铁氧体/聚吡咯和镍/硫化锌磁性复合材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核壳纳米材料的制备受到了很大的关注,因为可通过调整成分或者颗粒大小来改变其物化性能。在查阅大量文献的基础上,对核壳结构材料的合成方法进行了研究,并取得了如下成果:
     (1)采用原位聚合法合成了ZnFe2O4/PPy纳米材料且其壳层厚度可通过添加不同的吡咯量加以控制。复合材料的饱和磁化强度和矫顽力分别为17.8 emu/g和130 Oe。复合材料电磁表征表明,由于其复介电常数和复磁常数良好的匹配,复合材料具有优异的吸波性能。
     (2)在Fe304表面氧化吡咯单体成功的制备了Fe3O4/PPy纳米材料。研究表明核颗粒大小约为100 nm,壳层厚度约为70 nm。复合材料的饱和磁化强度和矫顽力分别为20.1 emu/g和368.3 Oe。当样品厚度为2.3 mm时,复合材料具有最佳的微波反射损失-22.4dB,其反射损失小于-10 dB的波段有5 GHz。良好的微波吸收性能可能是由于其特殊的核壳微观结构。
     (3)Ni/ZnS纳米材料是通过两步法合成的,首先是Ni纳米颗粒制备以及ZnS沉积在Ni颗粒表面。Ni颗粒的直径大约为80-130 nm,ZnS的大小约为30-50 nm。和纯的Ni颗粒相比,复合材料的磁性能明显降低可能是由于非磁性材料的包覆。由于包覆前后颗粒大小和形貌的改变使得Ni/ZnS纳米材料的最大激发峰出现红移。
Recently, there has been a great deal of interest in the fabrication of core/shell nanocomposite materials, because the physical and chemical properties can be tuned by controlling their compositions and the relative sizes of the core and shell.Based on the previous studies, I succeeded to synthesize the core/shell nanocomposites.
     (1) ZnFe2O4/PPy nanoparticles could be facilely synthesized and the shell thickness could be controlled by adjusting the amount of pyrrole monomers.Magnetic studies revealed that the saturation magnetization and coercivity of ZnFe2O4/PPy nanoparticles is 17.8 emu/g and 130 Oe, respectively. The electromagnetic characteristics showed that ZnFe2O4/PPy nanoparticles exhibit excellent microwave absorption performance, such as more powerful absorbing property and wider electromagnetic wave absorbing frequency band due to the proper matching of the permittivity and the permeability.
     (2) Fe3O4/PPy nanocomposites were prepared by chemical oxidative polymerization of pyrrole monomers on the surface of Fe3O4 nanoparticles.Studies indicate that typical nanocomposites consist of Fe3O4 with 100 nm diameters and adjacent PPy with a thickness of about 70 nm.Fe3O4/PPy nanocomposites exhibit a saturated magnetization of 20.1 emu/g and covercivity value of 368.3 Oe, respectively. The value of the minimum reflection loss is-22.4 dB at 12.9 GHz for nanocomposites with a thickness of 2.3 mm and a broad peak with a bandwidth lower than-10 dB is of about 5 GHz.Such strong absorption is attributed to better electromagnetic matching due to the existence of PPy and its special core/shell microstructure.
     (3)Ni/ZnS nanocomposites were prepared via a two-step approach with an initial synthesis of Ni nanoparticles and then as templates for the deposition of ZnS nanoparticles.Studies indicate that typical nanocomposites consist of Ni with 80-130 nm diameter and adjacent ZnS with a thickness of about 30-50 nm. The value of magnetization saturation significantly decreases as a result of the nonmagnetic coating affecting. The emission spectrum shows a small red shift as compared with that of pure ZnS.The possible reason may be ascribed to the change of size, morphology and crystallinity of ZnS sample after coating.
引文
[1]Wang J F,Shi J,Tian D C, et al.Fabrication and enhanced magnetoresistance of SiO2-coated Fe3O4 nanosphere compact. Applied Physics Letters,2007,90(21): 213106
    [2]Zhao Y W, Ni C Y, Kruczynski D, et al.Exchange-Coupled Soft Magnetic FeNi-SiO2 Nanocomposite. Journal of Physical Chemistry B,2004,108: 3691-3693
    [3]Deng Y H,Qi D W, Deng,C H, et al.Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. Journal of the American Chmistry Society,2008,130(1):28-29
    [4]Qiu J D, Peng H P, Liang R P.Ferrocene-modified Fe3O4@SiO2 magnetic nanoparticles as building blocks for construction of reagentless enzyme-based biosensors.Electrochemistry Communications,2007,9(11):2734-2738
    [5]Cerneaux S,Xiong X Y, Simon G P,et al.Sol-gel synthesis of SiC-TiO2 nanoparticles for microwave processing. Nanotechnology,2007,18(5):055708 (10pp)
    [6]Wuang S C,Neoh K G, Kang E T, et al.Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. Journal of Materials Chemistry,2007,17(31):3354-3362
    [7]Partch R, Gangolli S G, Matijevic E, et al.Conducting Polymer Composites(Ⅰ) Surface-Induced Polymerization of Pyrrole on Iron (Ⅲ)and Cerium (Ⅳ) Oxide Particles.Journal of Colloid Interface Science,1991,144(5):27-35
    [8]Liu X H,Wu H Y,Ren F L,et al.Controllable fabrication of SiO2/polypyrrole core-shell particles and polypyrrole hollow spheres. Materials Chemistry and Physics 2008,109(1):5-9
    [9]Dokoutchaev A, James I T, Koene S C, et al.Colloidal Metal Deposition onto Functionalized Polystyrene Microspheres. Chemistry of Materials,1999,11(8): 2389-2399
    [10]Arul D N, Zaban A, Gedanken A. Surface Synthesis of Zinc Sulfide Nanoparticles on Silica Microspheres Semichemical Preparation, Characterization, and Optical Properties.Chemistry of Materials,1999,11(9):806-613
    [11]Zhong Z, Mastai Y, Koltypin Y, et al.Sonochemical Coating of Nanosized Nickel on Alumina Submicrospheres and the Interaction between the Nickel and Nickel Oxide with the Substrate. Chemistry of Materials,1999,11(5):2350-2359
    [12]Ramesh S,Cohen Y, Prosorov R, et al.Organized Silica Microspheres Carrying Ferromagnetic Cobalt Nanoparticles as a Basis for lop Arrays in Magnetic Force Microscopy. Journal of Physical Chemistry B,1998,102(6):10234-10242
    [13]Liu X W, Hu Q Y, Zhang X J, et al.Generalized and Facile Synthesis of Fe3O4/MS (M)Zn, Cd, Hg, Pb, Co, and Ni) Nanocomposites. Journal of Physical Chemistry C,2008,112(33):12728-12735
    [14]Quaroni L, Chumanov G Preparation of Polymer-Coated Functionalizde Silver Nanoparticles.Journal of the American Chemical Society,1999,121(5): 10642-10643
    [15]Decher G, Hong J D. Makomol Buildup of ultrathin multiplayer films by a self-assembly process:consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Chemical Macromolecular Symposia,1991, 46(5):321-324
    [16]Ji T H, Lirtsman V G, Avny Y, et al.Preparation, Characterization, and Application of Au-Shell/Polystyrene Beads and Au-Shell/Magnetic Beads. Advanced Materials,2001,13(16):1253-1256
    [17]Hines M A, Philippe G S.Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. Journal of Physical Chemistry A, 1996,10(3):468-471
    [18]Cao Y W, Banin U. Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores, Journal of The American Chemical Society,2000, 122(3):9692-9702
    [19]Li Q, Gao L, Yan D. Effects of the Coating Process on Nanoscale Y2O3:Eu3+ Powders. Chemistry of Materials,1999,11(9):533-535
    [20]Philipse A P, Michel P B, Bruggen V, et al.Magnetic Silica Dispersions: Preparation and Stability of Surface-Modified Silica Particles with a Magnetic Core. Langmuir,1994,10(1):92-99
    [21]Lin Y L, Wang T J, Yong J.Surface characteristics of hydrous silica-coated TiO2 particles. Powder Technology,2002,123(7):194-198
    [22]Liu Q X, Xu Z H, Finch J A, et al.A novel two-step silica-coating process for engineering magnetic nanocomposites. Chemistry of Materials,1998,10(12): 3936-3940
    [23]Cho P, Kim Y J,Park B.Novel LiCoO2 Cathode Material with Al2O3 Coating for a Li Ion Cell. Chemistry of Materials,2000,12(7):3788-3791
    [24]Pol V G, Gedanken A, Calderon-Moreno J.Deposition of gold nanoparticles on silica spheres:a sonochemical approach. Chemistry of Materials,2003,15(7): 1111-1118
    [25]Hsu W P, Yu R, Matijevic E.Titania Coated Silica. Journal of Colloid Interface Science,1993,156(8),56-65
    [26]Huo L,Li W,Lu L,et al.An electrochemical deposition route for obtaining alpha-Fe2O3 thin films.Chemistry of Materials,2000,12(5):790~796
    [27]Hanprasopwatana A, Srinivasan S,Sault A G,et al.Titania Coating on Monodisperse Silica Spheres (Characterization Using 2-Propanal Dehydration and TEM).Langmuir,1996,12(8):3173-3179
    [28]Ocafia M, Hsu W P, Matijevic E. Preparation and properties of uniform-coated colloidal particles.6.Titania on zinc oxide. Lungmuir,1991,7(5):2911-2916
    [29]Mayya S, Gitins D I, Caruso F. Gold-Titania Core-Shell Nanoparticles by Polyelectrolyte Complexation with a Titania Precursor. Chemistry of Materials, 2001,ASAP Article
    [30]Yang Y, Li H Q, Ruckenstein E.Hydrophobic Core/Hydrophilic Shell Amphilic Particles.Journal of Colloid Interface Science,2001,238(8):414-419
    [31]Zeng H,Rice P M,Wang S X,et al.Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles.Journal of the American Chemical Society,2004,126:11458-11459
    [32]Sun S,Zeng H,Size-controlled synthesis of magnetite nanoparticles,Journal of the American Chmistry Society,2002,124:8204-8205
    [33]Hyeon T,Lee S S,Park J,et al.Manganese (Ⅱ) oxide nanohexapods:insight into controlling the form of nanocrystals. Journal of the American Chemical Society, 2001,123:12798-12801
    [34]Li YD,Liao H W,Qian Y T,et al.Synthesis of CdSxSe(1-x) nanorods via a s olvothermal route. Materials Research Bulletin,1998,33(6):841-846
    [35]Sapieszko R S,Matijevic E. Ca alginate as scaffold for iron oxide nanoparticles synthesis. Journal of Colloid Interface Science,1980,74(2):405-409
    [36]Klokkenburg M,Vonk C,Claesson E M,et al.Polyelectrolyte stabilized nanowires from Fe3O4 nanoparticles via magnetic field induced self-assembly. Journal of the American Chemical Society,2004,126:16706-16707
    [37]Lecommandoux S,Sandre O, Checot F, et al.Magnetic Nanocomposite Micelles and Vesicles,Advanced Materials,2005,17(6):712-713
    [38]Zhu F Q, Fan D, Zhu X C,et al.Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas. Advanced Materials,2004,16(23):2155-2159
    [39]葛副鼎,朱静,陈利民.超微颗粒吸收与散射截面.电子学报,1996,24(6):82~86
    [40]Marshall J S,East T W R,Gunn K L S,et al.Antennas and propagation: Transactions of the IRE professional group.1992,3(1):180-185
    [41]张晓宁.Fe-Ni软磁合金吸波材料的设计与制备:[博士学位论文].北京:北京工业大学,2003,121-123
    [42]Chen N, Mu G H, Pan X F. Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders. Materials Science and Engineering B, 2007,139(5):256-260
    [43]Hwang Y.Microwave absorbing properties of NiZn-ferrite synthesized from waste iron oxide catalyst. Materials Letters,2006,60 (27):3277-3280
    [44]Masala O, Hoffman D, Sundaram N, et al.Preparation of magnetic spinel ferrite core/shell nanoparticles:Soft ferrites on hard ferrites and vice versa. Solid State Science,2006,8(9):1015-1022
    [45]Tanaka K, Nakashima S, Fujita K. Large Faraday effect in a short wavelength range for disordered zinc ferrite thin films. Jounal of Applied Physics,2006,99 (10):106103-106105
    [46]Jeyadevan B, Tohji K, Nakatsuka K. Structure analysis of coprecipitated ZnFe2O4 by extended x-ray-absorption fine structure. Jounal of Applied Physics, 1994,76(10):6325-6327
    [47]Roy M K, Verma H C.Magnetization anomalies of nanosize zinc ferrite particles prepared using electrodeposition. Journal of Magnetism and Magnetic Matetials, 2006,306(1):98-102
    [48]Goya G F, Rehenberg H R. Ionic Disorder and Neel Temperature in ZnFe2O4 Nanoparticles. Journal of Magnetism and Magnetic Matetials,1999,191(13): 196-197
    [49]Chinnasamy C N, Narayanasamy A, Ponpandian N, K, et al.Magnetic properties of nanostructured ferrimagnetic zinc ferrite. Journal of Physics: Condensed Materials,2000,12(35):7795-7805
    [50]Lakeman C D E, Payne D A. Sol-gel processing of electrical and magnetic ceramics. Materials Chemistry and Physics,1994,38 (4):305-324
    [51]Lu Y, Pich A, Adler H.Synthesis and characterization of nanometer-sized polypyrrole composites. Synthetic Metal,2003,37(1):37-38
    [52]Stejskal J, Omastova M, Fedroova S,et al.Polyaniline and polypyrrole prepared in the presence of surfactants:a comparative conductivity study. Polymer,2003, 44(5):1353-1358
    [53]Xu P, Han X J, Wang C,et al.Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. Journal of Physical Chemistry B,2008, 112(34):2775-2781
    [54]Lu G W, Li C, Shi G Q. Polypyrrole micro-and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid. Polymer 2006,47(6):1778-1784
    [55]Ma M, Zhang Y, Li X B, et al.Synthesis and characterization of titania-coated Mn-Zn ferrite nanoparticles. Colloids Surfaces A,2003,224(1):207-212
    [56]Li Y J, Wang R, Qi F M, et al.Preparation, characterization and microwave absorption properties of electroless Ni-Co-P-coated SiC powder. Applied Surface Science,2008,254(15):4708-4715
    [57]Yusoff A N,Abdullah M H, Ahmad S H.Electromagnetic and absorption properties of some microwave absorbers. Journal of Applied Physics,2002, 92(2):876-878
    [58]Lee C C, Chen D H.Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Applied Physics Letters.2007,90(19): 193102-193104
    [59]Liu X G, Geng DY, Meng H, et al.Microwave-absorption properties of ZnO-coated iron nanocapsules. Applied Physics Letters,2008,92(17): 173117-173119
    [60]Dong X L, Zhang X F, Huang H, et al.Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Applied Physics Letters,2008,92(1):013127-013129
    [61].Caruso F,Spasova M,Susha A A,et al.Formation,stability and properties of multilayer emulsions for application in the food industry. Chemistry of Materials, 2001,13(1):109-116
    [62].Hyeon T,Chung Y,Park J,et al.Synthesis of magnetite sub-microspheres by simple solvothermal reduction method.Journal of Physical Chemistry B 2002, 106(27):6831-6833
    [63].Wang Z,Guo H,Yu Y,et al.Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction. Journal of Magnetism and Magnetic Materials,2006,302(2):397-404
    [64].Woo K,Lee H J,Ahu J,et al.Sol-Gel mediated synthesis of Fe2O3 nanorods. Advanced Materials,2003,15(20):1761-1764
    [65].Teng X,Yang H,Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles. Journal of Material Chemistry,2004,14(4):774-779
    [66].Yu A,Mizuno M,Sasaki Y,et al.Structural characteristics and magnetic properties of chemically synthesized CoPt nanoparticles. Applied Physics Letters, 2002,81(4):3768-3771
    [67].Lian S Y, Wang E B, Kang Z H,et al.Synthesis of magnetite nanorods and porous hematite nanorods.Solid State Communications,2004,129(8):485-490
    [68].Peng S,Sun S H,Synthesis and Characterization of Monodisperse Hollow Fe3O4 Nanoparticles.Angewandte Chemie International Edition,2007,46(22):4155-4158
    [69].Si S F, Li C H, Wang X, et al.Magnetic Monodisperse Fe3O4 Nanoparticles Crystal Growth & Design,2005,5(2):391-393
    [70].Yan A G, Liu X H, Qiu G Z, et al.A simple solvothermal synthesis and characterization of round-biscuit-like Fe3O4 nanoparticles with adjustable sizes. Solid State Communications,2007,144(7):315-318
    [71]Yan A G, Liu X H, Qiu G Z, et al.Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. Journal of Alloys and Compounds,2008, 458(1):487-491
    [72]Cheah K, Forsyth M, Truong V T. Ordering and stability in conducting polypyrrole. Synthetic Metal,1998,94(2):215-219
    [73]Jing S Y, Xing, S X, Yu L X. Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid. Materials Letters,2007, 61(23):4528-4350
    [74]Karim M R, Lee C J, Lee M S.Synthesis of conducting polypyrrole by radiolysis polymerization method.Polymers for Advanced Technologies,2007,18: 916-920
    [75]Lu G W, Li C, Shi G Q.Polypyrrole micro-and nanowires synthesized by electrochemical polymerization of pyrrole in the aqueous solutions of pyrenesulfonic acid. Polymer,2006,47(6):1778-1784
    [76]Xu P, Han X J,Wang C, et al.Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. Journal of Physical Chemistry B,2008,112(10):2775-2781
    [77]Wan J X, Chen X Y, Wang Z H, et al.A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. Journal of Crystal Growth 2005, 276(3):571-576
    [78]Dong X L, Zhang X F, Huang H,et al.Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations. Applied Physics Letters,2008,92(1):013127-013129
    [79]Liu Q L, Zhang D, Fan T X. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites.Applied Physics Letters,2008,93(1): 013110-013112
    [80]Liu X G, Geng D Y, Shang, P J,et al.Fluorescence and microwave-absorption properties of multi-functional ZnO-coated alpha-Fe solid-solution nanocapsules, Journal of Physics D:Applied Physics,2008,41(17): 175006-175009
    [81]Mu G H,Chen N, Pan X F, et al.Microwave absorption properties of hollow microsphere/titania/M-type Ba ferrite nanocomposites. Applied Physics Letters, 2007,91(4):043110-043112
    [82]Liu X G, Geng D Y, Meng H, et al.Microwave-absorption properties of ZnO-coated iron nanocapsules. Applied Physics Letters,2008,92(17):173117
    [83]Yan D, Cheng S, Zhuo R F, et al.Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology,2009,20(10):105706
    [84]Balasubramaniam C, Khollam Y B, Banerjee I, et al.Thermal arc-plasma preparation of nanometric andStoichiometric Spherical magnetite(Fe3O4)powders.Material Letters,2004,58(6)3958-3961
    [85]Schmidt H K, Geiter E, Menning M, et al.The sol-gel process for nanotechnologies, nanocomposites with interesting opticaland mechanical properties. Journal of Sol-Gel Science and Technology,1998,13(25):397-402
    [86]Kamat P V, Shanghavi B, Interparticle Electron Transfer in Metal/Semiconductor Composites.Picosecond Dynamics of CdS-Capped Gold Nanoclusters. Journal of Physical of Chemistry B,1997,101(2):7675-7678
    [87]Honma I, Sano T, Komiyama H, Surface-enhanced Raman scattering(SERS) for semiconductor microcrystallites observed in Ag-CdS hybrid particles. Journal of Physical of Chemistry,1993,97(5):6692-6695
    [88]Lu Y, Yin Y D, Li Z Y,et al.Synthesis and Self-Assembly ofAu/SiO2 Core-Shell Colloids. Nano Lettres,2002,2(7):785-788
    [89]Kim H, Achermann M, Balet L P, et al.Synthesis and Characterization of Co/CdSe Core/Shell Nanocomposites:Bifunctional Magnetic-Optical Nanocrystals. Journal of the American Chemical Society,2005,127(2):544-546
    [90]Majetich S A, Jin Y.Magnetization Directions of Individual Nanoparticles, Science,1999,284(5413):470-473
    [91]Sun S H, Zeng H.Size-Controlled Synthesis of Magnetite Nanoparticles. Journal of the American Chemical Society,2002,124(28):8204-8205
    [92]Sun S H,Murray C B, Weller D, et al.Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices, Science,2000,287(5460): 1989-1992
    [93]Borse P H,Yi J M,Je J H,et al.Formation of magnetic Ni nanoparticles in x-ray irradiated electroless solution. Nanotechnology,2004,15(6):S389-S392
    [94]Roy A, Srinivas V. Structure and magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by borohydride reduction method. Physical Review B,2005,71(5):184443-184446
    [95]Chen D H, Wu S H. Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsions. Chemistry of Materials,2000,12(5):1354-1360
    [96]Ji Y. A study on detection of creep damage before crack initiation in austenitic stainless steel.Materials Science Engineering A,2004,387:665-669
    [97]Wang X D,Gao P X,Li J,et al.Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes.Advanced Materials,2002,14(23):1732-1735
    [98]Kim H,Sigmund W. Zinc sulfide nanocrystals on carbon nanotubes.Journal of Crystal Growth,2003,255(1):114-118
    [99]Ni Y H,Yin G,Hong J M,et al.Rapid fabrication and optical properties of zinc sulfide nanocrystallines in a heterogeneous system. Materials Research Bulletin, 2004,39(12):1967-1972
    [100]Yang Y,Zhang W J.Preparation and photoluminescence of zinc sulfide nanowires. Materials Letters,2004,58(29):3836-3838
    [101]Lu H Y,Chu S Y,Tan S S.The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles. Journal of Crystal Growth,2004,269(2):385-391
    [102]Zhao Y,Hong J M,Zhu J J.Microwave-assisted self-assembled ZnS nanoballs. Journal of Crystal Growth,2004,270(3):438-445
    [103]Antony A,Murali K V,Manoj R,et al.The effect of the pH value on the growth and properties of chemical-bath-deposited ZnS thin films.Materials Chemistry and Physics,2005,90(1):106-110
    [104]Liu X W, Hu Q Y,Zhang X J, et al.Generalized and facile synthesis of Fe3O4/MS(M=Zn, Cd, Hg, Pb, Co, and Ni) nanocomposites.Journal of Physical Chemistry C,2008,112(33):12728-12735
    [105]Bala H,Yu Y H, Cao X X, et al.Preparation and characterization of nickel/zinc sulphide:Bifunctional magnetic-optical nanocomposites. Materials Chemistry and Physics,2008,111(1):50-53
    [106]Fu W Y,Yang H B,Li M H,et al.Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles. Materials Letters,2006, 60(21):2723-2727
    [107]Kar S,Biswas S,Chaudhuri S.Nanometre to micrometre wide ZnS nanoribbons. Nanotechnology,2005,16(12):3074-3078
    [108]Hu P A, Liu Y Q, Fu L, et al.Self-assembled growth of ZnS nanobelt networks. Journal of Physical Chemistry B,2004,108(3):936-938
    [109]Li L L, Chen D, Zhang Y Q, et al.Magnetic and fluorescent multifunctional chitosan nanoparticles as a smart drug delivery system.Nanotechnology,2007, 18:405102 (6pp)
    [110]Nielscha K, Wehrspohna R B, Barthela J, et al.High density hexagonal nickel nanowire array. Journal of Magnetism and Magnetic Materials,2002,249(1): 234-240
    [111]Li J H, Zhao D X, Meng X Q, et al.Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method. Journal of Physical Chemistry B,2006,110(30):14685-14687
    [112]You X G, He R, Gao F, et al.Hydrophilic high-luminescent magnetic nanocomposites. Nanotechnology 2007,18(3):035701

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700