FDTD在工程瞬态电磁学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瞬态电磁学的在各种实际工程中得到广泛应用。本论文用时域有限差分(FDTD)
    方法分析目标瞬态电磁散射特性。应用FDTD方法,本文分析了自由空间实用复杂
    目标宽频带散射特性以及有耗地面附近或者有耗地下目标的瞬态散射特性。文中还
    提出了计算变化非常缓慢脉冲的一种瞬态计算方法。
     对自由空间目标,文中首先提出了一种适应于FDTD方法的具有复杂几何外形
    目标电磁建模方法。对于任何复杂目标,按照本文给出的方法步骤,就可以给出其
    正确的离散模型。在此基础上,本文分析了某些型号飞机在自由空间的散射问题。
    这类实用目标在其谐振波段电磁散射特性的研究在短波(HF)超视距雷达对目标的探
    测方面具有实际应用价值。短波超视距雷达一般工作频段为3~15MHz,对于所测定
    的目标而言,属于谐振区或瑞利区目标。此外,随着隐身技术的发展,在目标上全
    部或部分涂覆或者采用吸波材料以降低雷达散射截面(RCS)在军事上日益受到重视并
    获得应用。同样,我们利用FDTD方法来分析具有涂覆雷达吸波材料的机翼、腔壁
    内部填充有耗介质的飞机进气道唇口的散射问题。由于所关心的是目标在一个频段
    范围内的RCS,因此采用瞬态FDTD方法首先得到目标的时域响应,然后通过Fourier
    变换得到频域响应。
     对界面附近目标,本文在FDTD方法中引进时域表面阻抗边界条件(SIBC)来模
    拟有耗地面对电磁波的反射。从Fresnel反射系数出发以及应用拉普拉斯变换,我们
    推导了适于FDTD的时域SIBC。时域SIBC的引入避免了传统FDTD方法在处理两
    截面附近目标时所遇到的困难,这些困难包括要考虑地下吸收边界;重新设置激励;
    为照顾地下有耗介质网格尺寸要受到很大限制,从而使得计算量变得非常大等。应
    用表面阻抗边界条件,本文分析了电磁脉冲对有耗地面附近传输线电缆的干扰问题。
    由于这种方法的FDTD计算区域不需要延伸到地下中,从而简化了计算处理。
     对地下目标,我们分析了在地面放置阶跃函数源或冲击函数源时地下目标的电
    磁散射问题。在地面上加以适当激励脉冲,通过地表面处测得的感应电动势可以探
    测和了解地下目标的一些特性以及地下地层结构状况。这一问题涉及电磁波在半空
    间有耗介质中的传播和散射过程。在阶跃函数源激励下,电磁场在有耗地下的传播
    过程具有较为复杂特性,一般而言具有波动特性。然而,在其后期由于变化较缓慢
    位移电流可以忽略,传播的扩散特性占据绝对优势,我们可以应用扩散方程来处理。
    此外,在扩散方程FD数值求解的DuFort-Frankel方法中注意到扩散方程的DuFort-
    Frankel离散式等同于一定等效介电系数下有耗介质波方程的离散式,因此通过在扩
    
    
    ——
    散方程中引进虚拟位移电流将扩敌方程近似为用尼波动方程,这样就可以借助FDTD
    方法分析地下扩滋问题.
     另外,我们将酞射传递函数杨念引进FDTD方法中分析极度缀馒变化脉冲散射。
    FDTD方法对离散时间间隔有一定的要求。核电磁脉冲或者雷电电磁脉冲在一个急
    速上升(前沿)过程后耍经历一个非常平缀的下降过程,因此完成这种脉冲人射下目
    标的散射计算需要大量时间步。为了解诀这个矛盾,本文将散射传递函数(幼咖虹闻
    Transfer FunchO4 S用概念引进到FDTD计算中。采用一个宽度较小的高斯脉冲进
    行FDTD计算,然后迟过变换得到目标对双抬数脉冲的散射,节约了计算时间和内
    存。
Transient electromagnetic analysis is widely applied in many electronic engineering
     areas. In this dissertation, Transient electromagnetic scattering from objects are studied by
     using the Fiite-Diffa~ence Time-Domain (FDTD) method. The following problems are
     considered: the wide-band scattering from complicated objects in free space, the time-
     domain surface current of a cable above a lossy ground, and transient scattering from
     barred targets in lossy ground. And also, we present a hybrid STF-FDTD approach to
     compute the EM scattering with an extremely slow-decaying pulse incidence.
    
     Firstly, we study the wide-band EM scattering from a target of complicated geometrical
     shape or material composition in free space. A scheme for modeling a complicated object
     for FDTD computation is presented. Making up the descriptive file for the objects, we can
     obtain the discretized EM model using this algorithm. The EM scattering from an airplane
     is then analyzed within frequency range 3-15MHz based on the above object modeling.
     These studies found their practical values in the beyond-horizon radar detection areas.
     Next, we analyze the transient EM scattering of an airfoil and a lip of an inlet and their
     RCS reductions by partially RAM coating or filling. In all the above analysis, pulse
     incidences are used in the FDTD calculations and the transient scattering fields are
     computed. We can transfer these time-domain results into frequency-domain with the help
     of Fast Fourier Transform (FFT).
    
     Secondly, the transient EM scattering analysis of targets above a lossy ground is
     proceeded. Surface impedance is introduced into the FDTD method. Based on the Fresnel
     reflective coefficient and Laplace Transform, we derive the time-domain Surface
     Impedance Bouixlary Condition (SIBC) available for the FDTD method. The lossy ground
     is then replaced by this time-domain SIBC, reducing the solution space and producing
     significant computational savings. By using this approach, we study the problem of. EM
     pulse coupling into a cable above a lossy ground.
    
     Next, we enhance the FDTD method for simulating transient EM surveys for
     underground objects, in which a step or impulse excitation is laid on the ground surface
     and the electromotive force (EMF) is measured along the ground surface. Normally the
     transmission of the electromagnetic fields in lossy medium is characterized with wavelike
     and diffusive features. In the condition that conductivity a is much large and permittivity
     s much small, the wavelike feature vanishes very quickly (and it is difficult to simulate in
    
    
    
    
    
    
    
    
    
     桰l?
    
     the numerical methods), leaving only difftmive behavior. Thus the fields under ground
    
     satisfy the diffusion equation. By comparison of the Green抯 function of damped wave
     equation and diffusion equation, we introduce an artificial displacement current term in the
     diffusion equation, which leads to the DuFort-Frankel method and FDTD method in the
     transient scattering analysis for underground targets.
    
     Finally, we present a hybrid approach of scattering t.raisfer function (5Th) and finite
     difference time domain (FDTD) for the calculation of electromagnetic transient responses
     when the incident wave is an extremely slow-de醓ying pulse, e.g., double-exponential
     pulse. First, we introduce the scattering transfer function (STF) concept into the scattering
     system based on the principle of the linear system theory, by using a fast-decaying pulse as
     an incident wave with the bandwidth of interest. Next, we derive the scattering respon
引文
[1]C.E.Baum, "Emerging Technology for Transient and Broad-Band Analysis and Synthesis of Antennas and Scatterers, "Pro. IEEE, vol.64, pp.1658-1616, 1976.
    [2]C.L.Bennett, G.F. Ross, "Time-Domain Electromagnetics and Its Applications," Pro.IEEE, vol.66, pp.299-318, 1978.
    [3]汪文秉,瞬态电磁场,第一版,西安交通大学出版社,西安,1996.6.
    [4]L.B.Felsen, Transient Electromagnetic Fields, Springer Verlag, New York, 1976.
    [5]彭仲秋,瞬变电磁场,第一版,高等教育出版社,北京,1989.9.
    [6]Special Issue on Numerical Modelling of Transient Electromagnetics, Int. J. Numer. Model., vol. 12, 1999.
    [7]Special Issue on EMP, IEEE Trans. Antennas Propagat., vol.26, no.1, 1978.
    [8]朱绪宝,黄兴军,隐身化是国外武器装备发展的重要特征,隐身技术,1999年第四期,pp.2-8.1999.
    [9]R.W. McGowan, R.A.Cheville, D.R.Grischkowsky, "Experimental Study of the Surface Waves on a Dielectric Cylinder via Terahertz Impulse Radar Ranging," IEEE Trans. Microwave Theory and Tech., vol.48, no.3, pp.417-422, Mar. 2000.
    [10]F.M.Tesche, "Comparison of the Transmission Line and Scattering Models for Computing the HEMP Response of Overhead Cables," IEEE Trans. Electromagn. Compat., vol.34, no.2, pp.93-99, May 1992.
    [11]R.Moini, B.Kordi, M.Abedi, "Evaluation of LEMP Effects on Complex Wire Structures Located Above a Perfectly Conducting Ground Using Electric Field Integral Equation in Time Domain," IEEE Trans. Electromagn. Compat., vol.40, no.2,pp.154-162, May 1998.
    [12]R.G.Martin, A.R.Bretones, S.G.Garcia, "Some Thoughts about Transient Radiation by Straight Thin Wires," IEEE Antennas Propagat. Mag., vol.41, no.3, pp.24-33,June 1999.
    [13]Special Issue on Time-Domain EM Methods of Exploration, Geophysics, vol.49, no.7,1984.
    [14]F.M.Tesche, "On the Analysis of Scattering and Antenna Problems Using the Singularity Expansion Technique," IEEE Trans. Antennas Propagat., vol.21, no.1, pp.53-62, Jan., 1973.
    
    
    [15]马柏林,奇点展开法综述,电子学报,vol.13,no.5,pp.108-114,1985.
    [16]L.B.Felsen, F.Capolino, "Time-Domain Green's Funetion for an Infinite Sequentially Excited Periodic Line Array of Dipoles," IEEE Trans. Antennas Propagat., vol.48,no.6, pp.921-931, June 2000.
    [17]P.D.Nevels, J.A.Miller, R.E.Miller,"A Path Integral Time-Domain Method for Electromnagnetic Scattering,"IEEE Trans. Antennas Propagat., vol.48, no.4, pp.565-573,April 2000.
    [18]J-L.Hu, C.H.Chan, Y.Xu, "A Fast Solution of the Time-Domain Intergral Equation Uing Fast Fourier Transformation,"Microwave Opt. Tech.Lett., vol.25, no.3, pp. 172-175, May 5 2000.
    [19]K.S.Yee, "Numerical Solution of Initial Boundary value Problems Involving Maxwell Equations in Isotropic Media," IEEE Trans. Antennas Propagat., vol. 14, no.3,pp.302-307, May 1966.
    [20]K.L. Shlager and J.B. Schneider, "A Selective Survey of the Finite-Difference Time-Domain Literature," IEEE Antennas Propagat Mag., vol.37, no.4, pp.39-57, Aug.1995.
    [21]K.S.Kunz, R.J.Luebbers, The Finite Difference Time Domain Method for Electromagnetics. Boca Raton, FL: CRC Press, 1993.
    [22]王长清,祝西里,电磁场计算中的时域有限差分方法,北京大学出版社,北京,1994.
    [23]A.Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method, Norwood, MA: Artech House, 1995.
    [24]Q.H.Liu, "The PSTD algorithm: A Time-Domain Method Requiring only Two Cells per Wavelength," Microwave Opt Tech. Lett., vol. 15, no. 3, pp. 158-165, 1997.
    [25]Q.H.Liu, "PML and PSTD Algorithm for Arbitrary Lossy Anisotropic Media," IEEE Mlcrowave Cuided Wave Lett., vol.9, no.2, pp.48-50, Feb. 1999.
    [26]M.Krumpholz, L.P.B.Katehi, "MRTD: New Time-Domain Schemes Based on Multiresolution Analysis,"IEEE Trans. Microwave Theory Tech., vol. 44, pp. 555-571, 1996.
    [27]Q.S.Cao and Y.C.Chen "MRTD Analysis of a Transient Electromagnetic Pulse Propagating Through a Dielectric Layer," Int. J. Electronics, vol. 86, no. 4, pp.459-474, 1999.
    [28]T.J.Cui, W.C,Chew, "Accurate Model of Arbitrary Wire Antennas in Free Space,Above or Inside Ground,"IEEE Trans.Antennas Propagat.,vol.48,no.4,pp.482-493,April 2000.
    
    
    [29]李清亮,海上目标短波散射特性理论与数值研究,西安电子科技大学博士学位论文,西安,1998.6.
    [30]张卫东,张明雪,雷达吸波涂层研究的进展,隐身技术,1999年第一期,pp.6-10,1999.
    [31]T. Martin, L.Pettersson, "Dispersion Compensation for Huygens Source and Far-Zone Transformation in FDTD," IEEE Trans. Antennas Propagat.,vol.48, no.4, pp.494-501, April 2000.
    [32]L.Gurel, U.Oguz, "Signal-Processing Techniques to Reduce the Sinusoidal Steady-State Error in the FDTD Method," IEEE Trans. Antennas Propagat., vol.48, no.4, pp.585-593, April 2000.
    [33]C.D.Taylor, D.H.Lam and T.H.Shumpert, "EM Pulse Scattering in Time Varying Inhomogeneous Media," IEEE Trans. Antennas Propagat., vol. 17, no.5, pp.585-589,Sept.1969.
    [34]G.Mur, "Absorbing Boundary Condition for the FD Application of the Time-Domain EM Field Equation," IEEE Trans. Electromagn. Compat., vol.23, no.4, pp.377-382, Nov. 1981.
    [35]J.P.Berenger, "A Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys., vol. 114, no.2, pp.185-200, 1994.
    [36]J.P. Berenger, "Improved PML for the FDTD Solution of Wave-structure Interaction Problems," IEEE Trans. Antennas Propagat., vol.45, no.3, pp.110-117, Mar. 1997.
    [37]P.Y. Ufimtsev, "Comments on Diffraction Principles and Limitations of RCS Reduction Techniques," Pro. IEEE, vol.84, no. 12, pp. 1830-1851, Dec. 1996.
    [38]D.C.Wittwer, R.W. Ziolkowski, "Two Time-Derivative Lorentz Material (2TDLM) Formulation of a Maxwellian Absorbing Layer Matched to a Lossy Medium," IEEE Trans. Antennas Propagat., vol.48, no.2, pp. 192-213, Feb. 2000.
    [39]D.C.Wittwer, R.W. Ziolkowski, "Maxwellian Material-Based Absorbing Boundary Conditions for Lossy Media in 3-D," IEEE Trans. Antennas Propagat., vol.48, no.2, pp.192-213, Feb. 2000.
    [40]B.Shanker, A.A.Ergin, K.Aygun, E.Michielssen, "Analysis of Transient Electromagnetic Scattering Phenomena Using a Two-Level Plane Wave Time-Domain Algorithm," IEEE Trans. Antennas Propagat., vol.48, no.4, pp. 510-523,April 2000.
    
    
    [41]M.Y. Yang, Y.C.Chen, R. Mittra, "Hybrid Finite-Difference/Finite-Volume Time-Domain Analysis for Microwave Integrated Circuits with Curved PEC Surface Using a Nonuniform Rectangular Grid," IEEE Trans. Microwave Theory Tech., vol.48, no.6,pp.969-975, June 2000.
    [42]A.A.Ergin, B.Shanker, E.Michielssen, "The Plane-Wave Time-Domain Algorithm for the Fast Analysis of Transient Wave Phenomena," IEEE Antennas Propagat. Mag.,vol.41, no.4, pp.39-52, Aug. 1999.
    [43]M.Clemens and T.Weiland, "Numerical Algorithms for the FDiTD and FDFD Simulation of Slowly Varying Electromagnetic Fields," Int. J. Numer. Model., vol.12,pp.3-22, 1999.
    [44]刘顺坤,时域有限差分法及其在电磁脉冲效应研究中的应用,西安交通大学博士学位论文,西安,2000.9.
    [45]阎玉波,石守元,葛德彪,用于FDTD的复杂目标建模,西安电子科技大学学报,vol.25,no.3,pp.389-392,Jun.1998.
    [46]李明之,刘友建,王长清,徐承和,用CAD技术实现复杂目标FDTD方法几何-电磁建模,电子学报,vol.27,no.3,pp.131-133,Mar.1999.
    [47]NACA系列翼型,内部资料。
    [48]K.M.Siegel, "Far Field Scattering from Bodies of Revolution," App. Sci. Res., Section B, vol.7, pp.293-328, 1957.
    [49]A.K.Bhattacharrya, "Electromagnetic Scattering from a Flat Plate with Rim Loading and RAM Saving," IEEE Trans. Antennas Propagat., vol.37, no.5, pp.659-663, May 1989.
    [50]R.S.Crrannemann, "A Representation Theorem Based Analysis of Two-Dimensional Electromagnetic Scattering from Materials and Resistive Cards," IEEE Trans. Antennas Propagat., vol.39, no.3, pp.327-331, Mar. 1991.
    [51]C.L.Britt, "Solution of EM Scattering Problems Using Time Domain Techniques," IEEE Trans. Antennas Propagat., vol.37, no.9, pp.1181-1192, Sept. 1989.
    [52]K.S.Yee, D.Ingham and K. Shlager, "Time-Domain Extrapolation to the Far Field Based on FDTD Calculations," IEEE Trans. Antennas Propagat., vol.39, no.3,pp.410-413, Mar. 1991.
    [53]Kragalott, M.S.Kluskens, and W.P.Pala, "Time-domain Fields Exterior to a Two Dimensional FDTD Space," IEEE Trans. Antennat Propagat., vol.45, no. 11,pp.1655-1663,Nov.1997.
    
    
    [54]R.Luebbers, D.Ryan, and J.Beggs, "A Two-dimensional Time-domain Near-zone to Far-zone Transformation," IEEE Trans. Antennas Propagat., vol.40, no.7, pp.848-851,July 1992.
    [55]R.S.Adve, T.K.Sarkar, O.M.C.Pereira-Filho, S.M.Rao, "Extrapolation of Time-Domain Responses from Tree-Dimensional Conducting Objects Utilizing the Matrix Pencil Technique," IEEE Trans. Antennas Propagat., vol.45, no.1,Jan. 1997.
    [56]M.J.Barth, R.R.Mcleod and R.W. Ziolkowski, "A Near-and Far-field Projection Algorithm for Finite-Difference Time-Domain Codes," J. of Electromagnetic Waves and Applications, vol.6, no.1,pp.5-18, 1992.
    [57]K.Demarest, Z.Huang and R.Plumb, "An FDTD Near-to Far-Zone Transformation for Scatterers Buried in Stratified Grounds," IEEE Trans. Antennas Propagat., vol.44,no.8, pp.1150-1157, Aug. 1996.
    [58]J.A.Kong, Electromagnetic Wave Theory, John Wiley & Songs, New York, 1986.
    [59]R.F.Harrington, Field Computation by Moment Method, MacMillan Company, New York, 1968.
    [60]李世智,电磁辐射与散射问题的矩量法,电子工业出版社,1985.
    [61]Yubo Yah, Debiao Ge, Donghui Cui, Qizhong Zhou, "Transient Scattering Analysis of an Airfoil and Its RCS Reduction by Partially RAM Coating," 2000 International Symposium on Antennas Propagation and EM Theory Proceedings (ISAPE2000),Beijing, Aug.2000,pp.622-625.
    [62]T.P.Montoya and G.S.Smith, "A Study of Pulse Radiation from Several Broad-Band Loaded Monopoles," IEEE Trans. Antennas Propagat., vol.44, no.8, pp.1172-1182,Aug. 1996.
    [63]P.B.Wong, G.L.Tyler, J.E.Baron, E.M.Gurrola, and R.A.Simpson. "A Three-wave FDTD Approach to Surface Scattering with Application to Remote Sensing of Geophysical Surfaces," IEEE Trans. Antennas Propagat., vol.44, no.4, pp.504-514,April 1996.
    [64]F.M.Tesche, "On the Inclusion of Loss in Time-Domain Solutions of Electromagnetic Interaction Problems," IEEE Trans. Electromagn. Compat., vol.32, no.1, pp. 1-4, Feb.1990.
    [65]P.R.Barnes, and F.M.Tesche, "On the Direct Calculation of a Transient Plane Wave Reflected from a Finitely Conducting Half Space," IEEE Trans. Electromagn
    
    Compat., vol.33, no.2, pp.90-96, May 1991.
    [66] J.G.Maloney, and G.S. Smith, "Implementation of Surface Impedance Concepts in the Finite Difference Time Domain (FDTD) Technique," in Proc. 1990 IEEE Antennas Propagat. Soc. Int. Symp., Dallas, TX, May 1990 vol.4, pp. 1628-1631.
    [67] J.G.Maloney, and G.S.Smith, "The Use of Surface Impedance Concepts in the Finite-Difference Time-Domain Method," IEEE Trans. Antennas Propagat., vol.40, no.1, pp.38-48, Jan. 1992.
    [68] J.H.Beggs, R.J.Luebbers, K.S.Yee, and K.S.Kunz, "Finite-Difference Time-Domain Implementation of Surface Impedance Boundary Conditions," IEEE Trans. Antennas Propagat., vol.40, no.1, pp.49-56, Jan. 1992.
    [69] S.Kellali, B.Jecko, and A.Reineix, "Implementation of a Surface Impedance Formalism at Oblique Incidence in FDTD Method," IEEE Trans. Electromagn. Compat., vol.35, no.3, pp.347-356, Aug. 1993.
    [70] W.Thile, "A Surface Impedance Approach for Modeling Transmission Line Losses in FDTD," IEEE Microwave Guided Wave Lett., vol.10, no.3, pp.89-91, Mar. 2000.
    [71] L.K.Wu, L.T.Han, "Implementation and Application of Resistive Sheet Boundary Condition in the Finite Difference Time Domain Method," IEEE Trans. Antennas Propagat., vol.40, no.6, pp.628-633, June 1992.
    [72] H.Tang, V.Scuka, "Time-Domain Study of a Shielding Cable System with a Nonlinear Load," IEEE Trans. Electromagn. Compat., vol.41, no.3, pp.214-220, Aug. 1999.
    [73] V.N.Greetsai, A.H.Kozlovsky, V.M.Kuvshinnikov, et al, "Response of Long Lines to Nuclear High-Altitude Electromagnetic Pulse (HEMP)," IEEE Trans. Electromagn. Compat., vol.40, no.4, pp.348-354, Nov. 1998.
    [74] G.Manara, M.Bandinelli, A.Monorchio, "Electromagnetic Penetration and Coupling to Wires Through Apertures of Arbitrary Shape," IEEE Trans. Electromagn. Compat., vol.40, no.4, pp.391-396, Nov. 1998.
    [75] H.Y.Pao, S.L.Dvorak and D.G.Dudley, "An Accurate and Efficient Analysis for Transient Plane Wave Obliquely Incident On a Conductive Half Space (TE case)," IEEE Trans. Antennas Propagat., vol.44, no.7, pp.918-924, July 1996.
    [76] H.Y.Pao, S.L.Dvorak and D.G.Dudley, "An Accurate and Efficient Analysis for Transient Plane Wave Obliquely Incident On a Conductive Half Space (TM case)," IEEE Trans. Antennas Propagat., vol.44, no.7, pp.925-932, July 1996.
    
    
    [77] A.R.Bretones, A.G.Tijhuis, "Transient Excitation of a Straight Thin Wire Segment over an Interface Between Two dielectric Half Spaces," Radio Sci., vol.30, no.6, pp. 1723-1738, Nov.-Dec. 1995.
    [78] R.Holland and L.Simpson, "Finite-Difference Analysis of EMP Coupling to Thin Structure and Wires," IEEE Trans. Electromagn. Compat., vol.23, no.2, pp.88-97, 1981.
    [79] G. T. Ruck, D.E. Barrick, W.D. Stuart, and C.K.Krichbaum, Radar Cross Section Handbook, p.63, Plenum Press, New York, 1970.
    [80] S. He, and S. Strom, "Time-Domain Propagating Modes in a Finite Conducting Half-Space and Calculation of the Transient Reflection," IEEE Trans. Electromagn. Compat., vol.37, no.2, pp.277-282, May. 1995.
    [81] C.A.Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons Inc., New York, 1989.
    [82] Y.B.Yan, D.B.Ge, Y.C.Chen, "Hybrid STF-FDTD Approach for the EM Scattering Analysis with an Extremely Slow-Decaying Pulse Incidence," Microwave Opt. Tech. Lett., to be published in the February 20,2001 issue.
    [83] M.L.Oristaglio, and G.W.Hohmann, "Diffusion of Electromagnetic Fields into a Two-Dimensional Earth: a Finite-Difference Approach," Geophysics, vol.49, no.7, pp.870-894, July 1984.
    [84] T.Wang, and G.W.Hohmann, "A Finite-Difference Time-Domain Solution for Three Dimensional Electromagnetic Modeling," Geophysics, vol.58, no.6, pp.797-809, June 1993.
    [85] M.N.Nabighian, "The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Interpretation," Geophysics, Vo.55, pp.1166-1182,1972.
    [86] J.C.Macnae, "Survey Design for Multicomponent Electromagnetic System," Geophysics, vol.49, pp.265-273,1984.
    [87] M.L.Oristaglio, "Diffusion of Electromagnetic Fields into the Earth from a Line Source of Current," Geophysics, vol.47, no.11, pp.1585-1592, Nov. 1982.
    [88] W.A.SanFilipo, and G.W.Hohmann, "Integral Equation Solution for the Transient Electromagnetic Response of a Three-Dimensional Body in a Conductive Half-Space," Geophysics, vol.50, no.5, pp.798-809, May 1985.
    [89] C.F.Gerald, and P.O.Wheatley, Applied Numerical Analysis, Third edition, Addison-
    
    Wesley Publishing Company, 1984.
    [90] M.Goldberg, "Stability Criteria for Finite Difference Approximations to Parabolic Systems" Applied Numerical Mathematics, vol.33, pp.509-515, 2000.
    [91] I.Stakgold, Boundary Value Problems of Mathematical Physics, vol.11, New York, John Wiley and Sons, 1968.
    [92] C.M.Bender, S.A.Orszag, Advanced Mathematical Methods for Engineers and Scientists, New York, McGraw-Hill, 1978.
    [93] P.Weidelt, "Response Characteristics of Coincident Loop Transient Electromagnetic System," Geophysics, vol.47, pp.1325-1330, 1982.
    [94] C.L.Bennett and H.Mieras, "Time Domain Scattering from Open Thin Conducting Surfaces," Radio Sci., vol.16, pp.1231-1239, 1981.
    [95] J.G.Maloney, K.L.Shlager and G.S.Smith, "A Simple FDTD Model for Transient Excitation of Antennas by Transmission Lines," IEEE Trans. Antennas Propagat., vol.38, no.7, pp.1059-1068, July 1990.
    [96] J.J.Boonzaaier and C.W.I.Pistonius, "Finite-Difference Time-Domain Field Approximations for Thin Wires with a Lossy Coating," IEE Proc., vol.141, no.2, pp. 107-113, April 1994.
    [97] T.J.Kim, and G.A.Thiele, "A Hybrid Diffraction Technique-General Theory and Applications," IEEE Trans. Antennas Propagat., vol.30, pp.888-897, 1982.
    [98] M.Kaye, R.K.Murthy, and G.A.Thiele, "An Iterative Method for Solving Scattering Problems," IEEE Trans. Antennas Propagat., vol.33, no.11, pp.1272-1279, Nov. 1985.
    [99] F.O-Basteiro, J.L.Rodriguez, and R.J.Burkholder, "An Iterative Physical Optical Approach for Analyzing the Electromagnetic Scattering by Large Open-Ended Cavities," IEEE Trans. Antennas Propagat., vol.43, no.4, April 1995.
    [100] 陈保辉等,雷达目标反射特性,国防工业出版社,1993.
    [101] J.M.Rius, A.Lozano, L.Jofre, and A.Cardama, "Spectral Iterative Algorithm for RCS Computation in Electrically Large or Intermediate Perfectly Conducting Cavities," IEEE Trans. Antennas Propagat., vol.42, no.6, pp. 790-797, June 1994.
    [102] A.Altintas, P.Pathak, and M-C,Liang, "A Selective Modal Scheme for the Analysis of EM Coupling into or Radiation from Large Open-Ended Waveguides," IEEE Trans. Antennas Propagat., vol.36, no.1, pp.84-96, Jan. 1988.
    [103] H.Ling, R-C,Chou, and S-W,Lee, "Shooting and Bouncing Rays: Calculating the
    
    RCS of an Arbitrarily Shaped Cavity,"IEEE Trans.Antennas Propagat.,vol.37,no.2,pp.194-205,Feb.1989
    [104]T-T,Chia, R.J.Burkholder, and R. Lee, "The Application of FDTD in Hybrid Methods for Cavity Scattering Analysis," IEEE Trans.Antennas Propagat., vol.43,no.10, pp.1082-1090, Oct.1995.
    [105]R.Lee, and T-T,Chia, "Analysis of Electromagnetic Scattering from a Cavity with a Complex Termination by Means of a Hybrid Ray-FDTD Method," IEEE Trans. Antennas Propagat., vol.41, no.11, pp.1560-1569, Nov. 1993.
    [106]H.Ling, "RCS of Waveguide Cavities: a Hybrid Boundary-Integral/Modal Approach," IEEE Trans. Antennas Propagat., vol.38, no.9, pp.1413-1420, Sep.1990.
    [107]R-C,Chou, "The Modeling and the Electromagnetic Scattering from Bifurcated Open-Ended Cavities," Int.J.Numer. Model, vol.7, pp. 167-177, 1994.
    [108]H.Ling, S.W. Lee, and R-C.Chou, "High Frequency RCS of Open Cavities With Rectangular and Circular Cross Section," IEEE Trans. Antennas Propagat.,vol.37,no.5, pp.648-654, May 1989.
    [109]奚梅成,数值分析方法,中国科学技术大学出版社,合肥,1995.
    [110]Germund Dahlqist,Ake Bjorck著,包雪松译,数值方法,高等教育出版社,1990.6.
    [111]J.M.Jin, "Electromagnetic Scattering from Large, Deep and Arbitrarily Shaped Open Cavities," Electromagnetics, vol.18, no.1, pp.3-34, 1998.
    [112]闫玉波,石守元,葛德彪,计算凹形物体散射的迭代物理光学方法,目标与环境特性研究,pp.13-18,1998年第1期(总第5期).
    [113]T.Wang and H.Ling, "Electromagnetic Scattering from Three Dimensional Cavities via a Connection Scheme," IEEE Trans. Antennas Propagat., vol.39, no.10, pp.1505-1513, Oct. 1991.
    [114]聂小春,葛德彪,袁宁,边界积分法及连接算法分析三维任意腔体散射,电波科学学报,1999年第14卷增刊(第六届全国电波传播学术会议论文集),pp.238-240,1999年4月。
    [115]闫玉波,葛德彪,聂小春,石守元,应用改进迭代物理光学方法分析电大尺寸开口腔体散射,微波学报,已录用。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700