高强钢筋混凝土墩柱抗震性能计算机仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的地震震害和试验研究表明,在强烈地震作用下,结构一般都会进入弹塑性状态,出现弹塑性变形,钢筋混凝土结构的破坏变形多数集中在墩柱,因此着重研究墩柱的抗震性能具有重要的理论和实际意义。但是在实际的试验过程中,不仅要耗费大量的资金,还要耗费大量的人力物力,而且研究也不是很全面。随着计算机技术的发展,利用有限元软件模拟分析钢筋混凝土结构试验的研究在现代工程科学中显得日益重要。本文通过ANSYS软件模拟分析了高强钢筋混凝土墩柱的抗震性能,主要内容包括以下几个方面:
     1、综述了混凝土材料的弹塑性本构关系,详细讨论了混凝土的破坏准则、破坏曲面以及混凝土非线性本构模型。总结了在有限元建模过程中常用的几种有限元模型,并对其适用状况和优缺点进行了分析。
     2、结合试验结果对6根配有高强钢筋的混凝土墩柱进行了在低周反复荷载下的仿真计算,分析了不同参数对计算结果的影响。结果表明,拉应力释放系数、剪力传递系数、不同的钢筋本构模型对计算结果影响不大,计算机模拟得到的结果与试验结果可以较好的吻合。
     3、较详细地分析了轴压比和高强纵筋对墩柱延性性能的影响,从计算结果来看,墩柱的延性系数随着轴压比的增大而减小,合理配置高强钢筋可以提高墩柱的延性性能。就所计算的试件来说,当配置的高强纵筋为全部纵筋的22%时,墩柱的延性性能最好。
A large number of earthquake damage and experimental studies show that a strong earthquake will generally make the structure enter the plastic state,so elastic and plastic deformation occurs, deformation of reinforced concrete structures damaged mostly in columns, therefore focuses on the column for seismic performance has important theoretical and practical significance. But in the actual testing process, not only to spend a lot of money, but also spend a lot of manpower and resources, and research is not comprehensive. With the development of computer technology, using finite element software to simulate the testing of reinforced concrete structure in the modern engineering sciences become increasingly important.This paper through ANSYS software simulate the seismic performance of the high strength reinforced concrete column.
     1、Summary of the elastic-plastic constitutive relation of concrete, detailed discussion of failure criteria of concrete、failure surfaces and the nonlinear constitutive model of concrete. Summed up several commonly used finite element model in finite element modeling, analyse their application to the situation and the advantages and disadvantages.
     2、Combination of test results,six reinforced concrete piers were under cyclic loading in the simulation analysis, discussed different parameters effect on the calculation results. The results show that tensile stress release factor、shear transfer coefficient、different constitutive models of reinforced has little impact on the calculation results, The computer simulation result and the test results can be better agreement..
     3、More detailed analysis of the axial compression ratio and high strength of longitudinal reinforcement on the ductility of pier, from the results of view, pier of the ductility factor ratio increases with the axial compression decreases, Rational allocation of high-strength steel can improve the ductility performance of pier, Just for calculating specimens,when configuring the high-strength steel accounts for the proportion of longitudinal reinforcement was 22%, the column has the best ductility.
引文
[1]陕西建筑设计院等.钢筋混凝土框架柱抗震性能的试验研究(译文集).北京:地震出版社,1979
    [2]Ngo, D., and Scordelis, A.C.(1967).Finite element analysis of reinforced concrete beams.ACI J.,82 (2),162-169.
    [3]Nilsson, Author H., Nonlinear Analysis of Reinforced Concrete by the Finite Element Method. ACI Journal, Vol.65. September 1968
    [4]Franklin, H., Nonlinear Analysis of Reinforced Concrete Frames and Panels. Ph. D. Dissertation, Division of Structural Engineering and Structural Mechanics, University of Clifornia, Brkleley, March,1970
    [5]Noguchi, H.(1985).Analytical models for cylic loading of RC members. Finite element analysis of reinforced concrete structures, Proc, Seminar Sponsored by the Japan Society for the Promotion of Science and the U.S. National Science Foundation, Tokyo, C. Meyer and H. Okamura, eds., ASCE, New York,486-506
    [6]Okamura, H., and Maekawa, K.(1991). Nonlinear analysis and constitutive models of reinforced concrete, Tokyo Gihodo, Japan.
    [7]Parker, D.R., and Dameron, R. A.(1994). Pretest prediction analysis of a 1/3 scale model of a China Basin viaduct foundation. Proc.,3rd Annu. Seismic Res.Workshop,Caltrans, Sacramento, Calif.
    [8]Sittipunt, C., and Wood, S. L. (1995). Influence of web reinforcement on the cyclic response of structural walls. ACI Struct. J.,92(6),745-756.
    [9]Elmorsi, M., Kianoush, M. R., and Tso, W. K. (1998). Nonlinear analysis of cyclically loaded reinforced concrete structures. ACI Struct.J., 95(6),725-739
    [10]Vecchio, F. J. (1999). Towards cyclic load modeling of reinforced concrete. ACI Struct. J.,96(2),193-202.
    [11]lee, J., Filippou, F. C., and Fenves, G. L. (1999). Simulation of hysteretic behavior of reinforced concrete members. Proc., ASCE Struct. Congr., ASCE, Reston, Va.,199-202.
    [12]Kwan W P,Billington S L.Simulation of structural concrete under cyclic load[J] Journal of Structural Engineering,ASCE,2001,127(12):1391-1401
    [13]Cofer W F, Zhang Y, Mclean D I. A comparison of current computer analysis methods for seismic performance of reinforced concrete member[J]. Finite Elements in Analysis and Design,2002,38(9):835-861.
    [14]Lee D H,Elnashai A S.Seismic analysis of RC bridge columns with flexure-shear interaction[J]. Journal of Structural Engineering, ASCE, 2001,127(5):546-553
    [15]Kim T H,Lee K M,Yoon C.Inelastic behavior and ductility capacity of reinforced concrete bridge piers under earthquake.Ⅱ:Numerical validation [J] Journal of Structural Engineering,ASCE,2003,129(9):1208-1219.
    [16]Faria R,Pouca N V,Delgado R.Simulation of the cyclic behavior of R/C rectangular hollow section bridge piers via a detailed numerical model[J] Journal of Earthquake Engineering,2004,8(5):725-748.
    [17]Lee D H,Choi E,Zi G.Evaluation of earthquake deformation and Performa-nce for RC bridge piers[J].Engineering Structures,2005,27(10):1451-1464
    [18]Esmaeily A,Xiao Y.Behavior of reinforced concrete columns under variab-le axial loads:Analysis[J].ACI Structural Journal,2005,102(5):736-744.
    [19]熊敦士,汪泰钧。预应力混凝土压力容器三维等参元弹性应力分析,土木工程学报,1981,(2)
    [20]陆新征,江见鲸。用ANSYS Solid 65单元分析混凝土组合构件复杂应力,建筑结构,2003,(6)
    [21]司炳君,孙治国等。钢筋混凝土桥墩滞回性能的有限元模拟分析,哈尔滨工业大学学报,2009,(12)
    [22]韦树英,韦斌凝,赵艳林。钢筋混凝土结构的弹塑性分析[M],桂林:广西师范大学出版社,2001.
    [23]何政,欧进萍。钢筋混凝土结构非线性分析[M],哈尔滨:哈尔滨工业大学出版社,2006.
    [24]江见鲸。钢筋混凝土结构非线性有限元分析[M],系,西安:陕西科学技术出版社,1994
    [25]江见鲸,陆新征,叶列平。混凝土结构有限元分析[M],北京:清华大学出版社,2005
    [26]天津大学,同济大学,东南大学。混凝土结构.北京:中国建筑工业出版社,1998:1—17
    [27]陈磊。基于ANSYS的钢筋混凝土结构试验有限元分析:[硕士学位论文].西安:西安理工大学,2004
    [28]过镇海。混凝土的强度和变形,试验基础和本构关系.北京:清华大学出版社,1997.
    [29]陈惠发A.F.萨里普。土木工程材料的本构方程.武汉:华中科技大学出版社,2001.5
    [30]江见鲸。关于钢筋混凝土数值分析中的本构关系[J],力学进展,1994,24(1):117—121
    [31]ANSYSTheoryManual, ANSYS6.1HelpSystem
    [32]美国ANSYS公司中国分公司ANSYS非线性分析指南2000
    [25]王新敏.ANSYS工程结构数值分析[M],北京:人民交通出版社,2010.
    [33]江见鲸,陆新征,叶列平。混凝土结构有限元分析[M],北京:清华大学出版社,2005
    [34]潘元,刘伯权。结构工程的计算仿真研究现状与进展.长安大学学报学报(自然科学版),23(1),2003.1:34—38
    [35]宋玉普.钢筋混凝土有限元分析中的力学模型:[博士学位论文].大连:大连理工大学,1988
    [36]张远高.钢筋混凝土结构的本构关系及有限元模式:[博士学位论文].北京:清华大学,1990
    [37]贺会军。基于ANSYS的钢筋混凝土结构有限元分析研究[J],江苏建筑,2010(2)
    [38]天津大学,同济大学,东南大学。混凝土结构.北京:中国建筑工业出版社,1998:1—17
    [39]陈磊。基于ANSYS的钢筋混凝土结构试验有限元分析:[硕士学位论文].西安:西安理工大学,2004
    [40]混凝土结构设计规范(GBSO010—2002),2002
    [41]司炳君,孙治国等。钢筋混凝土桥墩滞回性能的有限元模拟分析[J],哈尔滨工业大学学报,2009,41(12):105-109
    [42]HU H T, HUANG C S, WUMH, et al. Nonlinear analysisof axially loaded Concrete — filled tube columns with confinement effect [J] Journal of Structural Engineering, ASCE,2003,129(10):1322-1329.
    [43]司炳君.普通及高强钢筋混凝土桥墩地震抗剪强度研究:[博士学位论文].大连:大连理工大学,2008.
    [44]徐伟栋.配置高强钢筋的混凝土柱抗震性能研究:[硕士学位论文].上海:同济大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700