OSTEON修复犬下颌骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     应用种植义齿修复缺失牙不仅可以为义齿提供理想、合理的支撑和固位,而且具有美观舒适、无须利用和磨切基牙等优点,特别对于某些不能耐受活动义齿修复及肿瘤手术后难以采用传统义齿修复方法的患者来说,种植义齿修复为他们提供了新的选择。但由于先天畸形、外伤、肿瘤、炎症等原因,常造成种植区骨量不足,限制了种植义齿的适用范围,是种植外科医师所面临的主要难题。人们相继应用多种植骨材料和技术来修复种植区骨缺损,恢复牙槽骨的高度和丰满度,以提高种植修复的远期成功率并获得理想的美学效果。
     目前广泛使用的骨移植材料有自体骨移植物、同种异体骨移植物、异种骨移植物及人工合成的骨替代物。这些材料均不同程度解决了骨缺损修复问题,但也各有利弊。自体骨移植存在延长手术时间,来源有限,创伤大等问题;同种异体骨及异种骨存在免疫排斥反应;人工合成的骨替代物不具有骨组织的生物学特性,仅有骨引导作用而不具有骨诱导作用,其骨生长机制仍然是爬行替代过程。目前临床上应用较为广泛的骨移植材料多为单纯某一种植骨材料或者是自体骨与某一种人工骨的混合材料,本实验中应用的材料为OSTEON和骨诱导活性材料(osteoinduction active material, OAM),两种材料均为复合材料。
     OSTEON是由羟基磷灰石(hydroxylapatite, HA)和β-磷酸三钙(β-tricalcium phosphate,β—TCP)复合而成,为疏松多孔结构,与人体松质骨极为相似,材料极富表面活性,具有良好的生物相容性和骨引导性,可高效引导骨组织再生。
     OAM由骨形成蛋白(bone morphogenetic protein,BMP)与牛松质骨复合而成,具有良好的生物相容性,骨诱导性和良好骨传导作用,在充分发挥对BMP缓释作用的同时,又使载体获得良好的机械性能,可以有效引导骨组织再生。
     目的
     OAM为国产材料,在我科室临床实践中已应用多年,临床效果较好,而OSTEON为韩国进口材料,在韩国已开展应用,而国内刚刚引进,尚未应用于临床。本实验应用OSTEON和OAM修复下颌骨骨缺损的动物实验,对比观察OSTEON修复骨缺损的效果,探讨OSTEON引导骨再生的方式和修复骨缺损的能力,为临床应用提供理论基础和实验依据。
     方法
     1.动物模型的建立
     选用健康成年雄性杂种犬4只,分成两组,在其双侧下颌骨体部分别选择三个位点(1.0×1.25cm2),分别随机植入OAM、OSTEON及不填入任何材料作为空白对照。
     2.取材
     取材前10天和前3天分别肌注盐酸四环素(25mg/kg),两组分别在术后三个月、六个月取材。
     3.制片
     梯度酒精脱水、甲基丙烯酸甲酯包埋,Leica-SP1600主锯式切片机垂直于标本长轴切片,选取中段切片,一部分直接封片进行荧光显微镜观察,另一部分做HE染色和甲苯胺蓝染色。
     4.观察
     动物一般情况观察、大体标本观察、X线观察、荧光显微镜观察四环素标记新骨形成情况,光学显微镜下观察HE染色和甲苯胺蓝染色切片的成骨情况,并选用不同倍数摄片。
     5.计算机图像分析
     选取每组标本中段切片2张,每张切片随机选择3个视野,在荧光显微镜下,求得荧光四环素标记率和骨矿化沉积率(MAR)。应用Metamorph Imaging SystemV4.6图像分析软件进行荧光四环素标记率、骨矿化沉积率的测算,应用SPSS13.0软件进行统计分析,对比实验组和对照组的各项指标有无统计学差异。
     结果
     实验动物健康状态良好,创口均一期愈合;大体标本观察见各取材时间点OSTEON和OAM材料周边及孔隙内部均有不同程度的骨组织形成;体视显微镜下可清楚观察到孔隙内部有新骨组织长入;组织学观察可见骨组织的修复属于正常骨的修复过程;统计学分析显示术后3个月OSTEON的荧光四环素标记率和骨矿化沉积率均高于OAM,而二者又显著高于空白对照组,差别具有统计学意义(P<0.05,P<0.01),而术后6个月OSTEON与OAM的荧光四环素标记率和骨矿化沉积率均高于空白对照组,差别具有统计学意义(P<0.01),而二者之间无统计学差异(P>0.05)。
     结论
     OSTEON能较好的修复骨缺损,在植骨3个月后,无论从新生骨量上还是成骨速度上都明显优于OAM。
Introduction
     Utilizing the implant denture to repair the deletion teeth can not only offer an ideal and reasonable support and retention, but also have some advantages such as beautiful outlook, comfort, need not to utilize or cut the abutment. Furthermore, the implant denture provide a new choice to some patients who can not tolerance active dentures or can not repair with traditional dentures after tumor surgery. But due to congenital abnormality, trauma, tumor and inflammation, bone defects in dental implant region is very common, which limits the serviceable range of the implant denture, and have became a significant problem faced by oral and maxillofacial surgeons. So many researchers utilize many kinds of bone replacement materials and technique to repair the bone defect in dental implant region, and to recover the height and the fullness of the alveolar bone one after another, with a purpose to improve the long-term achievement ratio of the dental implant and to win a desirable aesthetics result.
     Alternative solutions include implantation of the defect site with Autografts, Allografts, Xenografts or bone replacement materials. All of the materials have sloved the problem of repairing the bone defect, but also, they all have their advantages and disadvantages. Autograft bone harvest encounters problems with the added surgical time, limited supply and morbidity of the donor site; Allografts and Xenografts spark an immune reaction; and bone replacement materials are solely osteoconductive matrices, not bioactive materials, generally act as a matrix for new osseous ingrowth and creeping substitution. The materials which applied in this experiment are OSTEON and osteoinduction active material (OAM), both of which are composite materials.
     OSTEON is a synthetic osteoconductive bone graft subsititute composed of hydroxylapatite (HA) and beta-tricalcium phosphate (β-TCP). OSTEON presents an interconnected porous structure, similar to that of human cancellous bone. It has good biocompatibility and nice tensiometric property, so it could effectively induce bone tissue regeneration, although it doesn't have efficiently inductive capability.
     OAM was prepared by defatted and decalcified bone xenograft as a carrier combined with bone morphogenetic protein (BMP). It has good biocompatibility and nice bone conductive and inductive capability. OAM is much efficient in releasing BMP and also has satisfied mechanical strength, and could effectively induce bone tissue regeneration.
     Objective
     OAM, which is made in China, has been used in our division many years and have obtained nice praise. On the other side, OSTEON is a fresh introduced materials from Korea, and have never been used internal. The purpose of this study is to investigate the potential of using OSTEON to guide bone regeneration and repair the mandible bone defects; and then to provide theoretical evidence and experimental information for the clinical application by using OSTEON and OAM to repair the mandible defects by animal experiment.
     Metheods
     1. The establishment of animal models
     4 healthy adult dogs were used in the experiment, falling into two groups. Each one was chosen three sites on its caudomedial part of the hemi-mandible body. Each site was been implanted with OAM, or OSTEON, or only without any materials implanting just as a blank randomly.
     2. To draw the materials from dogs
     It was have to make an intramuscular with tetracycline hydrochloride (25mg/kg) 10 days and 3 days before drawing the materials. One group killed the animals after three months of the operation, and the other group did that after six months.
     3. Slicer making
     Gradient alcohol dehydration, embedded in methyl methacrylate, slice by Lecia-1600 slicer, selected the middle section for fluorescence microscopy, HE staining and toluidine blue staining.
     4. Observation
     Specimens obtained were evaluated with general observation, X-ray observation, fluorescence microscopy observation to mark the new bone formation with tetracycline, optical microscope observation to identify the osteogenesis status, and chose different multiple photographed.
     5. Computer image analysis
     The rate of fluorescence labeling and bone mineralization apposition rate (MAR) were calculated via the fluorescence microscopy observation and the Metamorph Imaging System V4.6 image analysis software. And use the SPSS 13.0 software to carry out statistical analysis.
     Results
     Four dogs were all in good health, and the wounds all achieved the primary healing. General observation and stereoscopic microscope showed that new bone formation either could be found around and inside OSTEON, or that of OAM. Optical microscope observation showed that the two stuffs had no adverse effects to the process of recovery of bone. The rate of fluorescence labeling and bone mineralization apposition rate (MAR) of OSTEON are higher than that of OAM at 3 months, but they have no significant differences at 6 months after statistics calculation. And the blank had merely little display via the fluorescence microscopy observation.
     Conclusion
     OSTEON can better repair bone defects after 3 months, in terms of the quantity of new bone and the bone formation rate are significantly better than OAM.
引文
1 Jensen OT, Sennerby L. Histologic analysis of clinically retrieved titanium microimplants placed in conjunction with maxillary sinus floor augmentation. Int J Oral Maxillofac Implants, 1998,13(4):513-521
    2 Armand S, Kirsch A, Sergent C, et al. Radiographic and histologic evaluation of a sinus augmentation with composite bone graft:a clinical case report. J Periodontol,2002,73(9): 1082-1088
    3 Karabuda C, Ozdemir 0, Tosun T, et al. Histological and clinical evaluation of 3 different grafting materials for sinus lifting procedure based on 8 cases. J Periodontol,2001,72(10): 1436-1442
    4 Khan SN, Tomin E, Lane JM, et al. Clinical applications of bone graft substitutes. Orthop Clin North Am,2000,31(3):389-398
    5 周磊.口腔种植学临床实践.西安:世界图书出版公司,2003.32
    6 Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res,1997,8(2):117-124
    7 Hallman M, Hedin M, Sennerby L, et al. A prospective 1-year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with bovine hydroxyapatite and autogenous bone. J Oral Maxillofac Surg,2002,60(3):277-286
    8 王东胜,路正刚.塑料包埋技术在口腔硬组织切片中的应用研究,现代口腔医学杂志,2007,17(3):256-257
    9 Emmanual J, Hornbeck C, Bloebaum RD. A polymethyl mechacrylate method for large specimens of mineralized bone with implants. Stain Technol,1987,62(6):401-410
    10杨秀文,刘洪臣.骨移植在牙种植中的实验和应用研究进展.口腔颌面修复学杂志,2000,1(1):57-58
    11 Weinlaender M. Bone growth around dental implants. Dent clin North Am,1991,35(3): 585-601. Review
    12 Shetty V, Han TJ. Alloplastic materials in reconstructive periodontal surgery. Dent clin North Am,1991,35(3):521-530
    13 Moy PK, Lundgren S, Holmes RE. Maxillary sinus augmentation:histomorphometric analysis of graft materials for maxillary sinus floor augmentation. J oral maxillofac surg,1993,51(8): 857-862
    14 Merten HA, Wiltfang J, Grohmann U, et al. Intraindividual comparative animal study of alpha-and beta-tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants. J Craniofac Surg,2001,12(1):59-68
    15薛淼.口腔生物材料学.第一版.上海:世界图书出版公司.2006.355
    16 Dahlin C, Simion M, Nanmark, et al. Histological morphology of the e-PTFE/tissue interface in humans subjected to guided bone regeneration in conjunction with oral implant treatment. Clin Oral Implants Res,1998,9(2):100-106
    17宿玉成.现代口腔种植学.第一版.北京:人民卫生出版社.2004.207
    18 Klinge B, Alberius P. Osseous response to implanted natural bone mineral and hydroxylapatite ceramic in the repair of experimental skull bone defects. J Oral maxillofac Surg,1992.50(3): 241-249
    20 Du C, Cui FZ, Feng QL, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res,2000,50(4):518-527
    21 Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North Am,1987,18(2):213-225
    22 Frost HM. A new direction for osteoporosis research:a review and proposal. Bone,1991, 12(6):429-437. Review
    23凌翔,陶学金,陈卫民,等.临床口腔医学杂志,2003,19(10):595-597
    24李祖兵,黄洪章.骨代用材料及其在牙种植中的应用.口腔颌面外科杂志,1995,11:121-123
    25 Eriksen EF, Melsen F, Sod E, et al. Effects of long-term risedronate on bone quality and bone turnover in women with postmenopausal osteoporosis. Bone.2002,31(5):620-625
    26 Wiliam AP. Bone and mineral research. Amsterdan: Excepta Medica,1983.191-222
    1 阎俏梅,张富强,翁雨来.骨移植物在骨量不足的种植修复中的应用.上海口腔医学,2003,12(1):61-64
    2 杨秀文,刘洪臣.骨移植在牙种植中的实验和应用研究进展.口腔颌面修复学杂志,2000,1(1):57-58
    3 Keller EE. Comporite graft reconstruction of advanced maxillary resorption, Int Block MS, Kent JN. Endosseous implants for maxillafacil reconstruction. Philadelphia, WB Saunders, 1995.504
    4 Lock MS, Kent JN. Maxillary sinus bone grafting, Int Block MS, Kent JN. Endosseous implants for maxillafacil reconstruction. Philadelphia, WB Saunders,1995.478
    5 Haas R, Baron M, Donath K, et al. Porous hydroxyapatite for grafting the maxillary sinus:a comparative histomorphometric study in sheep. Int J Oral Maxillofac Implants,2002,17(3): 337-346
    6 Jensen OT, Sennerby L. Histologic analysis of clinically retrieved titanium microimplants placed in conjunction with maxillary sinus floor augmentation. Int J Oral Maxillofac Implants, 1998,13(4):513-521
    7 Lorenzetti M, Mozzati M, Campanino PP, et al. Bone augmentation of the inferior floor of the maxillary sinus with autogenous bone or composite bone grafts:a histologic-histomorphometric preliminary report. Int J Oral Maxillofac Implants,1998,13(1): 69-76
    8 Jensen J, Sindet-Pedersen S. Autogenous mandibular bone grafts and osseointegrated implants for reconstruction of the severely atrophied maxilla:a preliminary report. J Oral maxillofac surg,1991,49(2):1277-1287
    9 Donovan MG, Dickerson NC, Hanson J, et al. Maxillary and mandibular reconstruction using calvarial bone grafts and Branemark implants:a preliminary report. J oral Maxillofac surg, 1994,52(6):588-594
    10 Armand S, Kirsch A, Sergent C, et al. Radiographic and histologic evaluation of a sinus augmentation with composite bone graft:a clinical case report. J Periodontol,2002,73(9): 1082-1088
    11 Karabuda C, Ozdemir O, Tosun T, et al. Histological and clinical evaluation of 3 different grafting materials for sinus lifting procedure based on 8 cases. J Periodontol,2001,72(10): 1436-1442
    12 Khan SN, Tomin E, Lane JM, et al. Clinical applications of bone graft substitutes. Orthop Clin North Am,2000,31(3):389-398
    13 Paul BF, Horning GM, Hellstein JW, et al. The osteoinductive potential of demine-ralized freeze-dried bone allograft in human non-orthotopic sites:a pilot study. J Periodontol,2001, 72(8):1064-1068
    14 Scher EL, Day RB, Speight PM, et al. New bone formation after a sinus lift procedure using demineralized freeze-dried bone and tricalcium phosphate. Implant Dent,1999,8(1):49-53
    15吴少伟,邓飞龙,罗智斌,等.人冻干脱钙骨在上颌窦提升术中的应用.实用医学杂志,2005,21(20):2266-2267
    16 Van Den Bergh JP, Ten Bruggenkate CM, Krekeler G, et al. Maxillary sinusfloor elevation and grafting with human demineralized freeze dried bone. Clin Oral Implants Res,2000,11(5): 487-493
    17邱立新,林野,王行,等.Bio-Oss同引导骨再生膜联合应用效果的观察.中华口腔医学杂志,2002,37(6):412-414
    18 Maiorana C, Sommariva L, Brivio P, et al. Maxillary sinus augmentation with anorganic bovine bone (Bio-Oss) and autologous platelet-rich plasma:preliminary clinical and histologic evaluations. Int J Periodontics Restorative Dent,2003,23(3):227-235
    19 Valentini P, Abensur D. Maxillary sinus floor elevation for implant placement with demineralized freeze-dried bone and bovine bone (Bio-Oss):a clinical study of 20 patients. Int J Periodontics Restorative Dent,1997,17(3):232-241
    20 Schmitt JM, Buck DC, Joh SP, et al. Comparison of porous bone mineral and biologically active glass in critical-sized defects. J Periodontol,1997,68(11):1043-1053
    21 Tadjoedin ES, de Lange GL, Bronckers AL, et al. Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. J Clin Periodontol,2003,30(3):261-270
    22詹斌,叶扬,余聃,等.膜引导组织再生技术用于牙种植的实验研究1.扩大牙种植适应证.中国口腔种植学杂志,2001,6(1):15-16
    23 丁继芬.混合骨移植在牙种植术中的应用.齐鲁医学杂志,2007,22(3):267-268
    24 Sandor GK, Kainulainen VT, Queiroz JO, et al. Preservation of ridge dimensions following grafting with coral granules of 48 post-traumatic and post-extraction dentoalveolar defects. Dent Traumatol,2003,19(4):221-227
    25云蔓.骨多肽生长素、珊瑚骨、地榆诱导鼠额面骨再生的研究.口腔医学,26(2):91-93
    26 周磊.口腔种植学临床实践.第一版.西安:世界图书出版公司,2003.32
    27宿玉成.现代口腔种植学.第一版.北京:人民卫生出版社.2004.210
    28 熊进,骆东山,王俊飞,等.硫酸钙颗粒在良性骨病损治疗中的应用.临床骨科杂志,2007,10(5):422-423
    29张健吕,厚山,刘海鹰,等.医用硫酸钙在家兔腰椎融合模型中的成骨能力.中国矫形外科杂志,2007,15(15):1178-1180,1192
    30刘鹏,赵建华,范伟力,等.骨移植替代物医用硫酸钙初步临床应用.中国修复重建外科杂志,2006,20(11):1066-1069
    31 Merten HA, Wiltfang J, Grohmann U, et al. Intraindividual comparative animal study of alpha-and beta-tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants. J Craniofac Surg,2001,12(1):59-68
    32 Kondo N, Ogose A, Tokunaga K, et al. Osteoinduction with highly purified beta-tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials,2006,27(25):4419-4427
    33 李祖兵,黄洪章.骨代用材料及其在牙种植中的应用.口腔颌面外科杂志,1995,11:121-123
    34 Du C, Cui FZ, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res,2000,50(4):518-527
    35 Lane JM, Sandhu HS. Current approaches to experimental bone grafting. Orthop Clin North
    Am,1987,18(2):213-225
    36 Frost HM. A new direction for osteoporosis research:a review and proposal. Bone,1991, 12(6):429-437. Review
    37凌翔,陶学金,陈卫民,等.临床口腔医学杂志,2003,19(10):595-597
    38 Weinlaender M. Bone growth around dental implants. Dent clin North Am,1991,35(3): 585-601. Review
    39 Shetty V, Han TJ. Alloplastic materials in reconstructive periodontal surgery. Dent clin North Am,1991,35(3):521-530
    40 Coneannon MJ, Boschert MT, Fitzpatrick L, et al. The use of demineralized bone powder in an onlay graft model. Plast Reconstr surg,1995,95(6):1085-1091
    41 Haas R, Donath K, Fodinger M, et al. Bovine hydroxyapatite for maxillary sinus grafting: comparative histomorphometric findings in sheep. Clin Oral Implants Res,1998,9(2): 107-116
    42 Rosa AL, Brentegani LG, Grandini SA. Hydroxylapatite and tricalcium phosphate implants in the dental alveolus of rats. A histometric study. Braz Dent J,1995,6(2):103-109
    43 Piattelli A, Scarano A, Piattelli M, et al. Bone regeneration using Bioglass:an experimental study in rabbit tibia. J Oral Implantol,2000,26(4):257-261
    44 Norton MR, Wilson J. Dental implants placed in extraction sites implanted with bioactive glass:human histology and clinical outcome. Int J Oral Maxillofac Implants,2002,17(2): 249-257
    45 Amato MM, Blaydon SM, Scribbick FW, et al. Use of bioglass for orbital volume augmentation in enophthalmos:a rabbit model (oryctolagus cuniculus). Ophthal Plast Reconstr Surg,2003,19(6):455-465
    46 Leatherman BD, Dornhoffer JL. Bioactive glass ceramic particles as an alternative for mastoid obliteration:results in an animal model. Otol Neurotol,2002,23(5):657-660
    47 Johnson MW, Sullivan SM, Rohrer M, et al. Regeneration of peri-implant infrabony defects using PerioGlas:a pilot study in rabbits. Int J Oral Maxillofac Implants,1997,12(4):835-839
    48 Maroothynaden J, Hench LL. Bioglass (R) stimulation of embryonic long-bones in altered loading environments. J Gravit Physiol,2001,8(1):79-80
    49 Horstmann WG, Verheyen CC, Leemans R. An injectable calcium phosphate cement as a bone-graft substitute in the treatment of displaced lateral tibial plateau fractures. Injury,2003, 34(2):141-144
    50 Ooms EM, Wolke JG, van de Heuvel MT, et al. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials,2003,24(6):989-1000
    51 童昕,马建民,杨春波,等.自体富含血小板血浆复合倍骼生用于牙槽骨增量的临床研究.广东牙病防治,2007,15(12):539-541
    52 Wittbjer J, Palmer B, Rohlin M, et al. Osteogenetic activity in composite grafts of demineralized compact bone and marrow. Clin Orthop Relat Res,1983, 1(173):229-238
    53 Yildirim M, Spiekermann H, Handt S, et al. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site:a histologic and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants, 2001,16(1):23-33
    54 Wheeler SL, Holmes RE, Calhoun CJ. Six-year clinical and histologic study of sinus-lift grafts. Int J Oral Maxillofac Implants,1996,11 (1):26-34
    55 Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res,1997,8(2):117-124
    56 Hallman M, Hedin M, Sennerby L, et al. A prospective 1-year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with bovine hydroxyapatite and autogenous bone. J Oral Maxillofac Surg,2002,60(3):277-286
    57 Boeck-Neto RJ, Gabrielli M, Lia R, et al. Histomorphometrical analysis of bone formed after maxillary sinus floor augmentation by grafting with a combination of autogenous bone and demineralized freeze-dried bone allograft or hydroxyapatite. J Periodontol,2002,73(3): 266-270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700