非圆截面小通道内气液两相流动特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪90年代初期,为适应可持续发展和高新技术发展的需要,微化工技术成为化工领域内多学科交叉的科技前沿领域。由于相对常规化工过程具有高效性、快速性、灵活性、轻便性、易控制、及高度集成等优点,自MEMS/NEMS概念提出以后,在世界范围内有关微小通道气液两相流动特性研究迅速成为人们关注的热点。国内外公开发表的相关学术论文也层出不穷,但是由于不同的作者以及采用的研究方法等不同,导致得出的结论差异很大。
     为避免不同的实验系统对研究结果造成差异,本文在同一实验系统上对水力直径均为1.15mm的矩形和正三角形小通道内氮气-水气液两相流动特性进行可视化研究。本文主要从流型、截面含气率和压降这三个层面上对这两种小通道内的气液两相流动进行对比分析研究。
     本文辅助高速摄像机在表观液速0.01m/s-5m/s,表观气速0.1m/s-30m/s范围内对两种非圆截面小通道内的氮气-水气液两相流流型进行可视化观察。在气液两相垂直向上流动中,矩形小通道内观察到了分散泡状流、弹状流、搅拌流和环状流四种流型;正三角形小通道内观察到了分散泡状流、毛细泡状流、弹状流、拉长的弹状流、搅拌流和环状流等典型流型,通过对比分析得出小通道的截面形状对流型的形成及转变有较大影响。同时本文在水平方向上对矩形小通道内气液两相流动进行了实验研究,在较低的两相表观速度下,观察到了一般在微小通道内极少出现的分层流动,同时也观察到了分散泡状流、毛细泡状流、弹状流、拉长的弹状流、搅拌流和环状流。
     对于含气率的研究,本文针对小通道内气泡之间相互无遮掩的优势,采用数字图像处理技术对小通道内的气泡进行去噪处理后,进行二值化、边缘检测和区域填充等处理,然后根据不同的流型特征提出的假想的三维气相体积模型进行体积含气率的计算,并结合数据拟合得到了截面含气率的计算公式。
     最后,根据数字图像处理技术检测计算得到的截面含气率进行摩擦压降的分析计算,将计算结果同均相流模型和分相流模型预测值进行比较发现:对于矩形小通道垂直向上流动,已有的压降模型均不能较好的预测本文实验结果,而对于正三角形小通道垂直向上流动,均相流模型在±20%内能较好的预测其压降特性。因此结合实验数据,对Chisholm模型进行了修正,修正后的两相压降模型能较准确预测矩形小通道内气液两相流动压降变化。
The early 90s of last century, In order to meet sustainable development and the needs of high-tech development,Micro-chemical technology was becoming interdisciplinary field of science and technology frontier within the chemical industry. Compared with conventional chemical process, Micro-chemical technology is effective, fast, flexible, lightweight, easy control, and of highly integrated.Since the concept of the MEMS / NEMS was put forward, characteristics of two-phase flow in small channels quickly became the focus of attention all over the world. Although related papers published at home and abroad are endless,different authors use different research methods,which lead to a variety of conclusions.
     In order to avoid differences of experimental results in different experimental systems, characteristics of nitrogen-water two-phase flow in small rectangular channel and small triangular channel with diameter of 1.15mm are studied by visualization method in the same experimental system. the flow pattern, void fraction and pressure drop of gas-liquid two-phase flow in the two mini-channels are researched by comparison.
     Within the superficial liquid velocity 0.01m/s-5m/s and the superficial gas velocity 0.1m/s-30m/s, Flow patterns of nitrogen-water two-phase flow in two small non-circular cross-sectional channels were obtained by High-speed camera.In the gas-liquid two-phase flow vertical upward direction, dispersed bubble flow, slug flow, churn flow and annular flow were observed in small rectangular channel,and dispersed bubble flow, capillary bubbly flow, slug flow, elongated slug flow, churn flow and annular flow were observed in small triangular channel; By comparison, we know that the section shape of small channel has a great impact on flow pattern transition.At the same time , flow patterns of two-phase flow in small rectangular channel were studied experimentally in the horizontal direction, In the lower two-phase superficial velocity, stratified flow was observed which rarely occurs in mini-channels, and dispersed bubble flow, capillary bubbly flow, slug flow, elongated slug flow, churn flow and annular flow were also observed in this direction.
     For the study of void fraction, A method about calculating volume fraction of slug flow was proposed in this paper. According to nonoverlapping among slug bubbles, the flow pattern images were processed by image processing techniques, noise elimination、the edge detection、binarization、area designation and picture fills. According to the proposed three-dimensional volume of gas volume model, volume fraction was obtained.
     Finally, void fraction which was obtained by Digital Image Processing was used to calculate pressure drop, comparison of the calculated results with the homogeneous flow model and the separated flow model, we find that for two-phase flow in small vertical rectangular channel, the calculated results can not be predicted by the existing pressure drop model and for two-phase flow in small triangular channel, Homogeneous flow model can better predict the pressure drop characteristics within±20%. Therefore, according to experimental data, modified Chisholm model can accurately predict two-phase flow pressure drop in the small rectangular channel.
引文
[1].陈光文,袁权.微化工技术[J].化工学报,2003,54(4):427-439
    [2]. W.埃尔费尔德,V.黑塞尔H.勒韦主编.微反应—现代化学中的新技术[M].骆广生,王玉军,吕阳成译.北京:化学工业出版社,2004
    [3]. Gigeys Daniel, Pinto Devanand. Lab-on-a-chip:A revolution in biological and medical sciences[J].AnalyticalChemistry,2000,72(9):330A-335A.
    [4]. Hessel V, Stange T. Mico chemical processing at IMM-from pioneering work to customer-specific services[J].Lab Chip, 2002,2(1),14N-21N
    [5]. Grotenhuis W F, Wegeng R S,et al,Microreactor system design for NASA in situ propellant production plant on mars[C].AIChE Spring National Meeting,Atlanta,2000.
    [6].李英,陈光文,袁权.微通道内弹状流的流动特性[C].第一届全国化学工程与生物化工年会论文集.南京:中国化工学会,2004:145–153.
    [7].曹彬,陈光文,袁权.微通道反应器内氢气催化燃烧[J].化工学报,2004,55(1):42–47.
    [8].乐军,陈光文,袁权,等.微通道内气-液传质研究[J].化工学报,2006,57(6):1296–1303.
    [9].陈令新,关亚风.电渗泵在微柱液相色谱上的应用[J].色谱,2002,20(2),115-117
    [10].王辉,林炳承.芯片毛细管电泳及其在生命科学中的应用[J].分析化学, 2002,30(3): 359—364
    [11]. Wilkinson J M. Improving Access to Microtechnology——the Europractice Project . L ab Chip , 2002 , 2 : 37N—38N
    [12]. de Mello A , Wootton R. But What Is It Good for ?Applications of Microreactor Technology for the Fine Chemical Industry. L ab Chip , 2002 , 2 : 7N—13N
    [13]. Jensen K F. Microreaction Engineering——is Small Better ? Chem1 Eng1Sci1 , 2001 , 56 (2) : 293—303
    [14]. Brenchley D L , Wegeng R S. Status of Microchemical Systems Development in the United States of America. In : AIChE Spring National Meeting , New Orleans , 1998
    [15]. Lerou J J . Reactor System Synthesis and Design. A IChE Symposium Series , 1995 , 91 : 39—40
    [16].徐建鸿,骆广生,陈桂光,等.液-液微尺度混合体系的传质模型[J].化工学报,2005,56(3):435–440..
    [17].骆广生,徐建鸿,陈桂光,等.微结构设备内液-液均相混合性能研究进展[J].现代化工,2005,25(11):17–21.
    [18].骆广生,徐建鸿,李少伟,等.微结构设备内液-液两相流行为研究及其进展[J].现代化工,2006,26(3):19–23.
    [19].马友光,付涛涛,朱春英,等.微通道内气液两相流行为研究进展[J].化工进展26(8):1068-1074.
    [20]. Serizawa A, Feng Z, Kawara Z. Two-phase flow in micro-channels. Exp Therm Fluid Sci 2002;26:703–14.
    [21]. Suo M, Griffith P. Two-phase flow in capillary tubes. J Basic Eng 1964;86:576–82.
    [22]. Brauner N, Moalem-Maron D. Identification of the range of small diameter conduits regarding two-phase flow pattern transitions. Int Commun Heat Mass Transfer 1992;19:29–39.
    [23]. Mehendale SS, Jacobi AM, Ahah RK. Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl Mech Rev 2000;53:175–93.
    [24]. Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, Sadowski DL. Gas–liquid two-phase flow in microchannels Part I: two-phase flow patterns. Int J Multiphase Flow 1999;25:377–94.
    [25]. Xu JL, Cheng P, Zhao TS. Gas–liquid two-phase flow regimes in rectangular channels with mini/micro gaps.Int J Multiphase Flow 1999;25:411–32.
    [26]. Zhao TS, Bi QC. Pressure drop characteristics of gas–liquid two-phase flow in vertical miniature triangular channels.Int J Heat Mass Transfer 2001;44:2523–34.
    [27]. Takashi Hibiki, Kaichiro Mishima. Flow regime transition criteria for upward two-phase flow in vertical narrow rectangular channels . Nuclear Engineering and Design2001,203(2-3):117-131
    [28]. Serizawa Akimi,Feng Ziping,Kawara Zensaku.Two-phase flow in microchannels[J]. Experimental Thermal and Fluid Science,2002,26(6-7):703–714..
    [29]. Kawahara A, Chung PM-Y, Kawaji M. Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. Int J Multiphase Flow 2002;28:1411–35.
    [30]. Saisorn,Wongwises. An inspection of viscosity model for homogeneous two-phase flow pressure drop prediction in a horizontal circular micro-channel. International Communications in Heat and Mass Transfer2008,35(7):833-838
    [31]. Ali M I , Sadatomi M , Kawaji M1 Two-phase flow in narrow channels between two flat plates. Can. J. Chem. Eng. , 1993 , 71 : 657-671
    [32].周云龙,窦华荣,梁超,等.正方形小通道内气液两相流垂直向上流动特性[J].化工学报,2008,59(6):1377-1382
    [33]. J. SOWINSKI, M. DZIUBINSKI, H. FIDOS.Velocity and gas-void fraction in two-phase liquid-gas flow in narrow mini-channels.
    [34]. Lowry,B., and M. Kawaji. AdiabaticVerticalTwo-Phase Flow in Narrow Flow Channels,"AIChE Symp., 1988,84,(263):133-139
    [35].李卓,俞坚,夏国栋,等.水平矩形小通道内气—液两相流流动特性的研究[J].流体机械,2006,34(8):1-4
    [36]. Lee H J ,Lee S Y. Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights[J ] . Int. J . Multiphase Flow , 2001 , 27 :783-796.
    [37]. Baker, O. Simultaneous flow of oil and gas, Oil Gas Journal,Vol.1954,53:185-190
    [38]. Zobeiri, A.Flow pattern characterization for air-water flow by high speed visualization,optical measurement and dynamic pressure signal,Master thesis,EPFL(2006).
    [39]. L.Chen,Y.S.Tian,T.G.Karayiannis.The effect of tube diameter on vertical two-phase flow regimes in small tubes[J]. International Journal of Heat and Mass Transfer,2006,49(21-22):4220-4230.
    [40]. Zhang,P.,Fu,X.Two-phase flow characteristics of liquid nitrogen in vertically upward 0.5 and 1.0 mm micro-tubes:Visualization studies[J].Cryogenics,2008
    [41]. Taitel,K.A.,Barnea,D.,Dukler,A.E,Modeling flow pattern transitions for steady upward gas-liquid two-phase flow in vertical tubes,AICHE J.1980,26:345-354
    [42]. K. Mishima,Ishii M.Flow regime transition criteria for upward two-phase flow in vertical tubes[J],international journal of mass and heat transfer. 1984,27:723-737.
    [43]. K.Mishima,Hibiki,T.,.Some characteristics of air–water two-phase flow in small diameter vertical tubes.Int.J.Multiphase Flow.1996,22(4):703-712.
    [44]. G.B.Wallis, One dimensional two-phase flow, MacGrawHill, New York,1969.
    [45]. Armaand.A.A.The resistance during the movement of a two-phase system in horizontal pipes,Izv.Vses.Teplotekh.Inst.1946(1):16-23.
    [46]. Chen,W.L.,Twu,M.C.,Pan,C.Gas-liquid two-phase flow in micro-channels[J].International Journal of Multiphase Flow,2002,28(7):1235-1247.
    [47].施丽莲,周泽魁,任沙蒲.垂直管道中气液两相流参数的图像检测方法[J].流体机械, 2004,32(9):4-9
    [48]. Raymond F,Rosant J M. A numerical and experimentalstudy of the terminal velocity and shape of bubbles in viscous liquids [J]Chemical Eingeering Science,2000,55(5):943-955
    [49].张东衡,唐志航,叶鸿明等.一种气液两相流气相参数图像检测方法[J].计算机测量与控制,2006,14(5):597-599
    [50].高浩军,杜宇人.基于视频序列图像的车辆测速研究[J].电子测量技术. 2007,(2):42-46.
    [51]. Lockhart,R.W.,Martinelli,R.C.,Proposed correlation of data for isothermal two-phase,two-component flow inpipes.Chem.Eng.Progress1949,45:39-48.
    [52]. D. Chisholm, Pressure gradients due to friction during the flow of evaporation two-phase mixtures in smooth tubes and channels, Int. J. Heat Mass Transfer 16 (1973) 347–358.
    [53]. Chisholm,D.,A thoretical basis for the Lockhart-Martinelli Correlation for two-phase flow.,Int.J.of Heat and Mass Transfer.1967,10:1767-1778
    [54]. J.G. Collier, J.R. Thome, Convective Boiling and Condensation,Third ed., Oxford University Press, Oxford,1994.
    [55]. W. Zhang, T. Hibiki, K. Mishima, Y. Mi. Correlation of critical heat flux for flow boiling of water in mini-channels. International Journal of Heat and Mass Transfer,2006,49(5-6):1058-1072
    [56]. T.N. Tran, M.C. Chyu, M.W. Wambsganss, D.M. France,Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development, Int. J. Multiphase Flow 26(2000) 1739–1754.
    [57]. Friedel L, Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow [C].European Two-Phase Flow Group Meeting, 1979, E2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700