选择性C-N键的形成及微波辅助分子内oxa-Michael加成反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对选择性C-N键的形成及微波辅助分子内oxa-Michael加成反应进行了研究。
     以邻氨基苯甲酸类化合物和脒为原料,可方便地获得喹唑啉-4(3H)-酮类产物(1),1经POCl_3氯化可到4-氯代喹唑啉化合物(2)。2与3-氨基-1H-吡唑化合物反应可得到两种类型的产物,在酸、碱条件下2的4位碳和3-氨基-1H-吡唑化合物的NH_2发生C-N成键反应;在Pd催化条件下,2的4位碳则和3-氨基-1H-吡唑化合物的环内NH发生C-N成键反应。证明了两种反应条件下C-N键的形成是具有选择性的。论文对Pd催化下C-N成键的交叉偶联反应中的钯源、催化剂用量、配体、碱和反应温度等因素进行了优化。
     在无溶剂微波辅助作用下(E)-1-芳基-4-羟基-4-甲基-戊-1-烯-3-酮的分子内oxa-Michael加成反应中,Bronsted酸与Lewis酸均有催化活性,但Bronsted酸的催化活性高于Lewis酸的催化活性。以TfOH为催化剂,在优化的反应条件下,大部分反应都可在数分钟内完成,该反应对于芳基是取代苯环或萘环的的底物效果较好,能得到较高的原料转化率和产物选择性。这种方法的优点是反应时间短,对环境友好以及后处理简单。
The selective formation of C-N bond and microwave-assisted intramolecular oxa-Michael addition reaction were studied in this thesis.
     Quinazolin-4(3H)-ones(1) were conveniently synthesized from anthranilic acids and amidines,which could be chloridized with POCl_3 to obtain 4-chloroquinazolines (2).The reaction of 2 and 1H-pyrazol-3-amine would give two types of products.In the presence of acid or base,the C-N bond would be formed between the 4-position carbon of 2 and the NH_2 of 1H-pyrazol-3-amine.While the C-N bond between the 4-position carbon of 2 and the NH of 1H-pyrazol-3-amine would be formed when Pd catalyst was utilized.It was confirmed that the C-N bond would be selectively formed under different reaction conditions.The influence factors in the Pd-catalyzed cross-coupling of 2 and 1H-pyrazol-3-amine,such as Pd source,the ratio of the catalyst,ligand,base and reaction temperature,were optimized.
     The acid-catalyzed intramolecular oxa-Michael addition of (E)-1-aryl-4-hydroxy-4-methylpent-1-en-3-ones under solvent-free and microwave irradiation conditions has been investigated.Experimental results showed Bronsted acids were more efficient than Lewis acids in this reaction.The microwave-assisted reactions could be finished within several minutes to give high conversion and selectivity.Substrates whose aryl groups were substituted phenyl or naphthyl groups were more suitable in this reaction.This method possessed such advantages as short reaction time.environmentally benign procedures and easy purification.
引文
1 Stephen,P.S.Catalytic Cross-coupling Reactions in Biaryl Synthesis.[J].Tetrahedron 1998,54,263-303.
    2 Irina,P.B.Palladium catalyzed C-C and C-heteroatom bond for mat i o n reactions.[J].Pure Appl.Chem.1997,69,471-476.
    3 杜卫红,安忠维,徐茂梁.过渡金属催化交叉偶联反应及其在液晶合成中的应用.[J].分子催化1997,11,722-801.
    4 刘刚,宋宝安,杨松,金林红.喹唑啉衍生物及制备方法合生物活性.中国专利CN1597671A,2004.
    5 Guram,A.S.;Buchwald,S.L.Palladium-Catalyzed Aromatic Aminations with in situ Generated Aminostannanes.[J].J.Am.Chem.Soc.1994,116,7901-7902.
    6 Wolfe,J.P.;Wagaw,S.;Marcoux.,J.;Buchwald,S.L.Rational Development of Practical Catalysts for Aromatic Carbon-Nitrogen Bond Formation.[J].Acc.Chem.Res.1998,31,805-818.
    7 Hartwing,J.F.Carbon-Heteroatom Bond-Forming Reductive Eliminations of Amines,Ethers,and Sulfides.[J].Acc.Chem.Res.1998,31,852-860.
    8 Old.D.W.;Wolf,J.P.;Buchwald,S.L.A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions:Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides.[J].J.Am.Chem.Soc.1998,120,9722-9723.
    9 Wolf,J.P.;Buchwald,S.L.A Highly Active Catalyst for the Room Temperature Amination and Suzuki Coupling of Aryl Chlorides.[J].Angew.Chem.Int.Ed.1999,38,2413-2416.
    10 Wolf,J.P.:Tomori,H.;Sadighi,J.P.;Yin,J.J.;Buchwald,S.L.Simple,Efficient Catalyst System for the Palladium-Catalyzed Amination of Aryl Chlorides,Bromides,and Triflates.[J].J.Org.Chem.2000,65,1158-1174.
    11 Harris,M.C.;Buchwald,S.L.One-Pot Synthesis of Unsymmetrical Triarylamines from Aniline Precursors.[J].J.Org.Chem.2000,65,5327-5333.
    12 Huang,X.H.;Anderson,K.W.;Zim,D.;Jiang,L.;Klapars,A.;Buchwald,S.L.Expanding Pd-Catalyzed C-N Bond-Forming Processes:The First Amidation of Aryl Sulfonates,Aqueous Amination.and Complementarity with Cu-Catalyzed Reactions.[J].J.Am.Chem.Soc.2003,125,6653-6655.
    13 Biscoe,M.R.;Barder,T.E.;Buchwald,S.L.Electronic Effects on the Selectivity of Pd-Catalyzed C-N Bond-Forming Reactions Using Biarylphosphine Ligands:The Competitive Roles of Amine Binding and Acidity.[J].Angew.Chem.Int.Ed.2007,46,7232-7235.
    14 Strieter,E.R.;Blackmond,D.G.;Buchwald,S.L.;Insights into the Origin of High Activity and Stability of Catalysts Derived from Bulky,Electron-Rich Monophosphinobiaryl Ligands in the Pd-Catalyzed C-N Bond Formation.[J].J.Am.Chem.Soc.2003,125,13978-13980.
    15 Barluenga,J.;Aznar,F.;Valdes,C.N-Trialkylsilylimines as Coupling Partners forPd-Catalyzed C-N Bond-Forming Reactions:One-Step Synthesis of Imines and Azadienes from Aryl and Alkenyl Bromides.[J].Angew.Chem.Int.Ed.2004,43,343-345.
    16 Wills,M.C.;Brace,G.N.;Findlay,T.J.K.;Holmes,I.P.2-(2-Haloalkenyl)-aryl Halides as Substrates for Palladium-Catalysed Tandem C-N Bond Formation:Efficient Synthesis of 1-Substituted Indoles,[J].Adv.Synth,Catal.2006,348,851-856.
    17 Xie,X.M.;Zhang,T.Y.;Zhang,Z.G.Synthesis of Bulky and Electron-Rich MOP-type Ligands and Their Applications in Palladium-Catalyzed C-N Bond Formation.[J].J.Org.Chem.2006,71,6522-6529.
    18 Strieter,E.R.;Buchwald,S.L.Evidence for the Formation and Structure of Palladacycles during Pd-Catalyzed C-N Bond Formation with Catalysts Derived from Bulky Monophosphinobiaryl Ligands.[J].Angew.Chem.Int.Ed.2006,45,925-928.
    19 Andersom,K.W.;Tundel,R.E.;Ikawa,T.;Altman,R.;Buchwald,S.L.Monodentate Phosphines Provide Highly Active Catalysts for Pd-Catalyzed C-N Bond-Forming Reactions of Heteroaromatic Halides/Amines and(H)N-Heterocycles.[J].Angew.Chem.Int.Ed.2006,45,6523-6527.
    20 Tetsuo,T.;Yosuke,H.;Yasuyo,N.;Tadashi,I.;Takeo,S.Palladium(0)-catalyzed reaction of methyl γ,δ-Epoxysorbate with Nitrogen Nucleophiles.[J].J.Org.Chem.1989,54,977-979.
    21 Wolf,J.P.;Buchwald,S.L.Palladium-Catalyzed Amination of Aryl Iodides.[J].J.Org.Chem.1996,61,1133-1135.
    22 Koza,D.;Nsiah,Y.A.Palladium Catalyzed C-N Bond Formation in the Synthesis of 7-Amino-Substituted Tetracyclines.[J].J.Org.Chem.2002,67,5025-5027.
    23 Yamamoto,T.;Nishiyama,M.;Koie,Y.Palladium-Catalyzed Synthesis of Triarylamines from Aryl Halides and Diarylamines.[J].Tetrahedron Lett.1998,39,2367-2370.
    24 Hartwing,J.F.;Kawatsura,M.;Hauck,S.I.;Shaughnessy,K.H.;Alcazar-Roman,L.M.Room-Temperature Palladium-Catalyzed Amination of Aryl Bromides and Chlorides and Extended Scope of Aromatic C-N Bond Formation with a Commercial Ligand.[J].J.Org.Chem.1999,64,5575-5580.
    25 Bei,X.H.;Guram,A.;Turner,H.W.;Weinberg,W.H.General and Efficient Palladium-Catalyzed Aminations of Aryl Chlorides.[J].Tetrahedron Lett.1999,40,1237-1240.
    26 Wolf,J.P.;Buchwald,S.L.Room Temperature Catalytic Amination of Aryl Iodides.[J].J.Org.Chem.1997,62,6066-6068.
    27 Cui,W.;Loeppky,R.N.The synthesis of N-arylcyclopropylamines via palladium-catalyzed C-N bond formation.[J].Tetrahedron 2001,57,2953-2956
    28 AliM,H.;Buchwald,S.L.An Improved Method for the Palladium-Catalyzed Amination of Aryl Iodides.[J].J.Org.Chem.2001,66,2560-2565.
    29 Yin,J.J.;Buchwald,S.L.Pd-Catalyzed Intermolecular Amidation of Aryl Halides:The Discovery that Xantphos Can Be Trans-Chelating in a Palladium Complex.[J].J.Am.Chem.Soc.2002,124,6043-6048.
    30 Willis,M.C.;Brace,G.N.;Holmes,I.Palladium-Catalyzed Tandem Alkenyl and Aryl C-N Bond Formation:A Cascade N-Annulation Route to 1-Functionalized Indoles.[J].Angew.Chem.Int.Ed.2005,44,403-406.
    31 Doherty,S.;Knight,J.G.;Smyth,C.H.;Sore,N.T.;Rath,R.K.;Mcfarlane,W.;Harrington,R.W.;Clegg.W.Modular Synthesis of a New Class of Bis(amino-oxazoline)Using Palladium-Catalyzed Buchwald-Hartwig Amination Methodology.[J].Organometallics 2006,25,4341-4350.
    32 Didier,D.;Sergeyev,S.Synthesis of symmetrical amino and aminomethyl derivatives of Troger's base via Pd-catalyzed C-C and C-N bond formation.[J].Tetrahedron 2007,63,3864-3869.
    33 Ballet,S.;Wachter,R.D.;Maes,B.U.W.;Tourwe,D.Derivatization of 1-phenyl substituted 4-amino-2-benzazepin-3-ones:evaluation of Pd-catalyzed coupling reactions.[J].Tetrahedron 2007,63,3718-3727.
    34 Messaoudi.S.;Audisio,D.;Brion,J.;Alami,M.Rapid access to 3-(N-substituted)-aminoquinolin-2(1H)-ones using palladium-catalyzed C-N bond coupling reaction.[J].Tetrahedron 2007,63,10202-10210.
    35 Audisio,D.;Messaoudi,S.;Peyrat,J.;Brion,J.;Alami,M.A convenient and expeditious synthesis of 3-(N-substituted)aminocoumarins via palladium-catalyzed Buchwald-Hartwig coupling reaction.[J].Tetrahedron Lett.2007,48,6928-6932.
    36 Queiroz,M.R.P.;Calhelhaa,R.C.;Kirschb,G.Reactivity of several deactivated 3-aminobenzo[b]thiophenes in the Buchwald-Hartwig C-N coupling.Scope and limitations.[J].Tetrahedron 2007,63,13000-13005.
    37 Queiroz,M.R.P.;Ferreira,I.C.F.R.;Calhelhaa,R.C.;Estevinho,L.M.Synthesis and antioxidant activity evaluation of new 7-aryl or 7-heteroarylamino-2,3-dimethyIbenzo[b]thiophenes obtained by Buchwald-Hartwig C-N cross-coupling.[J].Bioorg.Med.Chem.2007,15,1788-1794.
    38 Federsel,H.;Hedberg,M.;Qvarnstrom,F.R.;Tian,W.Optimization and Scale-up of a Pd-Catalyzed Aromatic C-N Bond Formation:A Key Step in the Synthesis of a Novel 5-HT Receptor Antagonist.[J].Org.Process.Res.Dev.2008,12,512-521.
    39 Hamann,B.C.;Hartwing,J.F.Sterically Hindered Chelating Alkyl Phosphines Provide Large Rate Accelerations in Palladium-Catalyzed Amination of Aryl Iodides,Bromides,and Chlorides,and the First Amination of Aryl Tosylates.[J].J.Am.Chem.Soc.1998,120,7369-7370.
    40 Lakshman,M.K.;Hilmer,J.H.;Martin,J.Q.;Keeler,J.C.;Dinh,Y.Q.V.;Ngassa,F.N.;Russon,L.M.Palladium Catalysis for the Synthesis of Hydrophobic C-6 and C-2 Aryl 2'-Deoxynucleosides.Comparison of C-C versus C-N Bond Formation as well as C-6 versus C-2 Reactivity.[J].J.Am.Chem.Soc.2001,123,7779-7787.
    41 Lakshman,M.K.;Ngassa,F.N.;Bae,S;Buchanan,D.G.;Hahn,H.;Mah,H.Synthesis of Pyrene and Benzo[a]pyrene Adducts at the Exocyclic Amino Groups of 2'-Deoxyadenosine and 2'-Deoxyguanosine by a Palladium-Mediated C-N Bond-Formation Strategy.[J].J.Org.Chem.2003,68,6020-6030.
    42 Morris,D.J.;Docherty,G.;Woodward,G.;Wills,M.Modification of ligand properties of phosphine ligands for C-C and C-N bond-forming reactions.[J].Tetrahedron Lett.2007,48,949-953.
    43 Reddy,C.V.:Kingston,J.V.;Verkade,J.G.(~iBu)PNP(~iBuNCHCH)N:New Efficient Ligand for Palladium-Catalyzed C-N Couplings of Aryl and Heteroaryl Bromides and Chlorides and for Vinyl Brom ides at Room Temperature.[J].J.Org.Chem.2008,73,3047-3062.
    44 Huang,J.K.;Grase,G.;Nolan,S.P.General and Efficient Catalytic Amination of Aryl Chlorides Using a Palladium/Bulky Nucleophilic Carbene System.[J].Org.Lett.1999,1,1307-1309.
    45 Stauffer,S.R.;Lee,S.;Stambuli,J.P.;Hauck,S.I.;Hartwing,J.F.High Turnover Number and Rapid,Room-Temperature Amination of Chloroarenes Using Saturated Carbene Ligands.[J].Org.Lett.2000,2,1423-1426.
    46 Cheng,J.;Trudell,M.L.Synthesis of N-Heteroaryl-7-azabicyclo[2,2,1]heptane Derivatives via Palladium-Bisimidazol-2-ylidene Complex Catalyzed Amination Reactions,[J].Org.Lett.2001,3,1371-1374.
    47 Grase,G.;Viciu,M.S.;Huang,J.K.;Nolan,S.P.Amination Reactions of Aryl Halides with Nitrogen-Containing Reagents Mediated by Palladium/Imidazolium Salt Systems.[J].J.Org.Chem.2001,66,7729-7737.
    48 Hillier,A.C.;Grase,G.A.;Viciu,M.S.;Lee,H.M.;Yang,C,L,;Nolan,S.P.Catalytic cross-coupling reactions mediated by palladium/nucleophilic carbene systems.[J].J.Orgmet.Chem.2002,653,69-82.
    49 施继成,曹新华,郑瑛,贾莉,N-杂环卡宾Pd络合物的合成及其在Buchwald-Hartwig反应中的应用.[J].化学学报2007,16,1702-1706.
    50 Taubman,C.;Tosh,E.;Ofele,K.;Herdtweck,E.;Herramann,W.A.Carbocyclic carbene ligands in palladium-catalyzed C-N coupling reactions.[J].J.Orgrnet.Chem.2008,693,2231-2236.
    51 Schnyder,A.;Indolese,A.F.;Studer,M.;Blaser,H.A New Generation of Air Stable,Highly Active Pd Complexes for C-C and C-N Coupling Reactions with Aryl Chlorides.[J].Angew.Chem.Int.Ed.2002,41,3668-3671.
    52 Punji,B.;Mague,J.T.;Balakrishna,M.S.Highly Air-Stable Anionic Mononuclear and Neutral Binuclear Palladium(Ⅱ)Complexes for C-C and C-N Bond-Forming Reactions.[J].Inorg. Chem.2007,46,11316-11327.
    53 Fors,B.P.;Watson,D.A.;Biscoe,M.R.;Buchwald,S.L.A Highly Active Catalyst for Pd-Catalyzed Amination Reactions:Cross-Coupling Reactions Using Aryl Mesylates and the Highly Selective Monoarylation of Primary Amines Using Aryl Chlorides.[J].J.Am.Chem.Soc.2008,130,13552-13554.
    54 Dener,J.M.;Lease,T.G.;Novack,A.R.;Plumkett,M.J.;Hocker,M.D.;Fantauzzi,P.P.Solid-Phase Synthesis of 2,4-Diaminoquinazoline Libraries.[J].J.Comb.Chem.2001,3,590-597.
    55 Brill,W.K.;Claudia,R.The bromination of purines with a charge transfer complex between bromine and lutidine.[J].Tetrahedron Lett.2001,42,6279-6282.
    56 Tobe,M.;lsobe,Y.;Tomizawa,H.;Nagasaki,T.;Obara,F.;Matsumoto,M.;Hayashi,H.Structure-Activity Relationships of 6-Nitroquinazolines:Dual-Acting Compounds with Inhibitory Activities toward both TNF-α Production and T Cell Proliferation.[J].Chem.Pharm.Bull.2002,50,1073-1080.
    57 Tobe,M.;lsobe,Y.;Tomizawa,H.;Nagasaki,T.;Takahashi,H.;Fukazawa,T.;Hayashi,H.Discovery or Quinazolines as a Novel Structural Class of Potent Inhibitors of NF-κB Activation.[J].Bioorg.Med.Chem.2003,11,383-391.
    58 Shi,L.;Wang,M.;Fan,C.A.;Zhang,F.M.;Tu,Y.Q.Rapid and Efficient Microwave-Assisted Amination of Electron-Rich Aryl Halides without a Transition-Metal Catalyst.[J].Org.Lett.2003,5,3515-3517.
    59 Thorsten,T.;Peter,T.A.4-(Pyrazol-3-ylamino)pyrimidine derivatives for use the treatment of cancer.WO2005040159A1,2005.
    60 Dhanapalan,N.;Davoud,A.;Shao,J.X.;Liu,X.G.;Uday,K.;Wang,C.G.;Barry,H.;Stephen,B.Rho-Kinase Inhibitors.WO02076976,2002.
    61 吴章桂.N~2-喹啉或异喹啉取代的嘌啉衍生物及其制备方法和其用途.WO2006133611A1,2006.
    62 Zhang,Y.D.;Yao,C.;Houghten,R.A.;Yu,Y.P.Solid-phase Synthesis of 4,8-Disubstituted-8,9-dihydropyrazino[2,3-g]quinazolin-7(6H)-ones.[J].Peptide Science 2007,90,439-443.
    63 Yokoyama,K.;Ishikawa,N.;Igarashi,S.;Kawano,N.;Hattori,K.;Miyazaki,T.Discovery of potent CCR4 antagonists:Synthesis and structure-activity relationship study of 2,4-diaminoquinazolines.[J].Bioorg.Med.Chem.2008,16,7021-7032.
    64 Beck,H.P.;Kohn,T.;Rubenstein,S.;Hedberg,C.Discovery of potent LPA_2(EDG4)antagonists as potential anticancer agents.[J].Bioorg.Med.Chem.Lett.2008,18,1037-1041.
    65 Blum,C.A.;Zheng,X.Z.;Brielmann,H.;Hodgetts,K.J.Aminoquinazolines as TRPV1antagonists:Modulation of drug-like properties through the exploration of 2-position substitution.[J].Bioorg.Med.Chem.Letts.2008,18,4573-4577.
    66 Zatloukal,M.;Gemrotova,M.;Dolezal,K.;Havlicek,L.;Spichal,L.;Strnad,M.Novel potent inhibitors of A.thaliana cytokinin oxidase/dehydrogenase.[J].Bioorg.Med.Chem.2008,16,9268-9275.
    67 薛飞,沈琪.孙宏枚.方便快捷的叔丁醇钾催化的C-N交叉偶联反应.[J].化学通报2008,12.962-965
    68 Bridges,A.J.;Zhou,H.;Cody,D.R.;Rewcastle,G.W.;Mcmichael,A.;Showalter,H.D.D.;Fry,D.W.;Kraker,A.J.;Denny,W.A.Tyrosine Kinase Inhibitors.8.An Unusually Steep Structure-Activity Relationship for Analogues of 4-(3-Bromoanilino)-6,7-dimethoxyquinazoline(PD 153035),a Potent Inhibitor of the Epidermal Growth Factor Receptor.[J].J Med.Chem.1996,39,267-276.
    69 Mortlock,A.A.;Foote,K.M.;Heron,N.M.;Jung,F.H.Discovery,Synthesis,and in Vivo Activity of a New Class of Pyrazoloquinazolines as Selective Inhibitors of Aurora B Kinase.[J].J.Med.Chem.2007.50.2213-2224.
    70 Hill,G.B.;Mortlock,A.A.Two New Syntheses of a 4-Aminopyrazole:Condensation of an N-Substituted Vinamidinium Salt with a Functionalized Hydrazine.[J].Synthesis 2007,1697-1701.
    71 Foote,K.M.;Mortlock,A.A.;Heron,A.M.;Jing,F.H.Synthesis and SAR of 1-acetanilide-4-aminopyrazolesubstituted quinazolines:Selective inhibitors of Aurora B kinase with potent anti-tumor activity.[J].Bioorg.Med.Chem.Lett.2008,18,1904-1909.
    72 Yokoyama,K.;Ishikawa,N.;Igarashi,S.;Kawano,N.Potent CCR4 antagonists:Synthesis,evaluation,and docking study of 2,4-diaminoquinazolines.[J].Bioorg.Med.Chem.2008,16,7968-7974.
    73 Ramchandra,R.D.;Narayanrao,K.R.Process for preparation of erlotinib and its pharmaceutically acceptable salts.WO2008122776A2,2008.
    74 Hartwing,J.F.;Richards,S.;Baraano,D.;Paul,F.Influences on the Relative Rates for C-N Bond-Form ing Reductive Elimination and β-Hydrogen Elimination of Amides.A Case Study on the Origins of Competing Reduction in the Palladium-Catalyzed Amination of Aryl Halides.[J].J.Am.Chem.Soc.1996,118,3626-3633.
    75 Salvatore,R.N.;Nagle,A.S,;Schmidt,S.E.;Jung,K.W.Cesium Hydroxide Promoted Chemoselective N-Alkylation for the Generally Efficient Synthesis of Secondary Amines.[J].Org.Lett.1999,1,1893-1896.
    76 Joule,J.A.;Mills,K.In Heterocyclic Chemistry;Blackwell Science Ltd:Oxford,2000.
    77 Bergmeier,S.C.The Synthesis of Vicinal Amino Alcohols.[J].Tetrahedron 2000,56,2561-2576.
    78 Larhed,M.;Moberg,C.;Hallberg,A.Microwave-accelerated homogeneous catalysis in organic chemistry.[J].Acc.Chem.Res.2002,35,717-727.
    79 Dallinger,D.;Kappe,C.O.Microwave-assisted synthesis in water as solvent.[J].Chem.Rev. 2007,107.2563-2591.
    80 Lidstrom,P.;Tierney.J.;Wathey,B.;Westman,J.Microwave assisted organic synthesis.[J].Tetrahedron 2001,45,9225-9283.
    81 Liu,Z.D.;He,X.C.The Michael reaction under microwave irradiation.[J].Prog.Chem.2006,18,1121-1129.
    82 Zare,A.;Hasaninejad.A.;Khalafi-Nezhad,A.;Zare A.R.M.;Parhami,A.Organic reactions in ionic liquids:MgO as efficient and reusable catalyst for the Michael addition of sulfonamides to α,β-unsaturated esters under microwave irradiation.[J].Arkivoc 2007,(xiii),105-115.
    83 Ide,D.M.;Eastlund.M.P.;Jupe,C.L.;Stockland,R.A.Microwave assisted heterofunctionalization of alkenes and alkynes.[J].Curr.Org.Chem.2008,12,1258-1278.
    84 Ballini,R.;Maggi,R.;Palmieri,A.;Sartori,G.Acidic alumina as a useful heterogeneous catalyst in the Michael reaction of β-dicarbonyl derivatives with conjugated nitroalkenes.[J].Synthesis 2007,3017-3020.
    85 Vicario,J.L.;Badia,D.;Carrillo,L.Organocatalytic Enantioselective Michael and Hetero-Michael Reactions.[J].Synthesis 2007,2065-2092.
    86 Sibi,M.P.;Manyem,S.Enantioselective Conjugate Additions.[J].Tetrahedron 2000,56,8033-8061.
    87 Enders,D.;Luttgen,K.;Narine,A.A.Asymmetric Sulfa-Michael Additions.[J].Synthesis 2007,959-980.
    88 徐利文,夏春谷,吴乎格吉乐土,杨磊,周伟,张妍.氮杂偶联加成反应的研究.[J].有机化学,2005,25,167-175.
    89 Nising,C.F.;Brase,S.The oxa-Michael reactions:from recent developments to applications in natural product synthesis.[J].Chem.Soc.Re.2008,37,1218-1228.
    90 Kisanga,P.B.;Ilankumaran,P.;Fetterly,t3.M.;Verkade,J.G.P(RNCH_2CH_2)_3N:Efficient 1,4-Addition Catalysts.[J].J.Org.Chem.2002,67,3555-3560.
    91 Stewart,I.C.;Bergman,R.G.;Toste,F.D.Phosphine-Catalyzed Hydration and Hydroalkoxylation of Activated Olefins:Use of a Strong Nucleophile to Generate a Strong Base.[J].J.Am.Chem.Soc.2003,125,8696-8697.
    92 Jenner,G.Synthesis of hindered functionalized ethers via high-pressure addition of alcohols to acrylic compounds.[J].Tetrahedron Lett.2001,4,4807-4810.
    93 Jenner,G.Effect of pressure on sterically congested cyanoalkytion reaction of alcohols.[J].Tetrahedron 2002,58,4311-4317.
    94 Murtagh,J.E.;McCooey,S.H.;Connon,S.J.Novel amine-catalysed hydroalkoxylation reactions of activated alkenes and alkynes.[J].Chem.Commun.2005,227-229.
    95 Kano,T.;Tanaka,Y.;Maruoka,K.Organocatalytic oxy-Michael addition of alcohols to α,β-unsaturated aldehydes.[J].Tetrahedron Lett.2006,47,3039-3041.
    96 Ramachary.D.B.;Mondal,R.Direct organocatalytic hydroalkoxylation of α,β-unsaturated ketones.[J].Tetrahedro.Lett.2006,47,7689-7693.
    97 Miller,K.J.;Kitagawa,T.T.;Abu-Omar,M.M.Kinetics and Mechanisms of Methyl Vinyl Ketone Hydroalkoxylation Catalyzed Palladium(Ⅱ)Complexes.[J].Organometallics 2001,2,4403-4412.
    98 Farnworth,M.V.;Cross,M.J.;Louie,J.Rhodium-catalyzed addition of alcohols to terminal enones.[J].Tetrahedron Lett.2004,45,7441-7743.
    99 Munro-Leighton,C.;Delp,S.A.;Blue,E.D.;Gunnoe,T.B.Addition of N-H and O-H Bonds of Amines and Alcohols to Electron-Deficient Olefines Catalyzed by Monomeric Copper(Ⅰ)Systems:Reaction Scope,Mechanistic Details,and Comparison of Catalyst Efficiency.[J].Organometallics 2007,26,1483-1493.
    100 Prabhakar,P.;Suryakiran,N.;Narasimhulu,M.;Venkateswarlu,Y.A mild and efficient 1,4-addition of thiols and phenols to α,β-unsaturated carbonyl compounds using La(NO_3)_3·6H_2O as a catalyst under solvent-free conditions.[J].J.Mol.Catal.A:Chemical 2007,274,72-77.
    101 Kabashima.H.;Katou,T.;Hattori,H.Conjugate addition of methanol 3-buten-2-one over solid base catalysts.[J].Appl.Catal.A:General 2001,214,121-124.
    102 Yang,L.;Xu,L.W.;Xia,C.G.Highly efficient KF/Al_2O_3-catalyzed versatile hetero-Michael addition of nitrogen,oxygen,and sulfur nucleophiles to α,β-ethylenic compounds.[J].Tetrahedron Lett.2005,46,3279-3282.
    103 Wabnitz,T.C.;Spencer,J.B.A general,Bronsted Acid-Catalyzed Hetero-Michael addition of nitrogen,oxygen,and sulfur nucleophiles.[J].Org.Lett.2003,5,2141-2144.
    104 Wabnitz,T.C.;Yu,J.Q.;Spencer,J.B.Evidence That Protons Can Be the Active Catalysts in Lewis Acid Mediated Hetero-Michael Addition Reactions.[J].Chem.Eur.J.2004,10,484-493.
    105 Bernal,P.;Tamariz,J.Synthesis of novel β-functionalized α-oximinoketones via hetero-Michael addition of alcohols and mercaptans to enones.[J].Tetrahedron Lett.2006,47,2905-2909.
    106 Karodia,N.;Liu,X.H.;Ludley,P.;Pletsas,D.;Stevenson,G.The ionic liquid ethyltri-n-butylphosphonium tosylate as solvent for the acid-catalysed hetero-Michael reaction.[J].Tetrahedron 2006,62,11039-11043.
    107 Ranu,B.C.:Guchhait,S.K.;Ghosh,K.;Patra,A.Construction of bicyclo-[2,2,2]octanone systems by microwave-assisted solid phase Michael addition followed by Al_2O_3-mediated intramolecular aldolisation.An eco-friendly approach.[J].Green Chemistry 2000,2,5-6.
    108 Moghaddam.F.M.;Mohammadi,M.;Hosseinnia,A.Water Promoted Michael Addition of Secondary Amines to α,β-Unsaturated Carbonyl Compounds Under Microwave Irradiation.[J].Synth.Commun.2000,30;643-650.
    109 Hoz,A.;Diaz-Ortiz,A.;Gomez,M.V.;Mayoral,A.Preparation of α-and β-substituted alanine derivatives by a- amidoalkylation or Michael addition reactions under heterogeneous catalysis assisted by microwave irradiation. [J]. Tetrahedron 2001, 57, 5421-5428.
    
    110 Narasimhan. S.; Velmathi, S. Microwave assisted enantioselective Michael addition reaction using binol-Al-Li catalyst. [J]. Synth. Commun. 2002, 32, 3791-3795.
    
    111 Sharma, U.; Bora, U.; Boruah, R. C.; Sandhu, J. Alumina-promoted fast solid-phase Michael addition of enamines with conjugated enones under microwave irradiation. [J]. Tetrahedron Lett.2002,43, 143-145.
    
    112 Rissafi, B.: Louzi, A. E.; Loupy, A.; Petit, A.; Soufiaoui, M.; Tetouani, S. F. Solvent-Free Synthesis of Diaryl a-Tetralones via Michael Addition under Microwave Irradiation. [J]. Eur. J.Org.Chem. 2002,2518-2532.
    
    113 Khalafi-Nezhad, A.; Zarea, A.; Rad. M. N. S.; Mokhtari, B.; Parhami, A. Microwave-Assisted Michael Addition of Some Pyrimidine and Purine Nucleobases with α,β-Unsaturated Esters: A Rapid Entry into Carboacyciic Nucleoside Synthesis. [J]. Synthesis 2005, 3, 419-424.
    
    114 Amore. K. M.; Leadbeater, N. E.; Miller, T. A.; Schmink. J. R. Fast, easy, solvent-free,microwave-promoted Michael ddition of anilines to α,β-unsaturated alkenes: synthesis of N-aryl functionalized b-amino esters and acids. [J]. Tetrahedron Lett. 2006, 47, 8583-8586.
    
    115 Polshettiwar. V.; Varma. R. S. Tandem bis-zaz-Michael addition reaction of amines in aqueous medium promoted by polystyrenesufonic acid. [J]. Tetrahedron Lett. 2007, 48, 8735-8738.
    
    116 Ei-Rahman. N. M.; Ei-Kateh, A. A.; Mady, M. F. Simplified Approach to the Uncatalyzed Knoevenagel Condensation and Michael Addition Reactions in Water using Microwave Irradiation. [J]. Synth. Commun. 2007, 37, 3961-3970
    
    117 Zare, A.; Hasaninejad, A.; Zare, A. R. M.; Parhami., A. Zinc oxide as a new, highly efficient,green, and reusable catalyst for microwave-assisted Michael addition of sulfonamides to α,β-unsaturated esters in ionic liquids. [J]. Can. J. Chem. 2007, 85, 438-444.
    
    118 Zare, A.; Hasaninejad, A.; Beyzavi, M. H. KF/Al_2O_3 as a Highly Efficient, Green,Heterogeneous, and Reusable Catalytic System for the Solvent-Free Synthesis of Carboacyclic Nucleosides via Michael Addition Reaction. [J]. Synth. Commun. 2009, 39, 139-157.
    
    119 Yadav, L. D.; Awasrhi, C.; Rai, V.; Rai, A. A route to functionalized pyrimidines from carbohydrates via amine-driven dehydrative ring transformations. [J]. Tetrahedron Lett. 2008,49,2377-2380.
    
    120 Jung, M. E. Stabilized Nucleophiles with Electron Deficient Alkenes and Alkynes. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford,1991, Vol. 4. pp 1-67.
    
    121 Pelmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon Press: Oxford,1992.
    
    122 Ellis, G. W. L; Johnson, C. D.; Rogers, D. N. Stereoelectronic control of intramolecular Michael addition reactions. [J]. J. Am. Chem. Soc. 1983, 105, 5090-5095.
    123 Khunt, R. C; Akbari, J. D.; Manvar, A. T.; Tala, S. D.; Dhaduk, M. F.; Joshi, H. S.; Shah, A.Green chemistry approach to synthesis of some new trifluoromethyl containing tetrahydropyrimidines under solvent free conditions. [J]. Arkivoc 2008, (xi), 277-284.
    
    124 Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. Microwave accelerated S_N2' substitution of Baylis-Hillman acetates: A comparative study of conventional heating versus microwave irradiation. [J]. J. Mol. Catal. A: Chemical 2007, 274, 105-108.
    
    125 Baldwin, J. E.; Thomas, R. C.; Kruse, L. I.; Silberman L. Rules for ring closure: ring formation by conjugate addition of oxygen nucleophiles. [J]. J. Org. Chem. 1977, 42, 3846-3852.
    
    126 Ohnemuller, U. K..; Nising, C. F.; Nieger, M.; Brase, S. The domino oxa-Michael addition-Aldol reaction: Access to variably substituted tetrahydroxanthenones. [J]. Eur. J. Org.Chem. 2006, 1535-1546.
    
    127 Ellis, G. W. L; Johnson, C. D.; Rogers, D. N. Reversal of electronic effects between inter- and intra-molecular Michael addition reactions. [J]. Chem. Commun. 1982, 36-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700