版社.第一版.2001.25-27
    13. Guetta E,Simchen MJ,Mammon-Daviko K ,et al. Analysis of Fetal Blood Cells in the Maternal Circulation: Challenges, Ongoing Efforts, and Potential Solutions. Stem-Cells-Dev.2004;13:93–99
    14. Rijnders RJ, Christiaens GC, Bossers B, et al. Clinical applications of cell-free fetal DNA from maternal plasma. Obstet Gynecol. 2004;103(1):157-164
    15. Harper TC, Finning KM, Martin P, et al. Use of maternal plasma for noninvasive determination of fetal RhD status. Am J Obstet Gynecol. 2004;191(5):1730-1732
    16. Lo YM.Recent advances in fetal ucleic acids in maternal plasma.Journal of Histochemistry & Cytochemistry.2005;53(3):293-296
    17. 罗超权.主编.基因诊断与基因治疗进展.河南:河南医科大学出版社.第一版.1999.30-40
    18. Orkin SH,Karazian HH Jr.The mutation and polymorphism of the human β-globin gene and its surrounding DNA.Ann Rev Genet.1984;18:131
    19. 周玉球,徐相民.中国人 β 地中海贫血的分子基础及产前诊断.国外医学遗传学分册.1995;18(3):132-137
    20. Kazazian HH Jr.The thalassaemia syndromes:molecular basis and prenatal diagnosis in 1990.Semin Hematol. 1990;27(3):209-228
    21. 周晓光 . 我国 β- 地中海贫血基因诊断研究进展 . 中国优生与遗传杂志.1997;5(3):107-109
    22. 杜传书.地中海贫血的现状与未来.中华医学遗传学杂志.1996;13(5):257
    23. Shearman AM,Cupples LA,Demissie S,et al.Association between estrogen receptor αgene variation and cardiovascular disease. JAMA.2003; 290(17): 2263-2270
    24. 秦跃娟,章振林,黄琪仁,等. 绝经后骨质疏松症相关因素与雌激素受体-α基因Pvu Ⅱ、Xba Ⅰ多态性的关系.中华老年医学杂志.2004;23(16):380-383
    25. Georgiou I, Syrrou M, Bouba I et al. Association of estrogen receptor gene polymorphisms with endometriosis. Fertil Steril.1999;72:164-166.
    26. Peter I, Shearman A M, Zucker DR,et al.Variation in estrogen-related genes and cross-sectional and longitudinal blood pressure in the Framingham Heart Study. Journal of Hypertension .2005;23(12):2193-2200
    27. Chan KCA, Zhang J, Hui AB,et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem.2004;50:88–92
    28. Li Y, Zimmerman B, Rusterholz C, et al.Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin Chem.2004;50:1002–1011
    1. Ding C, Chiu RW, Lau TK,et al. MS analysis of single-nucleotide differences in circulating nucleic acids:Application to noninvasive prenatal diagnosis.Proc Natl Acad Sci USA. 2004;101(29):10762-10767
    2. AbravayaK, Carrino JJ, Muldoon S, et al. Detection of point mutations with a modified ligase chain reaction(Gap-LCR). Nucleic Acids Res. 1995;23(4):675-682
    3. Gerry NP, Witowski NE, Day J,et al. Universal DNA microarray method for multiplex detection of low abundance point mutations. J Mol Biol.1999;292:251–262
    4. Gonzalez-Gonzalez MC,Garcia-Hoyos M,Trujillo MJ,et al.Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma.Prenat Diagn.2002;22:946-948
    5. Fucharoen G,Tungwiwat W,Ratanasiri T,et al. Prenatal detection of fetal hemoglobin E gene from maternal plasma. Prenat Diagn. 2003; 23(5): 393-396
    6. Chiu RW,Lau TK,Leung TN,et al.Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet. 2002; 360(9338): 998-1000
    7. Nasis O,Thompson S, Hong T,et al. Improvement in sensitivity of allele-specific PCR facilitates reliable noninvasive prenatal detection of cystic fibrosis.Clin C hem.2004;50(4): 694-701
    8. Li Y,Zimmermann B,Rusterholz C,et al. Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin Chem.2004;50(6):1002-1011
    9. Chan KCA, Zhang J, Hui AB,et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem.2004;50:88–92
    10. Li Y,Holzgreve W, Page-Christiaens GC, et al. Improved prenatal detection of a fetal point mutation for achondroplasia by the use of size-fractionated circulatory DNA in maternal plasma--case report. Prenat Diagn. 2004; 24(11):896-898
    11. Li Y,Di Naro E,Vitucci A,et al.Detection of paternally inherited fetal point mutations for beta-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA. 2005; 293(7): 843-849
    12. Lindroos K, Sigurdsson S, Johansson K,et al.Multiplex SNP genotyping in pooledDNA samples by a four-colour microarray system . Nucleic Acids Res. 2002;30(14): e70
    13. Wu DY, Wallace RB. The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics.1989;4:560–569
    14. Benjamin WH Jr,Smith KR, Waites KB.Ligase chain reaction. Methods Mol Biol.2003; 226:135-50
    15. Winn-Deen ES,Batt CA,Wiedmann M.Non-radioactive detection of Mycobacterium tuberculosis LCR products in a microtitre plate format.Molecular and cellular probes.1993;7:179-186
    16. Iovannisci DM,Winn-Deen ES.Ligation amplification and fluorescence detection of Mycobacterium tuberculosis DNA.Molecular and cellular probes.1993;7:35-43
    17. Yu H, Merchant B, Scheffel C et al. Automated detection of single nucleotide polymorphism in beta-2 adrenergic receptor gene using LCx(R). Clin Chim Acta. 2001;308:17–24
    18. Leon Muinos E, Perez Del Molino ML, et al. Use of ligase chain reaction for the rapid diagnosis of lymph node tuberculosis. Scand J Infect Dis. 2004;36:724–726
    19. Ribeiro FK, Dettoni Vdo V, Peres RL,et al. Evaluation of a commercial test based on ligase chain reaction for direct detection of Mycobacterium tuberculosis in respiratory specimens. Rev Soc Bras Med Trop. 2004;37:431–435
    20. Harden SV, Thomas DC, Benoit N, et al. Real-time gap ligase chain reaction: a rapid semiquantitative assay for detecting p53 mutation at low levels in surgical margins and lymph nodes from resected lung and head and neck tumors. Clin Cancer Res. 2004;10(7):2379–2385
    21. Masasyesva BG, Tong BC, Brock MV, et al. Molecular margin analysis predicts local recurrence after sublobar resection of lung cancer. Int J Cancer. 2005;113(6):1022–1025
    22. 杨祥宇,宋健,冯荣秀. 荧光标记染料.化学通报.2003;9:615-620
    23. Hernandez M, Esteve T, Prat S, Pla M. Development of real-time PCR systems based on SYBR Green I, AmplifluorTM and TaqMan technologies for specific quantitative detection of the transgenic maize event GA21. J Cereal Sci.2004;39:99-107
    24. Wittwer CT, Herrmann MG, Gundry CN, Elenitoba-Johnson KSJ. Real-Time Mutiplex PCR Assays. METHODS.2001;25:430-442
    25. 施林祥,李东辉.实时荧光PCR研究新进展.世界华人消化杂志.2005;13(5):596-599
    26. Proudnikov D, Yuferov V, Zhou Y,et al. Optimizing primer-probe design for fluorescent PCR. J Neuroscience Methods.2003;123:31-45
    27. Luo J, Bergstrom DE,Barany F.Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 1996;24(15): 3071–3078
    28. Schouten JP, McElgunn CJ, Waaijer R, et al.Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acid Research.2002;30:e57
    29. 姚志远,郑和义.连接酶链反应在性病检测应用中的进展.中日友好医院学报. 2000;14(5):299-303
    30. Zhang J. A preliminary study of fluorescence real-time quantitative PCR technology.Trends in Life Sciences.2003;1(4):1-28.张鋆.荧光实时定量PCR 技术初探.生命科学趋势. 2003; 1(4):1-28
    31. Chiu RW, Lo YM. Recent developments in fetal DNA in maternal plasma. Ann N Y Acad Sci. 2004;1022:100-104
    32. Chiu RW, Lo YM. The biology and diagnostic applications of fetal DNA and RNA in maternal plasma.Curr Top Dev Biol. 2004;61:81-111
    33. LoYMD. Fetal DNA in Maternal Plasma/Serum: The First 5 Years.Pediatr. Res. 2003; 53(1): 16 – 17
    34. Wataganara T, Bianchi DW.Fetal cell-free nucleic acids in the maternal circulation: new clinical applications.Ann NY Acad Sci.2004;1022(1): 90-99
    35. Klein D.Quantification using real-time PCR technology: applications and limitations. Trends Mol Med. 2002;8(6):257-260
    36. 王小红.荧光定量PCR技术研究进展.国外医学?分子生物学分册.2001;23(1):42-45
    37. 张蓓,沈立松.实时荧光定量PCR的研究进展及其应用.国外医学 临床生物化学与检验学分册. 2003;24(6):327-329
    38. 罗得生.荧光定量PCR技术及其临床应用.中国误诊学杂志.2004;4(3):365-367
    1. Khanna M, Cao W, Zirvi M, et al.Ligase detection reaction for identification of low abundance mutations. Clin Biochem.1999;32:287–290
    2. Khanna M, Park P, Zirvi M, et al. Multiplex PCR/LDR for detection of K-ras mutations in primary colon tumors. Oncogene.1999;18:27–38
    3. Lo YM, Tein MS,Lau TK,et al.Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4): 768-775
    4. 罗超权 . 主编 . 基因诊断与基因治疗进展 . 河南 : 河南医科大学出版社 . 第一版.1999.30-40
    5. Palmer GA, Traeger-Synodinos J, Davies S, et al. Pregnancies following blastocyst stage transfer in PGD cycles at risk for beta-thalassaemic haemoglobinopathies. Hum Reprod.2002;17(1):25-31
    6. Kanavakis E, Vrettou C, Palmer G, et al. Preimplantation genetic diagnosis in 10 couples at risk for transmitting beta-thalassaemia major: clinical experience including the initiation of six singleton pregnancies. Prenat Diagn.1999;19(13):1217-1222
    7. Vrettou C, Palmer G, Kanavakis E, et al. A widely applicable strategy for single cell genotyping of beta-thalassemia mutations using DGGE analysis: application to preimplantation genetic diagnosis. Prenat Diagn.1999;19(13):1209-1216
    8. Kuliev A, Rechitsky S, Verlinsky O, et al. Birth of healthy children after preimplantation diagnosis of thalassemias. J Assist Reprod Genet.1999;16(4):207-211
    9. Kuliev A, Rechitsky S, Verlinsky O, et al. Preimplantation diagnosis of thalassemias.J Assist Reprod Genet.1998;15(5):219-225
    10. Hussey ND, Davis T, Hall JR, et al. Preimplantation genetic diagnosis for beta-thalassaemia using sequencing of single cell PCR products to detect mutations and polymorphic loci. Mol Hum Reprod.2002;8(12):1136-1143
    11. Wang W, Kham SKY, Yeo GH, et al. Multiplex minisequencing screen for common southeast Asian and Indian β-thalassemia mutations. Clin Chem.2003;49:209-218
    12. 李巍.点突变的基因诊断方法的进展.国外医学 分子生物学分册.1996;18(5):233-236
    13. 张明,吴登俊,郑鸿培,等.基因突变检测策略.生命科学趋势.2003;1(4):37-41
    14. Harden SV, Thomas DC, Benoit N, et al. Real-time gap ligase chain reaction: a rapid semiquantitative assay for detecting p53 mutation at low levels in surgical margins and lymph nodes from resected lung and head and neck tumors. Clin Cancer Res. 2004;10(7):2379–2385
    15. Chiu RW, Lo YM. Recent developments in fetal DNA in maternal plasma. Ann N Y Acad Sci. 2004;1022:100-104
    16. Landegren U, Kaiser R, Sanders J,et al. A ligase-mediated gene detection technique. Science.1988;241:1077–1080
    17. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci USA.1991;88:189–193
    18. Cao W.DNA ligases and ligase-based technologies.Clin Appl Immunol Rev.2001; 2:33–43
    19. Thomas G,Sinville R,Sutton S,et al.Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA. Electrophoresis. 2004; 25(10-11): 1668-77
    20. Nathanson DR,Nash GM,Chen B,et al.Detection of HER-2/neu gene amplification in breast cancer using a novel polymerase chain reaction/ligase detection reaction technique. J-Am-Coll-Surg. 2003; 197(3): 419-25
    21. Zirvi M, Bergstrom DE, Saurage AS,et al. Improved fidelity of thermostable ligases for detection of microsatellite repeat sequences using nucleoside analogs. Nucleic Acids Res.1999;27:e41
    22. Zirvi M, Nakayama T, Newman G, et al. Ligase-based detection of mononucleotide repeat sequences. Nucleic Acids Res.1999;27:e40
    23. Tong J, Cao W, Barany F. Biochemical properties of a high fidelity DNA ligase from thermus species AK16D. Nucleic Acids Res.1999;27:788–794
    24. Luo J, Bergstrom DE, Barany F. Improving the fidelity of thermus thermophilus DNA ligase. Nucleic Acids Res 1996;24:3071–3078
    25. Tong J, Barany F, Cao W. Ligation reaction specificities of an NAD-dependent DNA ligase from hyperthermophile aquifex aeolicus. Nucleic Acids Res.2000;28:1447–1454
    26. Schouten JP, McElgunn CJ, Waaijer R, et al.Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic AcidResearch.2002;30:e57
    27. LoYM,Corbetta N,Chamberlain PF,et al.Presence of fetal DNA in maternal plasma and serum.Lancet. 1997;350(9076):485-487
    28. Houfflin-Debarge V, O'Donnell H,Overton T,et al.High sensitivity of fetal DNA in plasma compared to serum and nucleated cells using unnested PCR in maternal blood. Fetal-Diagn-Ther. 2000; 15(2): 102-107
    29. Ding C, Chiu RW, Lau TK,et al. MS analysis of single-nucleotide differences in circulating nucleic acids:Application to noninvasive prenatal diagnosis.Proc Natl Acad Sci USA. 2004;101(29):10762-10767
    30. Fucharoen G,Tungwiwat W,Ratanasiri T,et al. Prenatal detection of fetal hemoglobin E gene from maternal plasma. Prenat Diagn. 2003; 23(5): 393-396
    1. Gerry NP, Witowski NE, Day J,et al. Universal DNA microarray method for multiplex detection of low abundance point mutations. J Mol Biol.1999;292:251–262
    2. Cao W.DNA ligases and ligase-based technologies.Clin Appl Immunol Rev.2001; 2:33–43
    3. Favis R, Day JP, Gerry NP, et al. Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat Biotechnol.2000;18:561–564
    4. Hirschhorn JN, Sklar P, Lindblad-Toh K,et al. SBE-TAGS: An array-based method for efficient single-nucleotide polymorphism. Genotyping. Proc Natl Acad Sci USA.2000;97(22):12164-12169
    5. Lindroos K, Sigurdsson S,Johansson K,et al.Multiplex SNP genotyping in pooled DNA samples by a four-colour microarray system. Nucleic Acids Res. 2002;30(14), e70
    6. Syv?nen AC.Toward genome-wide SNP genotyping. Nat Genet.2005;37 Suppl:S5-S10
    7. Fan JB, Chen X, Halushka MK,et al.. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res.2000;10(6): 853-860
    8. Storhoff JJ, Marla SS, Bao P,et al. Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system.Biosensors and Bioelectronics.2004;19: 875–883
    9. Taton, TA, Mirkin, CA, Letsinger, RL.Scanometric DNA array detection with nanoparticle probes. Science. 2000; 289: 1757-1759
    10. 鲁卫平.以纳米金为报告系统的病原体快速检测基因芯片的研制.第三军医大学硕士毕业论文(2003)
    11. 顾大勇.纳米金新型基因芯片检测系统的优化研究及其在临床病原微生物快速检测中的应用.第三军医大学博士毕业论文(2004)
    12. 何群,侯伟健,潘忠诚.等.寡核苷酸醛基芯片点样条件的优化.中国医科大学学报.2004;33(2):190-191
    13. Li J, Chen S, Evans DH. Typing and subtyping influenza virus using DNAmicroarrays and multiplex reverse transcriptase PCR. J Clin Microbiol. 2001;39(2):696-704
    14. Chizhikov V, Wagner M, Ivshina A, et al. Detection and genotyping of human group A rotaviruses by oligonucleotide microarray hybridization. J Clin Microbiol. 2002;40(7):2398-407
    15. Psikal I, Smid B, Rodak L, et al.Atypical myxomatosis--virus isolation, experimental infection of rabbits and restriction endonuclease analysis of the isolate.J Vet Med B Infect Dis Vet Public Health.2003;50(6):259-64
    16. Botelho BA, Bando SY, Trabulsi LR,et al.Identification of EPEC and non-EPEC serotypes in the EPEC O serogroups by PCR-RFLP analysis of the fliC gene. J Microbiol Methods. 2003;54(1):87-93
    17. Williams RJ.Restriction endonucleases: classification, properties, and applications. Mol Biotechnol. 2003;23(3):225-43
    18. Mirkin CA, Letsinger RL, Mucic RC, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382(6592):607-609
    19. Alivisatos AP, Johnsson KP, Peng X, et al.Organization of 'nanocrystal molecules' using DNA. Nature. 1996;382(6592):609-611
    20. Zehbe I, Hacker GW, Su H, et al. Sensitive in situ hybridization with catalyzed reporter deposition, streptavidin-Nanogold, and silver acetate autometallography: detection of single-copy human papillomavirus. Am J Pathol. 1997;150(5):1553-1561
    21. Hainfeld JF. Labeling with nanogold and undecagold: techniques and results. Scanning Microsc Suppl. 1996;10:309-22
    22. Alexandre I, Hamels S, Dufour S, et al.Colorimetric silver detection of DNA micro- arrays. Anal Biochem. 2001;295(1):1-8
    23. Nam JM, Stoeva SI, Mirkin CA, et al.Bio-bar-code-based DNA detection with PCR-like sensitivity. J-Am-Chem-Soc. 2004;126(19): 5932-5933
    24. Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science.2003;301(5641): 1884-1884
    25. Dai H, Meyer M, Stepaniants S,et al.Use of hybridization kinetics fordifferentiating specific from non-specific binding to oligonucleotide microarrays. Nucleic Acids Res. 2002;30(16):e86
    26. Kohara Y.Hybridization reaction kinetics of DNA probes on beads arrayed in a capillary enhanced by turbulent flow. Anal Chem. 2003;75(13):3079-85
    27. Lo YM, Tein MS,Lau TK,et al.Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4): 768-775
    1. Guetta E,Simchen MJ,Mammon-Daviko K ,et al. Analysis of Fetal Blood Cells in the Maternal Circulation: Challenges, Ongoing Efforts, and Potential Solutions. Stem-Cells-Dev.2004;13:93–99
    2. LoYM,Corbetta N,Chamberlain PF,et al.Presence of fetal DNA in maternal plasma and serum.Lancet. 1997;350(9076):485-487
    3. Poon LL, Leung TN, Lau TK, et al. Presence of fetal RNA in maternal plasma. Clin Chem. 2000;46:1832–1834
    4. Chiu RW, Lo YM. Recent developments in fetal DNA in maternal plasma. Ann N Y Acad Sci. 2004;1022:100-104
    5. Chiu RW, Lo YM. The biology and diagnostic applications of fetal DNA and RNA in maternal plasma.Curr Top Dev Biol. 2004;61:81-111
    6. Lo YMD. Fetal DNA in Maternal Plasma/Serum: The First 5 Years.Pediatr. Res. 2003; 53(1): 16 -17
    7. Lo YM.Recent advances in fetal ucleic acids in maternal plasma.Journal of Histochemistry & Cytochemistry.2005;53(3):293-296
    8. Lo YM, Tein MS,Lau TK,et al.Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4): 768-775
    9. Chan KCA, Zhang J, Hui AB,et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem.2004;50:88–92
    10. Li Y, Zimmerman B, Rusterholz C, et al.Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin Chem.2004;50:1002–1011
    11. Li Y, Holzgreve W, Page-Christiaens GC,et al. Improved prenatal detection of a fetal point mutation for achondroplasia by the use of size-fractionated circulatory DNA in maternal plasma--case report. Prenat Diagn. 2004;24(11):896-898
    12. Bischoff FZ, Dang D, Horne C, et al. Fetal DNA in maternal plasma circulates as apoptotic bodies: elucidation of the structural nature of fetal DNA for non-invasive prenatal genetic diagnosis. Am J Hum Genet. 2003;73 (Suppl):189
    13. Hristoskova S, Holzgreve W, Hahn S. More than one-half of the erythroblasts in the fetal circulation and cord blood are TUNEL positive. Clin Chem.2001;47(10):1870-1871
    14. Wataganara T, LeShane ES, Chen AY, et al. Plasma gamma-globin gene expression suggests that fetal hematopoietic cells contribute to the pool of circulating cell-free fetal nucleic acids during pregnancy. Clin Chem. 2004;50(4): 689-693
    15. Zhong XY, Holzgreve W, Hahn S. Cell-free fetal DNA in the maternal circulation does not stem from the transplacental passage of fetal erythroblasts. Mol Hum Reprod. 2002; 8(9): 864-870
    16. Angert RM, LeShane ES, Lo YM, et al. Fetal cell-free plasma DNA concentrations in maternal blood are stable 24 hours after collection: analysis of first- and third-trimester samples. Clin Chem.2003;49(1): 195-198
    17. Wataganara T, Chen AY, LeShane ES, et al. Cell-free fetal DNA levels in maternal plasma after elective first-trimester termination of pregnancy. Fertil Steril. 2004; 81(3): 638-644
    18. Guibert J, Benachi A,Grebille AG, et al. Kinetics of SRY gene appearance in maternal serum: detection by real time PCR in early pregnancy after assisted reproductive technique. Hum Reprod. 2003;18(8): 1733-1736
    19. Smid M, Galbiati S,Vassallo A, et al. Fetal DNA in maternal plasma in twin pregnancies. Clin Chem.2003;49(9):1526-1528
    20. Ohashi Y, Miharu N, Honda H, et al. Correlation of fetal DNA and human chorionic gonadotropin concentrations in second-trimester maternal serum. Clin Chem. 2002; 48(2): 386-388
    21. Sekizawa A, Yokokawa K. Sugito Y, et al. Evaluation of bidirectional transfer of plasma DNA through placenta. Hum Genet. 2003;113(4): 307-310
    22. Wataganara T, Gratacos E, Jani J,et al. Persistent elevation of cell-free fetal DNA levels in maternal plasma after selective laser coagulation of chorionic plate anastomoses in severe midgestational twin-twin transfusion syndrome. Am J Obstet Gynecol. 2005;192(2):604-609
    23. Lo YM,Zhang J,Leung, TN,et al.Rapid clearance of fetal DNA from maternal plasma.Am J Hum-Genet. 1999; 64(1): 218-224
    24. Botezatu I,Serdyuk O,Potapova G,et al.Genetic analysis of DNA excreted in urine:a new approach for detecting specific genomic DNA sequences from cells dying ing in an o rganism.Clin chem.2000;46:1078-1084
    25. Rijnders RJ, Christiaens GC, Bossers B,et al.Clinical applications of cell –free fetalDNA from maternal plasma. Obstet Gynecol. 2004;103(1):157-164
    26. Houfflin-Debarge V, O'Donnell H, Overton T,et al.High sensitivity of fetal DNA in plasma compared to serum and nucleated cells using unnested PCR in maternal blood. Fetal Diagn Ther. 2000;15(2):102-107
    27. Rijnders RJ,van-der-Schoot CE, Bossers B,et al.Fetal sex determination from maternal plasma in pregnancies at risk for congenital adrenal hyperplasia. Obstet Gynecol. 2001;98(3):374-378
    28. Honda H,Miharu N,Ohashi Y,et al. Successful diagnosis of fetal gender using conventional PCR analysis of maternal serum. Clin Chem. 2001;47(1): 41-46
    29. Costa JM, Benachi A, Gautier E, et al. First-trimester fetal sex determination in maternal serum using real-time PCR. Prenat Diagn.2001;21:1070-1074
    30. Zhong XY, Holzgreve W, Hahn S, et al. Risk free simultaneous prenatal identification of fetal Rhesus D status and sex by multiplex real-time PCR using cell free fetal DNA in maternal plasma. Swiss-Med-Wkly. 2001;131(5-6): 70-74
    31. Sekizawa A,Kondo T,Iwasaki M, et al.Accuracy of fetal gender determination by analysis of DNA in maternal plasma. Clin Chem. 2001;47:1856-1858
    32. Honda H, Miharu N, Ohashi Y, et al. Fetal gender determination in early pregnancy through qualitative and quantitative analysis of fetal DNA in maternal serum. Hum Genet. 2002;110(1):75-79
    33. Lo YM,Bowell PJ,Selinger M,et al.Prenatal diagnosis of fetal RHD status by molecular analysis of peripheral blood of rhesus negative mothers.Lancet.1993;341:1147-1148
    34. Lo YM, Hjelm NM, Fidler C,et al.Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N Engl J Med.1998;339(24): 1734-1738
    35. Zhong XY,Holzgreve W,Hahn S.Detection of fetal Rhesus D and sex using fetal DNA from maternal plasma by multiplex polymerase chain reaction. BJOG. 2000;107(6):766-769
    36. Harper TC,Kirstin MF,Martin P,et al.Use of maternal plasma for noninvasive determination of fetal RhD status.American Journal of Obstetrics and Gynecology.2004;191:1730-1732
    37. Gonzalez-Gonzalez MC,Garcia-Hoyos M,Trujillo MJ,et al.Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma.Prenat Diagn.2002;22:946-948
    38. Fucharoen G,Tungwiwat W,Ratanasiri T,et al. Prenatal detection of fetal hemoglobin E gene from maternal plasma. Prenat Diagn. 2003; 23(5): 393-396
    39. Chiu RW,Lau TK,Leung TN,et al.Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet. 2002; 360(9338): 998-1000
    40. Li Y,Di Naro E,Vitucci A,et al.Detection of paternally inherited fetal point mutations for beta-thalassemia using size-fractionated cell-free DNA in maternal plasma. JAMA. 2005; 293(7): 843-849
    41. Ding C, Chiu RW, Lau TK,et al. MS analysis of single-nucleotide differences in circulating nucleic acids:Application to noninvasive prenatal diagnosis.Proc Natl Acad Sci USA. 2004;101(29):10762-10767
    42. Lindroos K, Sigurdsson S, Johansson K,et al.Multiplex SNP genotyping in pooled DNA samples by a four-colour microarray system . Nucleic Acids Res. 2002;30(14): e70
    43. Bianchi DW, Williams JM,Sullivan LM,et al. PCR quantitation of fetal cells in normal and aneuploid pregnancies.Am J Hum Genet.1997;61:882-829
    44. Lo YM, Lau TK, Zhang J,et al. Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. Clin Chem. 1999; 45(10): 1747-1751
    45. Farina A, LeShane ES, Lambert-Messerlian GM, et al. Evaluation of cell-free fetal DNA as a second-trimester maternal serum marker of Down syndrome pregnancy. Clin Chem. 2003; 49(2): 239-242
    46. Wataganara T, LeShane E-S Farina T,et al. Maternal serum cell-free fetal DNA levels are increased in cases of trisomy 13 but not trisomy 18. 2003;112(2): 204-208
    47. Saller DN, Canick JA, Blitzer MG, et al. Second-trimester maternal serum analyte levels associated with fetal trisomy 13. Prenat Diagn. 1999;19 (9):813-816
    48. Leung TN,Zhang J,Lau TK,et al.Maternal plasma fetal DNA as a marker for preterm labour.Lancet.1998;352:1904-1905
    49. Lo YM, Leung TN, Tein MS, et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem.1999, 45(2): 184-188
    50. Leung TN, Zhang J, Lau TK, et al. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin Chem. 2001;47(1): 137-139
    51. Levine RJ, Qian C, Leshane ES, et al. Two-stage elevation of cell-free fetal DNA inmaternal sera before onset of preeclampsia. Am J Obstet Gynecol. 2004; 190(3): 707-713
    52. Wataganara T, Gratacos E, Jani J,et al. Persistent elevation of cell-free fetal DNA levels in maternal plasma after selective laser coagulation of chorionic plate anastomoses in severe midgestational twin-twin transfusion syndrome. Am J Obstet Gynecol. 2005;192(2):604-609
    53. Lau TK, Lo KW, Chan LY, et al. Cell-free fetal deoxyribonucleic acid in maternal circulation as a marker of fetal-maternal hemorrhage in patients undergoing external cephalic version near term. Am J Obstet Gynecol.2000; 183(3): 712-716
    54. Wataganara T,Leshane ES, Chen AY. Circulating cell-free fetal nucleic acid analysis may be a novel marker of fetomaternal hemorrhage after elective first-trimester termination of pregnancy. Ann N Y Acad Sci. 2004;1022:129-134
    55. Lee TH, Montalvo L, Chrebtow V, et al. Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma. Transfusion.2001; 41:276–282
    56. Lui YYN, Chik KW, Chiu RW, et al. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation. Clin Chem 2002; 48:421–427
    57. Tang NL, Leung TN, Zhang J, Lau TK, Lo YMD. Detection of fetal-derived paternally inherited X-chromosome polymorphisms in maternal plasma. Clin Chem 1999; 45:2033–2035
    58. Holodniy M, Kim S, Katzenstein D, Konrad M, Groves E,Merigan TC. Inhibition of human immunodeficiency virus gene amplification by heparin. J Clin Microbiol 1991;29:676–679
    59. Satsangi J, Jewell DP, Welsh K, et al. Effect of heparin on polymerase chain reaction. Lancet.1994; 343:1509–1510
    60. Wang JT, Wang TH, Sheu JC, Lin SM, Lin JT, Chen DS. Effects of anticoagulants and storage of blood samples on efficacy of the polymerase chain reaction assay for hepatitis C virus. J Clin Microbiol.1992; 30:750–753
    61. Poli F, Cattaneo R, Crespiatico L, Nocco A, Sirchia G. A rapid and simple method for reversing the inhibitory effect of heparin on PCR for HLA class II typing. PCR Methods Appl .1993; 2:356–358
    62. Nicole YLL,Timothy HR,Rossa WKC,et al. EDTA is a better anticoagulant thanheparin or citrate for delayed blood processing for plasma DNA analysis. Clin Chem. 2004;50(1): 256-257
    63. van Wijk IJ, De Hoon AC, Jurhawan R, et al. Detection of apoptotic fetal cells in plasma of pregnant women. Clin Chem.2000; 46:729–731
    64. Poon LL, Leung TN, Lau TK, Lo YMD. Prenatal detection of fetal Down’s syndrome from maternal plasma. Lancet .2000; 356:1819–1820
    65. Zhong XY, Burk MR, Troeger C,et al. Fluctuation of maternal and fetal free extracellular circulatory DNA in maternal plasma. Obstet Gynecol. 2000;96:991–996
    66. Chiu RWK, Poon LLM, Lau TK, et al. Effects of blood processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem. 2001; 47:1607–1613
    67. Hahn S, Zhong XY, Holzgreve W. Quantification of circulating DNA: in the preparation lies the rub. Clin Chem .2001;47:1577–1578
    68. Lo YMD, Rainer TH, Chan LY, et al. Plasma DNA as a prognostic marker in trauma patients. Clin Chem.2000; 46:319–323
    69. Kawakami K, Brabender J, Lord RV, et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma.J Natl Cancer Inst .2000; 92:1805–1811
    70. Houfflin-Debarge V, O'Donnell H,Overton T,et al.High sensitivity of fetal DNA in plasma compared to serum and nucleated cells using unnested PCR in maternal blood. Fetal-Diagn-Ther. 2000; 15(2): 102-107
    71. Dhallan R, Au WC, Mattagajasingh S,et al. Methods to increase the percentage of free fetal DNA recovered from the maternal circulation. JAMA. 2004;291(9):1114-1119
    72. Chung GTY,Chiu RWK,Chan K A,etal.Lack of Dramatic Enrichment of Fetal DNA in Maternal Plasma by Formaldehyde Treatment. Clin Chem.2005; 51:655–658
    73. Kopreski M, Benko FA, Kwak LW, et al.Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res.1999;5:1961–1965
    74. Lo KW, Lo YM, Leung SF, et al. Analysis of cell-free Epstein-Barr virus associated RNA in the plasma of patients with nasopharyngeal carcinoma.Clin Chem.1999; 45:1292–1294
    75. Poon LL, Leung TN, Lau TK, Lo YM .Presence of fetal RNA in maternal plasma. Clin Chem.2000;46:1832–1834
    76. Tsui NB, Ng EK, Lo YMD.Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem.2002; 48:1647–1653
    77. Ng EK, Tsui NB, Lam NY, Chiu RW, Yu SC, Wong SC, Lo ES, et al. () Presence of filterable and nonfilterable mRNA in the plasma of cancer patients and healthy individuals. Clin Chem.2002;48:1212–1217
    78. Ng EKO, Tsui NBY, Lau TK, et al. mRNA of placental origin is readily detectable in maternal plasma. Proc Natl Acad Sci USA .2003;100:4748–4753
    79. Tsui NBY, Chim SSC, Chiu RWK, et al. Systematic microarray-based identification of placental mRNA in maternal plasma: towards noninvasive prenatal gene expression profiling. J Med Genet.2004;41:461–467
    80. Ng EK, Leung TN, Tsui NB, et al.The concentration of circulating corticotropinreleasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin Chem.2003;49:727–731
    81. Ng EK, El-Sheikhah A, Chiu RWK,et al. Human chorionic gonadotropin beta-subunit mRNA concentrations in maternal serum in aneuploid pregnancies. Clin Chem.2004;50:1055–1057
    82. Oudejans CB, Go AT, Visser A, et al. Detection of chromosome 21-encoded mRNA of placental origin in maternal plasma. Clin Chem.2003;49:1445–1449
    83. Jimenez DF, Tarantal AF.Quantitative Analysis of Male Fetal DNA in Maternal Serum of Gravid Rhesus Monkeys(Macaca mulatta).Pediatr Res.2003;53:18-23
    1. Espy MJ, Uhl JR, Sloan LM, et al.Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006;19(1):165-256.
    2. Mike Makrigiorgos G. PCR-based detection of minority point mutations.Hum Mutat. 2004;23(5):406-12.
    3. Mackay IM. Real-time PCR in the microbiology laboratory.Clin Microbiol Infect. 2004;10(3):190-212.
    4. Stirling D. Qualitative and quantitative PCR: a technical overview.Methods Mol Biol. 2003;226:181-184
    5. Little MC, Andrews J, Moore R, et al. Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin Chem.1999;45:777–784
    6. Cook N. The use of NASBA for the detection of microbial pathogens in food and environmental samples.J Microbiol Methods. 2003;53(2):165-74
    7. Demidov VV. 10 years of rolling the minicircles: RCA assays in DNA diagnostics.Expert Rev Mol Diagn. 2005;5(4):477-478
    8. Qi X, Bakht S, Devos KM, et al. L-RCA (ligation-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res. 2001;29(22):e116
    9. Ho CK, Van Etten JL, Shuman S. Characterization of an ATP-dependent DNA ligase encoded by Chlorella virus PBCV-1. J Virol.1997;71:1931-1937
    10. Bult CJ, White O, Olsen GJ, et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science.1996;273:1058–1073
    11. Ramos W, Tappe N, Talamantez J, et al. Two distinct DNA ligase activities in mitotic extracts of the yeast Saccharomyces cerevisiae. Nucleic Acids Res.1997;25:1485-1492
    12. Tomkinson AE, Mackey ZB. Structure and function of mammalian DNA ligases. Mutat Res .1998;407:1-9
    13. Deckert G, Warren PV, Gaasterland T, et al. The complete genome of the hyperthermophilic bacterium aquifex aeolicus. Nature.1998;392:353-358
    14. Lehman IR. DNA ligase: structure, mechanism, and function. Science.1974;186:790–797
    15. Tong J, Cao W, Barany F. Biochemical properties of a high fidelity DNA ligase from thermus species AK16D. Nucleic Acids Res.1999;27:788–794
    16. Luo J, Bergstrom DE, Barany F. Improving the fidelity of thermus thermophilus DNA ligase. Nucleic Acids Res 1996;24:3071–3078
    17. Tong J, Barany F, Cao W. Ligation reaction specificities of an NAD-dependent DNA ligase from hyperthermophile aquifex aeolicus. Nucleic Acids Res.2000;28:1447–1454
    18. Nilsson M, Barbany G, Antson DO, et al. Enhanced detection and distinction of RNA by enzymatic probe ligation. Nat Biotechnol. 2000;18:791–793
    19. Nilsson M, Antson DO, Barbany G, Landegren U. RNA-templated DNA ligation for transcript analysis. Nucleic Acids Res.2001;29:578–581
    20. Wu DY, Wallace RB. The ligation amplification reaction (LAR)—amplification of specific DNA sequences using sequential rounds of template-dependent ligation. Genomics.1989;4:560–569
    21. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci USA.1991;88:189–193
    22. Abravaya K, Carrino JJ, Muldoon S, Lee HH. Detection of point mutations with a modified ligase chain reaction (Gap-LCR). Nucleic Acids Res. 1995;23:675–682.
    23. Yu H, Merchant B, Scheffel C et al. Automated detection of single nucleotide polymorphism in beta-2 adrenergic receptor gene using LCx(R). Clin Chim Acta. 2001;308:17–24
    24. Benjamin WH Jr,Smith KR, Waites KB.Ligase chain reaction. Methods Mol Biol.2003; 226:135-50
    25. Winn-Deen ES,Batt CA,Wiedmann M.Non-radioactive detection of Mycobacterium tuberculosis LCR products in a microtitre plate format.Molecular and cellular probes.1993;7:179-186
    26. Iovannisci DM,Winn-Deen ES.Ligation amplification and fluorescence detection of Mycobacterium tuberculosis DNA.Molecular and cellular probes.1993;7:35-43
    27. Jurinke C, Boom D van den, Jacob A,et al.Analysis of Ligase Chain ReactionProducts via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight–Mass Spectrometry. Analytical Biochemistry.1996;237, (2):174-181
    28. Osiowy C.Sensitive detection of HBsAg mutants by a gap ligase chain reaction assay. J Clin Microbiol. 2002; 40(7): 2566-2571
    29. Wilson, James L. Mulshine and Rama Modali.Detection of K-ras Oncogene Mutations by Polymerase Chain Reaction-Based Ligase Chain Reaction. Analytical Biochemistry.1996; 239(2) :153-159
    30. Leon Muinos E, Perez Del Molino ML, et al. Use of ligase chain reaction for the rapid diagnosis of lymph node tuberculosis. Scand J Infect Dis. 2004;36:724–726
    31. Ribeiro FK, Dettoni Vdo V, Peres RL,et al. Evaluation of a commercial test based on ligase chain reaction for direct detection of Mycobacterium tuberculosis in respiratory specimens. Rev Soc Bras Med Trop. 2004;37:431–435
    32. Ruiz-Serrano MJ, Albadalejo J, Martinez-Sanchez L,et al. LCx: a diagnostic alternative for the early detection of Mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis. 1998;32(4):259-264
    33. Harden SV, Thomas DC, Benoit N, et al. Real-time gap ligase chain reaction: a rapid semiquantitative assay for detecting p53 mutation at low levels in surgical margins and lymph nodes from resected lung and head and neck tumors. Clin Cancer Res. 2004;10(7):2379–2385
    34. Masasyesva BG, Tong BC, Brock MV, et al. Molecular margin analysis predicts local recurrence after sublobar resection of lung cancer. Int J Cancer. 2005;113(6):1022–1025
    35. Landegren U, Kaiser R, Sanders J,et al. A ligase-mediated gene detection technique. Science.1988;241:1077–1080
    36. Nickerson DA, Kaiser R, Lappin S,et al.Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay.Proc Nati Acad Sci. USA. 1990;87:8923-8927
    37. Iannone MA, Taylor JD, Chen J, et al. Multiplexed single nucleotide polymorphism genotyping by oligonucleotide ligation and flow cytometry. Cytometry.2000; 39:131–140
    38. Chen X, Livak KJ, Kwok PY. A homogeneous, ligase-mediated DNA diagnostic test.Genome Res.1998;8: 549–556
    39. Khanna M, Cao W, Zirvi M, et al.Ligase detection reaction for identification of low abundance mutations. Clin Biochem.1999;32:287–290
    40. Khanna M, Park P, Zirvi M, et al. Multiplex PCR/LDR for detection of K-ras mutations in primary colon tumors. Oncogene.1999;18:27–38
    41. Zirvi M, Bergstrom DE, Saurage AS,et al. Improved fidelity of thermostable ligases for detection of microsatellite repeat sequences using nucleoside analogs. Nucleic Acids Res.1999;27:e41
    42. Zirvi M, Nakayama T, Newman G, et al. Ligase-based detection of mononucleotide repeat sequences. Nucleic Acids Res.1999;27:e40
    43. Turner DJ,Zirvi MA,Barany F,et al.Detection of the BRAF V600E mutation in melanocytic lesions using the ligase detection reaction. J-Cutan-Pathol. 2005;32(5): 334-339
    44. McNamara DT,Thomson JM,Kasehagen LJ,et al.Development of a multiplex PCR-ligase detection reaction assay for diagnosis of infection by the four parasite species causing malaria in humans. J Clin Microbiol. 2004; 42(6): 2403-2410
    45. Thomas G,Sinville R,Sutton S,et al.Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA. Electrophoresis. 2004; 25(10-11): 1668-1677
    46. Gerry NP, Witowski NE, Day J,et al. Universal DNA microarray method for multiplex detection of low abundance point mutations. J Mol Biol.1999;292:251–262
    47. Favis R, Day JP, Gerry NP, et al. Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2. Nat Biotechnol.2000;18:561–564
    48. Fouquet C,Antoine M,Tisserand P,et al.Rapid and sensitive p53 alteration analysis in biopsies from lung cancer patients using a functional assay and a universal oligonucleotide array: a prospective study. Clin Cancer Res. 2004;10(10): 3479-3489
    49. Long WH, Xiao HS,Gu XM,et al.A universal microarray for detection of SARS coronavirus. J-Virol-Methods. 2004;121(1): 57-63
    50. Favis R, Huang J,Gerry NP,et al.Harmonized microarray/mutation scanning analysisof TP53 mutations in undissected colorectal tumors. Hum Mutat. 2004;24(1): 63-75
    51. Schouten JP, McElgunn CJ, Waaijer R, et al.Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acid Research.2002;30:e57
    52. Koolen DA, Nillesen WM, Versteeg MHA,et al.Screening for subtelomeric rearrangements in 210 patients with unexplained mental retardation using multiplex ligation dependent probe amplification (MLPA). Journal of Medical Genetics.2004;41:892-899
    53. Nygren AOH, Ameziane N, Duarte HMB,et al.Methylation-Specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res, 2005; 33(14): e128
    54. Slater HR, Bruno DL, Ren H, et al.Rapid, high throughput prenatal detection of aneuploidy using a novel quantitative method (MLPA). J Med Genet.2003; 40(12): 907–912
    55. Lizardi PM , Huang X, Zhu Z, et al. Mutation detection and single-mo lecule counting using isothermal rolling circle amplificat ion. Nat Genet.1998;19(3):225-232
    56. Faruqi AF, Hosono S, Driscoll MD, et al. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification.BMC Genomics.2001; 2(1) : 4
    57. Alsmadi OA, Bornarth CJ, Song W, et al. High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay.BMC Genomics.2003;4(1): 21
    58. Nallur G, Luo C, Fang L, et al. Signal amp lification by rolling circle amplification on DNA microarrays. Nucleic Acids Res.2001;29 (23): E118
    59. Ladner DP, Leamon JH, Hamann S, et al. Multiplex detection of ho tspot mutations by rolling circle-enabled universal m icroarrays. Lab Invest.2001;81(10):1079-1086

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700