内源性代谢产物X通过激活ERK通路上调cyclinD1促进C_2C_(12)细胞增殖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1923年,Warburg发现快速增殖的肿瘤细胞主要通过糖酵解的方式进行代谢,被称为Warburg理论。近年来Warburg理论越来越被人们所接受,寻找和发现内源性代谢产物或者相关酶新的生物学功能已成为当今生命科学研究的热点。
     本实验室最近对生长速度存在显著差异的蛋鸡与肉鸡的蛋白质组以及转录组学的比较研究发现,快速生长的肉鸡肌肉组织中调控X代谢的酶Z的表达以及酶活性显著高于蛋鸡,由于肌肉是利用内源性代谢产物X的主要器官,该结果提示内源性代谢产物X可能与个体发育过程中的骨骼肌生长速度有一定联系。因此,本论文研究了内源性代谢产物X对骨骼肌细胞增殖的影响以及可能的分子机制。
     细胞生物学实验结果表明,内源性代谢产物X促进成肌细胞C2C12的增殖,进一步研究发现X可能通过激活ERK通路在转录和翻译水平上上调cyclinD1的表达,从而起到促进细胞增殖的作用。更为重要的是,内源性代谢产物X可以协同IGF1对细胞增殖起到进一步的促进作用,同时,X也可以拮抗MSTN对细胞增殖的抑制作用。本研究利用不表达Z酶的HepG2细胞和X的下游产物A初步探讨了X促进细胞增殖是否依赖于其代谢功能。结果表明,内源性代谢产物X可以促进不表达Z酶的HepG2细胞的增殖,而其下游代谢产物A对C2C12细胞的增殖没用表现出促进作用。以上结果提示,X可能通过不依赖其自身代谢通路的方式促进骨骼肌细胞的增殖。综上所述,我们的实验结果表明,内源性代谢产物X可能在骨骼肌发生和再生过程中具有十分重要的调控功能,有望发展成为治疗骨骼肌及代谢性疾病的一个潜在药物。
In the 1920s, Otto Warburg demonstrated that tumor cells had high rates of glycolysis, lactate production, and biosynthesis of lipids and other macromolecules which have been regarded as the Warburg's effect. Recently, Warburg's effect is being greatly recongnized and identification of novel functional roles of endogenous metabolites is the hot spot in biomedical research.
     Recently, enzyme Z was identified in a screen for genes whose expression was differentially regulated in the skeletal muscle tissue between broiler and layer chickens by transcriptom and proteomics analysis. In addtiton, our previously unpublished data also demonstrated that the enzymatic activity of the enzyme Z and concerntration of its substrate X were higher in the skeletal muscle tissue of the rapidly growthing broiler than in that of layer chicken. Considering the skeletal muscle is the major organ for utilizing the intrinsic metabolite X, these observations suggest that the intrinsic metabolite X play regulatory roles during skeletal muscle development. Therefore, in the present study, we investigated the effect of the X on muscle cell proliferation and the possible moleculear mechanisms for its function.
     Herein we provided experimental evidence to show that the intrinsic metabolite X promoted the C2C12 cell proliferation in vitro by upregulating expression of the cyclinD1 via ERK signaling pathway. More interestingly, we found that the X agonized IGF function and antagonized myostatin inhibitory effect on muscle cell proliferation. To ask whether the molecular action of X was dependent on its enzyme Z, the HepG2 cells (an enzyme Z deficiency cell line) was treated by the X and the results indicated that X can still promote HepG2 cell proliferation. In addation, we also investigated the effect of X's product and found that X's product had no effect on C2C12 cell proliferation. Taken together, our findings indicated that the intrinsic metabolite X plays regulatory roles in cell proliferation in the way of independent on its metabolism. Our work highlights the potential application of using the X to cure human diseases, such as muscular dystrophy and atrophy.
引文
1 Hsu, P. P. and Sabatini, D. M. (2008) Cancer cell metabolism: Warburg and beyond. Cell.134, 703-707
    2 DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab.7,11-20
    3 Bauer, D. E., Harris, M. H., Plas, D. R., Lum, J. J., Hammerman, P. S., Rathmell, J. C., Riley, J. L. and Thompson, C. B. (2004) Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J.18,1303-1305
    4 Warburg, O. (1956) On respiratory impairment in cancer cells. SCIENCE.124,269-270
    5 Warburg, O. (1956) On the origin of cancer cells. SCIENCE.123,309-314
    6 Izyumov, D. S., Avetisyan, A. V., Pletjushkina, O. Y., Sakharov, D. V., Wirtz, K. W., Chernyak, B. V. and Skulachev, V. P. (2004) "Wages of fear": transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim Biophys Acta.1658,141-147
    7 Vander Heiden, M. G., Chandel, N. S., Schumacker, P. T. and Thompson, C. B. (1999) Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell.3,159-167
    8 Shaw, R. J., Kosmatka, M., Bardeesy, N., Hurley, R. L., Witters, L. A., DePinho, R. A. and Cantley, L. C. (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A.101,3329-3335
    9 Medes, G., Thomas, A. and Weinhouse, S. (1953) Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res.13,27-29
    10 Ookhtens, M., Kannan, R., Lyon, I. and Baker, N. (1984) Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol.247, R146-153
    11 Sabine, J. R., Abraham, S. and Chaikoff, I. L. (1967) Control of lipid metabolism in hepatomas: insensitivity of rate of fatty acid and cholesterol synthesis by mouse hepatoma BW7756 to fasting and to feedback control. Cancer Res.27,793-799
    12 Bauer, D. E., Hatzivassiliou, G, Zhao, F., Andreadis, C. and Thompson, C. B. (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene.24,6314-6322
    13 Kuhajda, F. P., Piantadosi, S. and Pasternack, G. R. (1989) Haptoglobin-related protein (Hpr) epitopes in breast cancer as a predictor of recurrence of the disease. N Engl J Med.321,636-641
    14 Ursini-Siegel, J., Rajput, A. B., Lu, H., Sanguin-Gendreau, V., Zuo, D., Papavasiliou, V., Lavoie, C., Turpin, J., Cianflone, K., Huntsman, D. G. and Muller, W. J. (2007) Elevated expression of DecRl
    impairs ErbB2/Neu-induced mammary tumor development. Mol Cell Biol.27,6361-6371
    15 Buzzai, M., Bauer, D. E., Jones, R. G., Deberardinis, R. J., Hatzivassiliou, G, Elstrom, R. L. and Thompson, C. B. (2005) The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene.24,4165-4173
    16 Fantin, V. R., St-Pierre, J. and Leder, P. (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell.9,425-434
    17 Shim, H., Dolde, C., Lewis, B. C., Wu, C. S., Dang, G, Jungmann, R. A., Dalla-Favera, R. and Dang, C. V. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A.94,6658-6663
    18 Dang, C. V. and Semenza, G. L. (1999) Oncogenic alterations of metabolism. Trends Biochem Sci. 24,68-72
    19 Mazurek, S., Boschek, C. B., Hugo, F. and Eigenbrodt, E. (2005) Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol.15,300-308
    20 Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R. and Lazebnik, Y. (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol.178,93-105
    21 Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X. Y, Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B. and Thompson, C. B. (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A.105,18782-18787
    22 Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K. H. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell.126, 107-120
    23 Seelig, S., Liaw, C., Towle, H. C. and Oppenheimer, J. H. (1981) Thyroid hormone attenuates and augments hepatic gene expression at a pretranslational level. Proc Natl Acad Sci U S A.78,4733-4737
    24 Kinlaw, W. B., Tron, P. and Friedmann, A. S. (1992) Nuclear localization and hepatic zonation of rat "spot 14" protein: immunohistochemical investigation employing anti-fusion protein antibodies. Endocrinology.131,3120-3122
    25 Kinlaw, W. B., Church, J. L., Harmon, J. and Mariash, C. N. (1995) Direct evidence for a role of the "spot 14" protein in the regulation of lipid synthesis. J Biol Chem.270,16615-16618
    26 Zhu, Q., Anderson, G. W., Mucha, G. T., Parks, E. J., Metkowski, J. K. and Mariash, C. N. (2005) The Spot 14 protein is required for de novo lipid synthesis in the lactating mammary gland. Endocrinology.146,3343-3350
    27 Schwertfeger, K. L., McManaman, J. L., Palmer, C. A., Neville, M. C. and Anderson, S. M. (2003) Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res.44,1100-1112
    28 Sundqvist, A., Bengoechea-Alonso, M. T., Ye, X., Lukiyanchuk, V., Jin, J., Harper, J. W. and Ericsson, J. (2005) Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab.1,379-391
    29 Wells, W. A., Schwartz, G. N., Morganelli, P. M., Cole, B. F., Gibson, J. J. and Kinlaw, W. B. (2006) Expression of "Spot 14" (THRSP) predicts disease free survival in invasive breast cancer: immunohistochemical analysis of a new molecular marker. Breast Cancer Res Treat.98,231-240
    30 Kinlaw, W. B., Quinn, J. L., Wells, W. A., Roser-Jones, C. and Moncur, J. T. (2006) Spot 14: A marker of aggressive breast cancer and a potential therapeutic target. Endocrinology.147,4048-4055
    31 SCHAFER, K. A. (1998) The Cell Cycle: A Review. Vet Pathol 35,461-478
    32 Katrien Vermeulen, D. R. V. B. a. Z. N. B. (2003) The cell cycle:a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif.36,131-149
    33 Walker, D. G. J. a. C. L. (1999) cyclins and cell cycle checkpoints. Annu. Rev Pharmacol. Toxicol. 39,295-312
    34 Nasmyth, K. (1996) Viewpoint: Putting the Cell Cycle in Order. SCIENCE. 274
    35 E. Hullemana, b. a. J. B. (2001) Regulation of Gl phase progression by growth factors and the extracellular matrix. Cell. Mol. Life Sci.58,80-93
    36 Dean, J. W. H. a. D. C. (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. GENES & DEVELOPMENT.14,2393-2409
    37 KATHLEEN COLLINS, T. J., AND NIKOLA P. PAVLETICH. (1997) The cell cycle and cancer. Proc. Natl. Acad. Sc.94,2776-2778
    38 Nigg, C. J. M. a. E. A. (1998) Oncogenes and cell proliferation Cancer genes: lessons from genetics and biochemistry Current Opinion in Genetics & Development.8,11-13
    39 Roberts, C. J. S. a. J. M. (1999) CDK inhibitors: positive and negative regulators of Gl progression. Genes & Dev.13,1501-1512
    40 Dowdy, C. D. a. S. F. (2004) Cip/Kip proteins: more than just CDKs inhibitors. GENES & DEVELOPMENT.18,851-855
    41 AARONSON, S. A. (1991) Growth Factors and Cancer. SCIENCE,.254,1146-1153
    42 Seger, R. and Krebs, E. G. (1995) The MAPK signaling cascade. FASEB J.9,726-735
    43 Terada, Y., Nakashima, O., Inoshita, S., Kuwahara, M., Sasaki, S. and Marumo, F. (1999) Mitogen-activated protein kinase cascade and transcription factors: the opposite role of MKK3/6-p38K and MKK1-MAPK. Nephrol Dial Transplant.14 Suppl 1,45-47
    44 Kerkhoff, E. and Rapp, U. R. (1998) Cell cycle targets of Ras/Raf signalling. Oncogene.17, 1457-1462
    45 Davis, R. J. (2000) Signal transduction by the JNK group of MAP kinases. Cell.103,239-252
    46 Ip, Y. T. and Davis, R. J. (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol.10,205-219
    47 Takenaka, K., Moriguchi, T. and Nishida, E. (1998) Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. SCIENCE.280,599-602
    48 Albanese, C., Johnson, J., Watanabe, G., Eklund, N., Vu, D., Arnold, A. and Pestell, R. G. (1995) Transforming p21ras mutants and c-Ets-2 activate the cyclin Dl promoter through distinguishable regions. J Biol Chem.270,23589-23597
    49 Lavoie, J. N., L'Allemain, G., Brunet, A., Muller, R. and Pouyssegur, J. (1996) Cyclin Dl expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem.271,20608-20616
    50 Weber, J. D., Hu, W., Jefcoat, S. C., Jr., Raben, D. M. and Baldassare, J. J. (1997) Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced Gl progression through the independent regulation of cyclin Dl and p27. J Biol Chem. 272,32966-32971
    51 Balmanno, K. and Cook, S. J. (1999) Sustained MAP kinase activation is required for the expression of cyclin Dl, p21Cipl and a subset of AP-1 proteins in CCL39 cells. Oncogene.18, 3085-3097
    52 Roovers, K. and Assoian, R. K. (2000) Integrating the MAP kinase signal into the Gl phase cell cycle machinery. Bioessays.22,818-826
    53 Cook, S. J., Aziz, N. and McMahon, M. (1999) The repertoire of fos and jun proteins expressed during the Gl phase of the cell cycle is determined by the duration of mitogen-activated protein kinase activation. Mol Cell Biol.19,330-341
    54 Maekawa, M., Nishida, E. and Tanoue, T. (2002) Identification of the Anti-proliferative protein Tob as a MAPK substrate. J Biol Chem.277,37783-37787
    55 Suzuki, T., J, K. T., Ajima, R., Nakamura, T., Yoshida, Y. and Yamamoto, T. (2002) Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation. Genes Dev.16,1356-1370
    56 Rousseau, D., Kaspar, R., Rosenwald, I., Gehrke, L. and Sonenberg, N. (1996) Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin Dl mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci U S A.93, 1065-1070
    57 Lai, H. K. and Borden, K. L. (2000) The promyelocytic leukemia (PML) protein suppresses cyclin Dl protein production by altering the nuclear cytoplasmic distribution of cyclin Dl mRNA. Oncogene. 19,1623-1634
    58 Bouchard, C., Thieke, K., Maier, A., Saffrich, R., Hanley-Hyde, J., Ansorge, W., Reed, S., Sicinski, P., Bartek, J. and Eilers, M. (1999) Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J.18,5321-5333
    59 Hermeking, H., Rago, C., Schuhmacher, M., Li, Q., Barrett, J. F., Obaya, A. J., O'Connell, B. C., Mateyak, M. K., Tam, W., Kohlhuber, F., Dang, C. V., Sedivy, J. M., Eick, D., Vogelstein, B. and Kinzler, K. W. (2000) Identification of CDK4 as a target of c-MYC. Proc Natl Acad Sci U S A.97, 2229-2234
    60 Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K. and Nevins, J. R. (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev.14,2501-2514
    61 Jones, S. M. and Kazlauskas, A. (2001) Growth-factor-dependent mitogenesis requires two distinct phases of signalling. Nat Cell Biol.3,165-172
    62 Bottazzi, M. E., Zhu, X., Bohmer, R. M. and Assoian, R. K. (1999) Regulation of p21(cipl) expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in Gl phase. J Cell Biol.146,1255-1264
    63 Zezula, J., Sexl, V., Hutter, C., Karel, A., Schutz, W. and Freissmuth, M. (1997) The cyclin-dependent kinase inhibitor p21cipl mediates the growth inhibitory effect of phorbol esters in human venous endothelial cells. J Biol Chem.272,29967-29974
    64 LaBaer, J., Garrett, M. D., Stevenson, L. F., Slingerland, J. M., Sandhu, C., Chou, H. S., Fattaey, A. and Harlow, E. (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11,847-862
    65 Bagui, T. K., Mohapatra, S., Haura, E. and Pledger, W. J. (2003) P27Kip1 and p21Cip1 are not required for the formation of active D cyclin-cdk4 complexes. Mol Cell Biol.23,7285-7290
    66 Ravi, R. K., Weber, E., McMahon, M., Williams, J. R., Baylin, S., Mal, A., Harter, M. L., Dillehay, L. E., Claudio, P. P., Giordano, A., Nelkin, B. D. and Mabry, M. (1998) Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest.101,153-159
    67 Coleman, M. E., DeMayo, F., Yin, K. C., Lee, H. M., Geske, R., Montgomery, C. and Schwartz, R. J. (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem.270,12109-12116
    68 DeVol, D. L., Rotwein, P., Sadow, J. L., Novakofski, J. and Bechtel, P. J. (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol. 259, E89-95
    69 Moelling, K., Schad, K., Bosse, M., Zimmermann, S. and Schweneker, M. (2002) Regulation of Raf-Akt Cross-talk. J Biol Chem.277,31099-31106
    70 McPherron, A. C., Lawler, A. M. and Lee, S. J. (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature.387,83-90
    71 Ji, S., Losinski, R. L., Cornelius, S. G., Frank, G. R., Willis, G. M., Gerrard, D. E., Depreux, F. F. and Spurlock, M. E. (1998) Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am J Physiol.275, R1265-1273
    72 Sharma, M., Kambadur, R., Matthews, K. G., Somers, W. G., Devlin, G. P., Conaglen, J. V., Fowke, P. J. and Bass, J. J. (1999) Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol.180,1-9
    73 McPherron, A. C. and Lee, S. J. (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A.94,12457-12461
    74 Spiller, M. P., Kambadur, R., Jeanplong, F., Thomas, M., Martyn, J. K., Bass, J. J. and Sharma, M. (2002) The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol Cell Biol.22,7066-7082
    75 Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J. and Kambadur, R. (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem.275,40235-40243
    76 Yang, W., Zhang, Y., Li, Y, Wu, Z. and Zhu, D. (2007) Myostatin induces cyclin Dl degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. J Biol Chem.282,3799-3808
    77 McCroskery, S., Thomas, M., Maxwell, L., Sharma, M. and Kambadur, R. (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol.162,1135-1147
    78 Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L. and Cantley, L. C. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature.452,230-233
    79 Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M. and Cantley, L. C. (2008) Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature.452,181-186
    80 Philp, A., Macdonald, A. L. and Watt, P. W. (2005) Lactate-a signal coordinating cell and systemic function. J Exp Biol.208,4561-4575

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700