纳米级铜锌合金薄膜的研制及其基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以纳米Cu-Zn合金薄膜的制备为研究内容,采用溅射法制备了纳米Cu-Zn合金薄膜,进行了溅射工艺的研究,并探讨了Cu-Zn合金薄膜的形成机理,提出了一种测定纳米膜厚度的新方法。
     实验过程中,研究了溅射电压、靶基距、溅射压力和溅射时间四个主要工艺参数对薄膜成份、薄膜生长速率、薄膜厚度及其表面平整度的影响。在不同实验条件下,Cu-Zn合金薄膜中的Cu含量主要分布范围是70.41~72.01%,略低于Cu-Zn合金靶材中的Cu含量(72.28%),且各个样品之间的Cu含量相差最大的只有1.6%,因此可认为用溅射法制备Cu-Zn合金薄膜时,薄膜成份受工艺参数的影响不大。随着溅射电压的增大,薄膜的生长速率随之增大,二者近似线性关系。而靶基距的增大则降低了薄膜的生长速率,二者成反比例关系。溅射压力对薄膜生长速率的影响比较复杂,在实验条件下,当溅射压力小于10Pa时,溅射压力的增大对Cu-Zn合金薄膜生长的促进作用占主导地位,因此随着溅射压力的增大,薄膜生长速率增大;当溅射压力大于10Pa时,溅射压力的增大对Cu-Zn薄膜生长的抑制作用占主导地位,故随着溅射压力的增大,薄膜生长速率反而减小。薄膜生长速率的最大值(为3.18nm·min~(-1))在溅射压力为10Pa处取得。在其它工艺参数相同的情况下,薄膜的厚度随着溅射时间的延长而增大。影响合金薄膜表观质量的主要因素是Cu-Zn合金靶材粒子的动能。溅射出的靶材粒子能量越低,对Cu-Zn合金薄膜表面的损伤越小。溅射电压的减小和靶基距的增大,都能减小靶材粒子的动能。虽然溅射压力的增大也能减小靶材粒子的动能,但同时也提高了Cu-Zn合金薄膜内的气体含量,使薄膜中含有更多的气孔而显得比较粗糙。
     实验表明溅射法制备Cu-Zn合金纳米薄膜的最优工艺条件为:溅射电压V=1.6Kv,靶基距D=2.5cm,溅射压力P=5Pa,溅射时间T=20min。在此条件下制备得到的Cu-Zn合金薄膜中Cu的平均含量为70.97%,平均膜厚为41.08nm,平均光泽度为136.3Gs。通过原子力显微镜可以观察到薄膜的表面比较平整。
The formation mechanism of Cu-Zn alloy films is studied and a new way to measure the thickness of nanograde Cu-Zn alloy films is developed in this thesis. Laminar Cu-Zn alloy films, which are used for making high grade metal effect pigment, nanograde laminar Cu-Zn powder, are prepared by sputtering technique.
    In the paper, the effects made by four primary parameters ?sputtering voltage, target-to-substrate distance, sputtering pressure and sputtering time , on the components, the growth speed, the thickness and the surface quality of Cu-Zn alloy films were discussed according to the experiment results. Under different experiment conditions, the Cu contents of films varied from 70.41% to 72.01%, which were slightly less than that of the target (72.28%). The difference of the Cu contents in the films was no more than 1.6%. Therefore, the effects of technical parameters on the compositions of Cu-Zn alloy films were negligible during sputtering process. With the augment of sputtering voltage, the growth speed of films became higher accordingly and the relation was nearly linear under the experimented conditions. In contrast, the growth speed of films became lower with the increase of target-to-substrate distance. The effects of sputtering pressure on the growth speed of films were rather complicated.
     When the sputtering pressure was lower than 1 OPa, the augment of sputtering pressure promoted the growth of films. As a result, the growth speed of films increased as the sputtering pressure grew higher. On the contrary, when the sputtering pressure was higher than 1 OPa, the augment of sputtering pressure inhibited the growth of films and thus the growth speed decreased as sputtering pressure grew higher. The maximum of the growth speed was obtained when sputtering pressure was equal to 10Pa. With the extension of time, the films became thicker. The main factor affecting the surface quality of films was the kinetic energy of Cu-Zn alloy particles. The lower energy of sputtering target particles, the smaller damnification to the surface of Cu-Zn films was. Both the decrease of sputtering voltage and the augment of target-to-substrate distance could reduce the kinetic energy of target
    
    
    particles. Although the augment of sputtering pressure could cut down the kinetic energy of target particles too, it increased the gas content of Cu-Zn alloy films, which made the surface of films rough because of more holes.
    The experiments showed that the suitable technique condition of making Cu-Zn alloy films was as follows: sputtering voltage V = 1.6Kv, target-to-substrate distance D = 2.5cm, sputtering pressure P = 5Pa, sputtering time T = 20min. The average Cu content in Cu-Zn alloy films preparing under this condition was 70.97%, and the mean thickness was 41.08nm. It could be observed that the surface of films whose mean glossiness was 136.3GS, was smooth by atomic force microscope.
引文
[1] James J D, Wilshire B. Laboratory simulation of commercial brass flake manufacture. Powder Metallurgy, 1990, 33(3): 247-249
    [2] 张玉平,张津徐.二元黄铜表面色的定量研究.中国有色金属学报,2001,11(S2):152-155
    [3] 何广英.金属效应颜料的进展.涂料与应用,1998,28(4):40-44
    [4] 刘国杰.现代涂料工艺新技术.北京:化学工业出版社,1999
    [5] 李荣兴.油墨.北京:化学工业出版社,1984
    [6] Besold R, Neubing H C, Loyd E D. Metal flakes: highly innovative powder products. Powder Metallurgy, 1989,32(1):28
    [7] 青山武史,唐元会.汽车面漆涂料的动向.客车技术,1990,(2):40-47
    [8] 赵麦群,张颢.凹印用铜金粉的物理性能.中国有色金属学报,2002,12(4):749-752
    [9] Patton T C. Pigment handbook. New York: John Wiley 8c Sons Inc, 1973
    [10] 王伯康.新型珠光颜料.化学世界,1987,(6):273
    [11] 王伯康.云母钛珠光颜料的制备及特性.化学世界,1987,(12):531
    [12] 郭平译.单张胶印中的金色和银色油墨.印刷科技情报,1985,(3):96
    [13] 郭平译.利用金银粉油墨提高印刷产品的装饰效果.印刷科技情报,1986,(3):56
    [14] 周锦鑫,郑裕生,黄永昌.我国铜金粉生产技术的现状与存在问题浅析.化学世界,1999,40(9):498-500
    [15] 李国胜,易琼.一种雾化铜合金粉及铜粉改性处理的生产方法.中国:1320500,2001.11.07
    [16] 周锦鑫,马紫峰,黄永昌,等.氮气保护气氛下鳞片状铜金粉制造工艺.中国:129231,2001.4.25
    [17] 周锦鑫.超细铜金粉生产制造工艺优化及改造研究.新技术新工艺,2000,(3):31-33
    [18] 张拥军.年产 1000 吨喷涂用抗氧化仿金铜合金粉.中国科技成果,2003,(9):27-31
    [19] 朱晓云.铜锌合金粉在凹版印刷中的应用.云南冶金,2000,29,(6):34-36
    [20] 朱骥良,吴申年.颜料工艺学.北京:化学工业出版社,2002
    [21] Holiday R V, Patterson R J. Method for producing metal powder. U.S. Patent:No. 4343750, 1982.5
    [22] Raman R V, Patel A N, Carbonara R S. Rapidly solidified powder produced by a
    
    new atomization process. Progress in Powder Metallurgy, 1982,(38):99
    [23] Burger M, Berg E V. fragment processes in gas and water atomization plants for process optimization purposes. Powder Metallurgy International, 1989,21(6): 11
    [24] 孔端美.HES 高效选粉机的研究与应用.水泥,1991,(1):12
    [25] 孔庆安.高效涡流选粉机在生料磨上的应用.水泥,1992,(10):15
    [26] 屈鸿屋,李慧钧.用于超细粉体分级的新型选粉机.水泥,1986,(12):3
    [27] Nowotaski M S. Effect of atmospheres on reduction and annealing of water atomized copper powders. Metal Powder Report, 1985,(1):25-28
    [28] 林主税.黄铜的光亮退火.国外重有色金属,1965,(1):42
    [29] 黄细藻.国外铜合金光亮退火.上海金属(有色分册),1987,(6):41
    [30] 韩继成.黄铜零件的放气退火.新技术新工艺,1990,(5):9
    [31] 王受谦.铝粉颜料及应用.涂料工业,1981,(2):40
    [32] Joerg Seubert, Andrea Fetz. PVD aluminum pigments:superior brilliance for coatings & graphic arts. Metal Powder Report, 2001,56(8):28
    [33] 顾宁,付德刚,张海黔,等.纳米技术与应用.北京:人民邮电出版社,2002
    [34] Banin U, Cao Y W, Katz D, et al. Identification of atomic-like electronic state in indium arsenide nanocrystal quantum dots. Nature, 1999, (400): 542-544
    [35] Facako S, Dekorsy T, Koerdt C, et al. Formation of ordered nanoscale semiconductor dots by sputtering. Science, 1999, (285): 1551-1553
    [36] Springholz G, Holy V, Pincaolits M, et al. Self-organized growth of three-dimensional quantum-dot crystals with stacking and a tunable lattice constant. Science, 1998, (282): 734-737
    [37] Garcia N, Przeslawski J, Sharonov M. Giant conductance response to light pulses in metallic nanowires. Surface Science, 1998, 407(1-3): 665-670
    [38] Ohnuma S, Masumoto T. High frequency magnetic properties, and GMR effect of nano-granular magnetic thin films. Scripta materialia, 2001, 44 (8-9): 1309-1313
    [39] Denardin J C, Pakhomov A B, Knobel M, et al. Giant hall effect in Co-SiO_2 nanocomposites Journal of Physics Condensed Matter, 2000, 12(14): 3397-3399
    [40] 朱光中.纳米复合材料进展概况.惠州学院学报,2002,22(3):36-40
    [41] 李强勇.纳米薄膜研究的进展.真空与低温,1994,13(3):162-169
    [42] 曹茂盛,关长斌,徐甲强.纳米材料导论.哈尔滨:哈尔滨工业大学出版社,2001
    [43] 印仁和,陈溪芳 PVD 镀膜技术研究及进展,安徽工学院学报,1993,12(4):7-15
    [44] 张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000
    
    
    [45] 张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001
    [46] 李云奇.真空镀膜技术与设备.沈阳:东北工学院出版社,1989
    [47] Mauch R H, Menner R, Schock H W. Comparison of ZnS: Mn AC TFEL devices prepared by manganese diffusion and coevaporation. Crystal Growth, 1988, 86(1-4): 885-889
    [48] Roaul Weil, Marguerte Joucla, Jean Luc Loison, et al. Preparation of optical quality Zn-Cd-Te thin films by vacuum evaporation. Applied Optics, 1998, 37(13): 2881-2882
    [49] 赵锡钦.溅射薄膜技术的应用.电子机械工程,1999,79(3):58-62
    [50] Musil J. Sputtering of thin films—present status and trends. Le Vide Science and Technique and Application of Hard Coatings. 1996, (279): 10-17
    [51] Mammana A P, Torriani I L, Silveira M A, et al. Characterization of Ta thin films obtained by dc sputtering. Vacuum, 1990, 41(6): 1403-1404
    [52] Keyes R W. Miniaturization of electronics and its limits. IBM Journal of Research and Development, 1988, (5): 24-26
    [53] Smentkowski, Vincent S. Trends in sputtering. Progress in Surface Science, 2000, 64(1):1-5
    [54] Scherer M. Reactive alternating current magnetron sputtering of dielectric layer. Journal of Vacuum Science & Technology, 1992, 10(4): 1772-1776
    [55] Carcia P F, Meinhaldt A D, Suna A. Perpendicular magnetic anisotropy in Pd-Co thin films layered structures. Applied Physics Letters, 1985, 47(2): 178-182
    [56] 王银川.真空镀膜技术的现状及发展.现代仪器,2000,(6):1-4
    [57] 孙洪斌.三极反应溅射超硬镀层工艺及其应用.热处理,1999,(1):21-24
    [58] Sung-Tae Kia, Hyun-Ho Kim, Hyun-Il Kim, et al. Effect of activation of oxygen by electron cyclotron resonance plasma on the incorporation of Pb in the deposition of Pb (Zr, Ti)O_2 films by DC magnetron sputtering. Japanese Journal of Applied Physics, 1997, 36(5): 3379-3382
    [59] Jianzhong Shi, Kaigui Zhu, Lide Zhang Composition modulation in In_xGa_(1-x) as nanocrystals embedded in SiO_2 film by radio frequency magnetron cosputtering. Applied Physics Letters, 1998, 72(25): 3341-3343
    [60] 侯鹤岚,张世伟,李云奇,等.溅射靶的开发与应用.真空,2000,1(2):37
    [61] 王茂祥,吴建宁.与等离子体相关的真空沉积技术及其应用.电子工程师,1999,(7):1-3
    [62] 严东生.纳米材料的合成与制备.无机材料导报,1995,10(1):1-6
    
    
    [63] Lin J, Yu M, Pang M L, et al. State of the art: luminescent films prepared by sol-gel process. Chinese Journal of Luminescence, 2001, 22(4): 373-383
    [64] 江子伟,叶宪曾,齐大荃,等.仪器分析教程.北京:北京大学出版社,1999
    [65] 唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,2003
    [66] 中南工业大学测试分析开放中心.近代理化仪器及其测试技术.长沙:中南工业大学出版社,1991
    [67] 朱明华.仪器分析.北京:高等教育出版社,2001
    [68] 韩旭里,张孟秋.工科数学.长沙:湖南科学技术出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700