新型平板式CPL的理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细抽吸两相流体回路(CPL:Capillary Pumped Loop)是一种利用工质相变传递热量并且利用毛细力驱动系统循环的装置,具有高效、可靠、节能以及传输距离长等优点,在航天器热控以及电子装置冷却等方面具有广阔的应用前景。
     但是国内外的研究表明,由于各种原因传统CPL系统存在启动困难和运行过程中压力和温度的波动等问题,这严重制约了其应用发展。国内外许多学者就此问题展开了广泛而深入的研究,积极探索解决的方法。
     本文首先介绍了CPL系统的工作原理和运行特点,对国内外CPL系统的研究状况进行了述评,指出了传统CPL系统的缺点和不足。针对这些问题,并结合国内外研究经验,对传统的CPL系统进行了技术创新,设计并制造了一种新型平板式CPL系统。在所设计的新型平板式CPL系统中,蒸发器和冷凝器均采用带有毛细芯的平板式结构,系统中还设计了储液器用来控制和调节系统的温度;为了提高回流液的品质,系统中设计了过冷器。蒸发器的设计借鉴了LHP的蒸发器的设计,在回流液体入口侧设计了由纵横十字槽道构成的液体补偿腔,以提高系统的稳定性以及高热流密度工作特性;冷凝器采用新型的三通道平板式结构,而且在其中也采用了毛细芯结构,以改善系统的启动特性和稳定性;在系统的构成方面,与传统的CPL系统不同,储液器通过两条通道和系统回路进行流体交换,(1)储液器和冷凝器相连;(2)储液器和回流液体管道相连。这些创新设计可以大大改善系统的启动性能和调节性能。为了证明新型平板式CPL系统工作性能,针对所设计的新型平板式CPL系统建立了试验系统,对新型平板式CPL系统进行了启动和变工况等运行特性试验,实验证明,该系统在高、低热负荷下都具有可靠、简便的启动特性,稳定的变工况运行性能,并且在系统运行过程中没有出现系统干涸现象。
     众所周知,没有系统理论的指导,开发出的新技术、新产品将很难十全十美,也不可能足够完善,甚至使一些关键技术的突破受到制约和停滞不前,影响其进一步发展。因此本文围绕着所研制的新型平板式CPL系统,以系统和系统的关键部件蒸发器、冷凝器为研究对象,进行了一系列理论研究与分析。
     论文首次引入场协同原理分析新型平板式CPL系统的蒸发器毛细芯内的流动与传热特性,运用场协同原理分析工质在蒸发器毛细芯中的流动与传热情况,针对不同的蒸发器肋片结构参数、毛细多孔芯厚度以及不同的热流密度进行了数值分析,提出了CPL蒸发器结构以及性能优化的方向以及途径
     本文在对新型平板式CPL系统的启动过程分析的基础上,采用数值分析方法研究了新型平板式蒸发器的启动特征,并将数值计算结果和试验结果进行了比较,结果表明计算结果与实验结果较吻合。文中还研究了不同的平板式蒸发器结构系统启动性能对整个系统的影响,提出了改善CPL系统蒸发器的启动性能以及增强系统的稳定性的一些方法及措施。此外,论文还采用流体体积函数(VOF)模型分析了工质在毛细芯冷凝器中相变与流动传热情况,分析了不同的壁面温度以及不同的蒸汽入口速度对冷凝相变界面的影响。结果表明,采用毛细芯冷凝器结构可以抑制甚至消弱系统的压力波动。
     最后论文针对所研究的平板式CPL系统的具体情况,采用集总参数法建立了系统动态运行的数学模型,借助Matlab/Simulink进行仿真计算,并将仿真结果与实验结果进行了比较,结果表明该系统仿真模型在一定精度上可以反映平板式CPL系统的运行规律和特征。
     本文理论分析和实验研究结果的均表明,所研制的新型平板式CPL系统大大改善了系统启动性能,提高了系统运行的稳定性。
The CPL (Capillary Pumped Loop) is such a system, of which the driven potential depends on the phase change of the working fluid and the capillary force, and therefore it has those characters that make it very suitable to the thermal management on the satellite and electronic component cooling, such as high reliability, energy saving and transferring heat over long distance, and so on.
     However, many investigations about CPL indicate that there are problems that plague the applications of CPL, such as startup difficulty and not being robust and reliable due to pressure oscillation during CPL operation. Therefore, how to restrain the hydrodynamic oscillation and improve evaporator startup become the crucial issue on CPL research and many researchers are now investigating these problems.
     This thesis first introduces the operation principles and characteristics of the CPL system, and gives some comments on CPL systems that have already been made and put into study. Based on this a new type of CPL system is constructed and tested in the present investigation, which combines the advantages of CPLs and LHPs (loop heat pipes) by improving configurations both for system and components. In the present CPL, both evaporator and condenser are designed as a type of flat plate with porous wick, and a reservoir is used to control and adjust operation temperature of the system. In addition, a sub-cooler is adopted to improve the quality of working fluid flowing back to evaporator. A plate type of evaporator with a cross channel for liquid supply was made to reduce the probability of dry-out point caused by strong evaporation in the case of high heat flux, and therefore to enhance the stability of the system. In addition, a plane type of condenser with porous wick is designed, which is of the three ports for vapor-pipe inlet, liquid-pipe outlet and adjusting pipe connected to reservoir. The startup performance of the system benefits greatly from this three-port design, as liquid in the system can be easily pressed into reservoir due to resistance reduction. In the present system configuration, the fluid exchange between the reservoir and the loop is through two ways: (1) from reservoir to condenser, and (2) from reservoir to liquid pipe line. This is very different from the traditional CPL, and can greatly improve the startup performance and the adjustment capability of the system. Startup experiments under different heat load and working conditions were conducted. Excellent startup performance, being stable and easy, has been shown for the plate type CPL system, which validates the new configuration. Pressure oscillation and temperature fluctuation in the system were reduced largely owing to the induction of porous wick in the plane condenser. During experimental processes lasting more than 10 hours, the new type CPL shows outstanding thermal behaviors and no dry-out phenomena were observed.
     In this thesis, the characteristics of flow and heat transfer under different geometrical structures and heat flux densities in the porous wick of a CPL evaporator have been numerically studied according to field synergy principle. The calculation results indicate that the heat flux density and geometrical structures, such as fin width and wick height, exert great impacts on the heat transfer of a CPL evaporator, which demonstrates that the field synergy principle can be applied to optimize the configuration of the evaporator and consequently to enhance the heat transfer in a CPL evaporator.
     During experimental research, a phenomena can be observed that the back conduction is significant in flat plate type of CPL evaporator and can not be ignored, which can impede the CPL operation. In order to improve the operation characteristics of flat plate type evaporator, the numerical simulation method is introduced to study startup characteristics. On the basis of these , some measures about improving startup and operation capabilities are presented.
     Based on VOF method, the change and flow in condenser with porous wick is studied, and numerical method is used to analysis the effects on condensation under different wall temperature and inlet velocity of vapor. The results present that a fixed condensation physical interface can be formed on the face of porous wick, which can restrain, even eliminate the pressure oscillation.
     The dynamic operational characteristic of this CPL is investigated based on the nodal method. Matlab/Simulink is employed to perform the simulation to obtain the operational parameters such as temperature and pressure during different heat loads. The simulated results are verified by experiment, showing a good accordance with the real ones and have good precision as well.
     The studied results both theoretically and experimentally demonstrate that flat plate type of CPL shows excellent performance in start-up, and has good stability during operation and adjustment process.
引文
[1] 闵桂荣,郭舜,航天器热控制,科学出版社,1998 第 2 版
    [2] 余建祖,电子设备热设计及分析技术,高等教育出版社,2002 年 12 月第 1 版
    [3] F.J.Stenger, Experimental feasibility study water-filled capillary pumped heat transfer loops, NASA X-1310, NASA LeRC Report, 1966
    [4] J.Ku., E.J.Kroliczek, W,J.Taylor et al, Functional and performance tests of two capillary pumped loop engineering models, AIAA/ASME 4th Joint thermophysics and heat transfer conference, June 2-4, Boston, Massachuseets, AIAA-86-1248, 1986
    [5] J. Ku, Thermodynamic aspects of capilalry pumped loop operation, AIAA/ASME 6th Joint thermophysics and heat transfer conference, June 20-23, Colorado, Springs CO., Boston, AIAA-94-2059,1994
    [6] L. Ottenstein, J. Ku, and D. Butler, Testing of flight components for the capillary pumped loop flight experiment, SAE paper 93-2235, 1993
    [7] J. Ku, E.J. Kroliczek, D. Butler et al, Capillary pumped loop GAS and Hitchhiker flight experiments, AIAA Paper No. 86-1249,1986
    [8] J. Ku, E.J. Keoliczek, M.E. Mccabe, et al, A High Power Spacecraft Thermal Management System, AIAA Paper No. 88-2702,1988
    [9] J. Ku,.et al, The hybrid capillary pumped loop, SAE Paper No. 881083,1988
    [10] 张家迅,毛细抽吸两相回路关键技术的研究及其应用方案设想,中国空间技术研究院博士学位论文,1999
    [11] J. Ku, Recent advances in capillary pumped loop technology, AIAA 97-3870, 1997 National Heat Transfer Conference, August 10-12, Baltimore, Maryland, 1997
    [12] D. Butler, L. Ottenstein, J. Ku, Design evolution of the capillary pumped loop (CAPL-2) flight experiment, SAE Paper 961431, 1996
    [13] L. Ottenstein, D. Butler, J. Ku et al., Flight testing of the capillary pumped loop 3 experiment, Space Technology and Applications International Forum –STAIF, 2003
    [14] Rogere R. Rehiel, T. Dutra, Development of a loop heat pipe for application in future space missions, Applied thermal energy, 25:101-112, 2005
    [15] R. R. Riehl, H. V. R. Camargo, L. Heinen et al, Experimental investigation of acapillary pumped loop towards its integration on a science microsatellite, 2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, November:17-22, 2002
    [16] Masao Furukawa, Static/dynamic analyses for pumped two-phase fluid loop control, AIAA paper No.97-2468,1997
    [17] Masao Furukawa, An integrated computational method for pumped two-phase fluid loop system/subsystem design, AIAA paper No. 95-2068, 1995
    [18] Masao Furukawa, Methods and analysis for capillary pumped loop pressure/temperature control, AIAA paper No. 96-1831,1996
    [19] J. Ku and T. Hoang, An experimental study of pressure oscillation and hydrodynamic stability in a capillary pumped loop, Paper submitted to 1995 National Heat Transfer Conference, Portland, Oregon, August 6-9, 1995
    [20] T. Hoang and J. Ku, Theory of hydrodyanmic stability of capillary pumped loops, Paper submited to 1995 National Heat Transfer Conference, Portland, Oregon, August 6-9, 1995
    [21] A. Kiper, G. Feric and M. Anjum, Transient analysis of a capillary pumped loop heat pipe, 5th Joint thermophysics and heat transfer conference, Seattle,WA,1-6, AIAA paper: 90-1685,1990
    [22] E. Pouzet, J. L. Joly, V. Platel et al, Dynamic response of a capillary pumped loop subjected to various heat load transients, International Journal of Heat and Mass Transfer, 47, 2293-2316, 2004
    [23] Yiding Cao and A. Faghri, Conjugate analysis of a flat-plate type evaporator for capillary pumped loops with three-dimensional vapor flow in the groove, Int. J. Heat and Mass Transfer, 37(3):401-409, 1994
    [24] A.S. Demidov, et al., Investigation of heat and mass transfer in the evaporation zone of a heat pipe operating by the ‘inverted meniscus’ principle, Int. J. Heat and Mass Transfer, 37: 2155-2163,1994
    [25] C. Figus, Y. Le Bray, M. Prat, et al., Heat and mass transfer with phase change in a porous structure partially heated: continuum model and pore network simulation, Int. J. Heat and Mass Transfer, 42:2557-2569, 1999
    [26] Y.H.Yan, J.M. Ochterbeck,Numerical investigation of the steady-state operation of a cylindrical capillary pumped loop evaporator, Journal of Electronic Packaging Vol.125, 2003
    [27] J.M. Gottschlich, R.Richter, 1991 SAE Aerospace Atlantic, Dayton, OH, SAE Technical Paper, 911188, 1991
    [28] I. Muraoka, F.M.Ramos,V.V.Vlassov, Experimental and theoretical investigation of a capillary pumped loop with a porouselement in the condenser, Int. Comm. Heat and Mass Transfer, 25(8), 1085-1094, 1998
    [29] 刘伟,新型卫星热控技术,中国国防科学技术报告,华中科技大学,2004
    [30] A.M. Kiper, Investigation of thermal-fluid mechanical characteristics of the capillary pumped and the pumped two-phase loop,Semiannual Status Report, George Washington University, 1 Sept., 1986~28 Feb., N87-20557, 1987
    [31] T. O'Connell T. Hoang. J. Ku, Effects of transport line diameters on pressure oscillations in a Capillary Pumped Loop, AIAA Paper: 96-1833,1996
    [32] T. Kaya, J. Ku, Ground testing of loop heat pipes of spacecraft thermal control, AIAA 33th Thermophysics Conference, Norfolk,VA,1-8, 1999, AIAA:99-3447,1999
    [33] 曲伟,侯增祺,毛细抽吸两相流体回路的温控特性和极限特性研究,节能技术,2:9-13, 1998
    [34] 张加迅,侯增祺,CPL 技术在空间飞行器上的应用,工程热物理学报,22(3): 340-343, 2001
    [35] 钱吉裕,李强,宣益民,毛细泵回路蒸发器的数值研究,中国空间科学技术,2005年第1期
    [36] 王维城,吴晓敏,俞平,毛细抽吸两相环内温度压力稳定性分析,清华大学学报,41(10),2001
    [37] 曲艺,李智敏,颜岩等,多孔芯冷凝器内流动与换热特性,工程热物理学报,22(3), 351-353, 2001
    [38] 牟其峥,屠传经,毛细抽吸两相回路蒸发器管内传热的理论分析,浙江大学学报(工学版) 34(5), 499-502, 2000
    [39] 牟其峥,屠传经,毛细抽吸两相回路蒸发器管内流动的理论分析,浙江大学学报(工学版),34(3), 253-256, 2000
    [40] 俞平,张加迅,王维城, 毛细抽吸两相环系统稳定性的实验研究 清华大学学报(自然科学版),39(6), 86-89, 1999
    [41] 韩延民,毛细抽吸两相环路(CPL)理论研究与实验设计,硕士学位论文[华中科技大学],2003
    [42] 王强,平板式CPL系统仿真研究,硕士学位论文[华中科技大学],2004
    [43] 王强,刘伟,刘志春等,CPL蒸发器多孔芯温压变化的数值模拟,华中科技大学学报,32(5):87-89,2004
    [44] 韩延民,刘伟,黄晓明,CPL冷凝器的多孔芯和槽道内蒸汽冷凝过程的分析,华中科技大学学报,31(7):58-60,2003
    [45] Y.M. Han,W. Liu,X.M. Huang, The numerical simulation for the unsteady heat and mass transfer process in capillary pumped loops evaporator. Journal of Astronautics,24(4):397-403,2003
    [46] 黄晓明,刘伟,申盛等,CPL蒸发器非饱和多孔芯内流动与传热分析,中国工程热物理学会传热传质学学术会议论文集,上海,2002
    [47] Yu F. Maydanik, Loop Heat Pipe, Applied Thermal Engineering, V25, 635-657, 2005
    [48] B. Jone, Ed. Kroliczek , Development tof the cryogenic CPL, 33rd Intersociety Engineering Conference on Energy Conversion, Colorado Springs, CO, August 2-6,1998
    [49] Edward J. Kroliczek, Brent Cullimore, Development of a Cryogenic CPL, CONF/960109, American Institute of Physics, 1996
    [50] M.M.Ohadi, Serguei V., Dessiatoun and Bingjian Mo, et al, An experimental feasibility study on EHD–assisted CPL, SpaceTechnology and Application International Forum,1997
    [51] J. Baumann, B. Cullimore and C. Egan, Development of a rugged hybrid two-phase heat trasport loop,AIAA 92-2866, 1992
    [52] Triem Hoang et al, Development of two phase capillary pumped loop (CPL) heat Transport for spacecraft center thermal bus, Space Technology and Application International Forum STAIF, 2003
    [53] David Antoniuk and John Pohner, Superheat requirement for start-up during reflux-mode operation of heat pipes, AIAA-93-2737, 1993
    [54] J. Ku, E. J. Kroliczek, Capillary pumped loop technology development, Proc. of 6th Int. Heat Pipe Conference, 1987
    [55] E.J. Kroliczek, J. Ku, Design, development and test of a capillary pumped loopheat pipe, AIAA 19th Thermophysics Conference, Snowmass, Colorado, June 25-28.AIAA-84-1720, 1984
    [56] 牟其铮,毛细抽吸两相回路非稳态流动和传热特性的理论分析和试验研究,浙江大学博士学位论文,1999
    [57] Dan Butler, Jentung Ku, Loop Heat Pipes and Capillary Pumped Loops – an Applications Perspective, Space Technology and Applications International Fomm-STAIF, 2002
    [58] J.Ku, Thermodynamic aspects of capillary pumped loop operation, 6th AIAA /ASME Joint Thermophysics and Heat Transfer Conference, Colorado, Spring CO., June20-23, AIAA-94-2059, 1994
    [59] J.T. Dickey and GP Peterson., Experimental and analytical investigation of a capillary pumped loop, Journal of thermophysics and heat transfer, Vol 8. No3, 602-607,1994
    [60] 庄骏,张红,热管技术及其工程应用,化学工业出版社,2000.6
    [61] T.J. Laclair, Pre- and post-boiling nucleation thermal and fluid flow transients during the startup of capillary pumped loop(CPLs), Doctor thesis of Purdue University, 2000
    [62] Pin-Chin Chen, Wei-Keng Lin, The application of capillary pumped loop for cooling of electronic components, Applied Thermal Engineering 21, 1739-1754, 2001
    [63] Jeffrey Kirshberg, Kirk Yerks and Dave Trebotich, et al, Cooling effect of a mems based micro capillary pumped loop for chip-level temperature control, ASME paper, 1-8, 2000
    [64] D.Trebotich, Jeffrey Kirshberg and J. Teng et al,Optimization of a mems based micro capillary pumped loop for chip-level thermal control, Modeling and simulation of microsystems,262-265, 2001
    [65] Laura Meyer, Samhita Dasgupta, David Shaddock et al, A silicon-carbide micro-capillary pumped loop for coolling high power devices, 19th IEEE semi-therm symposium, 364-368, 2003
    [66] J.Bear, Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, INC,1972
    [67] K.Vafai and S.Whitaker, Simultaneous heat and mass transfer accompanied byphase change in porous insulation, J. Heat Transfer 108, 132-140, 1986
    [68] K.Vafai and H.C.Tien, A Numerical investigation of phase change effects in porous matrials, Int. J. Heat Mass Transfer 32, 1261-1277, 1989
    [69] K.S. Udell and J.S. Fitch, Heat and mass transfer in capillary porous media considering evaporation, condensation, non-condensible gas effects, ASME HTD-46: Heat transfer in porous Media and Particulate Flows, 103-110
    [70] K.S. Udell, Heat transfer in porous media heated from above with evaporation, condensation and capillary effects, J.Heat Transfer 105, 402-409
    [71] Y. Kchuah and V.P. Carey, Analysis of boiling heat transfer and tow-phase flow in porous media with non-uniform porosity, Int. J. Heat Mass Transfer 28,147-154,1985
    [72] 陈芝久等,制冷系统热动力学,机械工业出版社,1998 年 5 月第 1 版
    [73] 黄晓明,多孔介质相变与流动传热及若干应用研究,博士学位论文[华中科技大学],2004
    [74] 刘伟,杨金国,刘志春等平板式 CPL 系统,发明专利,申请号:200510001149.2
    [75] 刘伟,刘志春,杨金国等,具有平面式毛细芯蒸发器和冷凝器的 CPL 系统,国家发明专利,申请号:200510019112.2
    [76] 刘伟,刘志春等,一种用于 CPL 的平面式毛细芯冷凝器,国家发明专利,申请号:200510019113.7
    [77] 刘伟,杨金国,刘志春等,一种用于 CPL 的平面式毛细芯蒸发器,国家发明专利,申请号:200510019110.3
    [78] 刘伟,杨金国,刘志春等,用于 CPL 的带有散热片的平面式毛细芯蒸发器,国家发明专利申请号:200510019111.8
    [79] Vincent Dupont, Jean L. Joly and Marc Miscevic, et al, Capillary Pumped Loop Startup: Effectsof the Wick Fit on Boiling Incipience, Journal of thermophysics and heat transfer, Vol. 17, No. 2, April–June 2003
    [80] R.R. Riehl, Edson Bazzo, Comparison between acetone and ammonia on the thermal perfourmance of a small-scale capillary pumped loop, Space Technology and Applications International Forum-STAIF,edited by M.S. EI-Genk, 80-87, 2003
    [81] 李亭寒等,微型热管的稳态模化分析及其试验研究,中国空间科学技术,第6期,1997
    [82] J. Ku, T.wanson, K. Herold, and K. Kolos, Flow visualization within a capillary evaporator, 23th Int. Conference on Environmental Systems, Colorado Springs, CO, July, 12–15, 1993
    [83] 过增元,对流换热的物理机制以及控制,科学通报, 45(19):2118-2122,2001
    [84] W.Q. Tao, Z.Y.Guo and B.X. Wang, Field synergy principle for enhancing convective heat transfer-its extension and numerical verifications, Int. J. Heat and Mass Transfer, 45: 3849-3856, 2002
    [85] 过增元,黄素逸等,场协同原理与强化传热新技术,中国电力出版社,2004年8月第1版
    [86] 陶文铨,数值传热学,西安交通大学出版社,2001年5月第1版
    [87] 刘志春,刘伟等,CPL蒸发器毛细芯中流动与传热的场协同分析,工程热物理学报,第27卷第2期,2006
    [88] Q.Liao, and T.S.Zhao, Evaporative heat transfer in a capillary structure heated by a grooved block, Journal of Thermophysics and Heat Transfer, 38: 3091-3101, 1995
    [89] M. Buchko,Test results of prototype two-phase reservoirs for the CAPL flight experiment, AIAA Paper 92-2888, AIAA 27th Thermophysics Conference, Nashville, Tennesse, July 6-8. , 1992
    [90] 宰军,平板式CPL的系统设计与实验研究,硕士学位论文[华中科技大学],2005年
    [91] 刘伟,小型CPL的毛细芯研制,中国国防科学技术报告,华中科技大学,2003
    [92] 刘伟,刘志春等,CPL系统的工程设计与理论分析,卫星热控制技术研讨会论文集,总装备部卫星技术专业组,2003
    [93] Z.C. Liu, W. Liu, The numerical simulation of the flow and heat transfer for the porous wick in CPL evaporator, Proc. of the 3rd Int. Symposium on Heat Transfer Enhancement and Energy Conservation, Guangzhou, China, 2004
    [94] Z.C. Liu, W. Liu, Design and Experimental Research of a Flat Type CPL with Wicked Condenser, Proc. of the 5th Int. Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conservation, Xi’an, China, 2005
    [95] 刘志春,刘伟等,平板型CPL的设计与初步实验研究,中国空间科学技术,已录用
    [96] J. Ku, Start-up issure of capillary pumped loops, 19th international heat pipe conference, Albuquerque, New Mexico,May 1-5,1995
    [97] A. Borodkin, V. Sasin, V. Fedorov, Experimental investigation and analytical modelling of an autooscillation two-phase loop, Proceedings of the 9th International Heat Pipe Conference, May 1-5, Albuquerque, NM., 1995
    [98] D. Antoniuk, and J. Pohne, Deleterious Effects of non-condensible gas during capillary pumped loop startup, SAE Paper 941408, SAE 1994 Transactions, Journal of Aerospace, Sec. 1, Vol. 101, pp. 1000-1010 r, 1994
    [99] B.A. Cullimore, Start-up transients in capillary pumped loops, AIAA Paper 91-1374, AIAA 26th Thermophysics Conference. , 1991
    [100] D.Douglas, J. Ku, and L. Schlager, Investigation of the starter pump purge superheat observed in the CAPL1 Flight, AIAA Paper No. 97-3871, National Heat Transfer Conference, Baltimore, Maryland, pp. 1-10, 1997
    [101] J. Ku, Overview of capillary pumped loop technology, HTD-Vol. 236, Heat Pipes and Capillary Pumped Loops, American Society of Mechanical Engineers, New York, HTD-Vol 236, pp. 1-17, 1993
    [102] 刘伟,宰军,刘志春等,平板式毛细抽吸两相流体回路系统启动试验研究,华中科技大学学报,2005年第12期
    [103] Tim J.LaClair, Issam Mudawar, Thermal transient in a capillary evaporator prior to the initiation of boiling, International Journal of Heat and Mass Transfer, Volume: 43, Issure:21, P.3937-3952, 2000
    [104] 曲伟,刘纪福等,毛细抽吸两相回路的启动特性研究,哈尔滨工业大学学报,31(4):74 –79,1999
    [105] 刘志春,刘伟等,平板式CPL蒸发器启动特性研究,制冷学报,2006年第3期
    [106] 马同泽,候增祺,吴文铣,热管,科学出版社,1983年5月第1版
    [107] R.R. Riehl, Experimental investigation of the convective condensation heat transfer in micro channel flow, Proceedings of the ENCIT, Caxambu - MG, Brazil - Paper CIT02-0495,2002
    [108] E.Begg, D. Khrustalev and A. Faghri , Complete condensation of forced convection two-phase flow in a miniature tube, ASME Journal heat transfer,Vol.121, No.4:904-915, 1999
    [109] Gad Hetsroni, Flow and heat transfer in micro-channels,5th InternationalSymposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion Xi’an, China, 3-6 July, 2005
    [110] Satish G. Kandlikar, Effect of liquid-zhapor phase distribution on the heat transfer mechanisms during flow boiling in ninichannels and microchannels, 5th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, ISMF’05 Xi’an, China, 3-6 July 2005
    [111] C.B. Sobhan, S.V. Garimella and V.V. Unnikrshranm, A computational model for the transient analysis of flat heat pipes, Inter society conference on thermal phenomena, 107-113, 2000
    [112] N. Zhu and K. Vafai, Analytical modeling of the startup characteristics of asymmetrical flat-plate and disk shape heat pipes, In. J. heat and mass transfer, Vol. 41, No. 17, 1998
    [113] V.G. Pastukhov Yu.F. Maidanik, C.V. Vershinin, M.A. Korukov, Miniature loop heat pipes for electronics cooling, Applied Thermal Engineering, 23: 1125–1135, 2003
    [114] Samuel W. J. Welch, John Wilson. A volume of fluid based method for fluid flows with phase change, Journal of Computational Physics, 160:662–682, 2000
    [115] D. Lakehal, M. Meier, M. Fulgosi. Interface tracking towards the direct numerical simulation of heat and mass transfer in multiphase flows, International Journal of Heat and Fluid Flow, 23: 242-257, 2002
    [116] Dalton J.E Harvie, David F. Fletcher. A hydrodynamic and thermodynamic simulation of droplet impacts on hot surface, Part I: theoretical model, International Journal of Heat and Mass Transfer , 44: 2633-2642, 2001
    [117] Dalton J.E Harvie, David F. Fletcher. A hydrodynamic and thermodynamic simulation of droplet impacts on hot surface, Part II: validation and applications, International Journal of Heat and Mass Transfer, 44:2643-2659, 2001
    [118] M.R. Davidson and M. Rudman, Volume-of-fluid calculation of heat or mass transfer across deforming interfaces in two-fluid flow, Numer Heat Transfer Part B Fundam 41, 291–308, 2002
    [119] L. Chen, S.V. Garimella, J.A. Reizes, and E. Leonardi, Motion of interacting gas bubbles in a viscous liquid including wall effects and evaporation, Numerical Heat Transfer, A 31, 629–654, 1997
    [120] M.G. Wohak and H. Beer, Numerical simulation of direct–contact evaporation of adrop rising in a hot, less volatile immiscible liquid of higher density-possibilities and limits of the SOLA-VOF/CSF algorithm, Numerical Heat Transfer, A 33, 561–582, 1998
    [121] D. K. Agarwa, S. W. J. Welch, G. Biswas. Planar simulation of bubble growth in flm boiling in near-critical water using a variant of the VOF method, Journal of Heat Transfer, Transactions of the ASME, Vol. 126 pp329-338,2004
    [122] Yuwen Zhang, A.Faghri, M.B.Shafii, Capillary blocking forced convective condensation in horizontal miniature channels, Journal of Heat Transfer, Transactions of the ASME, Vol.123, pp.501-510, 2001
    [123] Yuwen Zhang, A.Faghri, Numerical simulation of condensation on a capillary grooved structure,Numerical Heat Transfer, Part A, 39:227-243, 2001
    [124] Mads Jakob Jense, Bubbles in Microchannels, Master Project, c960853, Technical University of Denmark, May 1st, 2002
    [125] Bradut Eugen Ghidersa, Finite volume-based volume-of-fluid method for the simulation of two-phase flows in small rectangular channels, Dissertation der Universit?t Karlsruhe Genehmigte: 26 Juni 2003
    [126] Samim Anghaie, Gary Chen, Sin Kim, An energy based pressure correction method Ftor fiabatic two-phase flow with phase change, Trends in Numerical and Physical Modeling for Industrial Multiphase Flows, Institut d'Etudes Scientifiques de Cargèse, France, 27th-29th September, 2000
    [127] P.J. Stuttaford, S. Anghaie, N. Shyy, Computation of high-temperature near-wall Heat Transfer using an enthalpy balancing scheme, Int. J. Heat Mass Transfer, Vol. 38, No. 1, pp. 55-64, 1995
    [128] Z. Ding, S. Anghaie, Numerical modeling of conduction-driven bulk Eevaporation and condensation process with constant Volume, Int. J. Numerical Methods in Engineering, Vol.39, 219-233, 1996
    [129] S. Anghaie, Z. Ding, Thermal-hydraulic analysis of mulk evaporation and condensation in a multiphase nuclear fuel cell. nuclear technology, Vol. 120, 57-70, 1997
    [130] Gary Chen, Samim Anghaie, A fast converging CFD model for thermal hydraulic analysis of gas cooled reactor cores, 7th International Conference on Nuclear Engineering, Tokyo, Japan, April 19-23, 1999
    [131] S. Anghaie, G. Chen, C. Boyd, Development of a two-phase navier-stockesequation solver for analysis of LWR thermal hydraulic problems, Proceedings of Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, Vol. 1, 177-186, Madrid, Spain , September 1999
    [132] 邓芳芳, 刘伟, 彭仕文, 杨金国. 平板多孔芯冷凝器内工质相变换热的 EOF 方法. 工程热物理学报, 2005, 26(4): 644~646
    [133] 邓芳芳,平板式 CPL 的数值模拟与系统仿真[硕士学位论文],武汉:华中科技大学图书馆,2005 年
    [134] 刘儒勋,王志峰,数值模拟方法和运动界面追踪,中国科学技术大学出版社,2001.10
    [135] Eric K. Beeg, Transport phenomena in micro/miniature channels for two phase flow heat transfer devices including heat pipes and fuel cells, Doctor thesis of University of Connecticut, 2003
    [136] 尉迟斌等编,实用制冷与空调工程手册,机械工业出版社,2002年1月第一版
    [137] 刘伟,刘志春等,CPL系统的工程设计与理论分析,卫星热控制技术研讨会论文集,总装备部卫星技术专业组,2003
    [138] W·M·罗森诺(美)等主编,李荫亭等译,传热学手册(下册),科学出版社,1987.10.第 1 版
    [139] 张志勇等编著,精通 MATLAB 6.5 版,北京航空航天大学出版社,2003.3
    [140] B.Cullimore, J.Baumann , Steady-state and transient loop heat pipe modeling, Proceedings of the 30th ICES, Toulouse, France, Paper 2000-01-2316, July 10-13, 2000
    [141] Valeri V. Vlassov and Roger R. Riehl, Modeling of a Loop Heat Pipe for Ground and Space Conditions, SAE paper:2005-01-2935, 2005
    [142] L.L. Vasiliev, L.L. Vasiliev Jr., The sorption heat pipe—a new device for thermal control and active cooling, Superlattices and Microstructures 35(24):485–495, 2004
    [143] Jon Zuo, Chanwoo Park, David Sarraf, et al, Robust Cooling of High Heat Fluxes Using Hybrid Loop Technology, Space technology and applications international forum-STAIF, 64-68, 2005
    [144] F.H Harlow, J.E.Welch, Numerical calculation of time dependent viscous incompressible flow of fluid with free surface, Phys Fluid, Vol.8, 1965
    [145] A.A Amsden and FH Harlow, A simplified MAC technique for incompressible fluid flow calculation, Tech.report La 4370, Los Alamos Scientific Laborator, 1970
    [146] Jun Liu and D.B. Spalding, Numerical simulation of flow with moving interface, PCH, Vol.10,1988
    [147] C. W. Hirt, B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. Vol.39: 201-225,1981
    [148] J. U. Brackbill, D.B Kothe and C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys., Vol.100:335-354, 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700