热致液晶/碳纳米管复合材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于CNT独特的结构、优异的力学性能和光电性能而成为纳米复合材料的理想添加剂,许多科学工作者已对CNTs复合材料的制备及其性能展开了一系列研究。本文分别对两种类型的液晶进行了掺杂,制备了其碳纳米管复合材料,并对其掺杂后的性能进行了研究。
     (1)通过熔融共混法制备了单变液晶/碳纳米管复合材料,并用偏光显微镜、热重、扫描电镜、拉曼光谱、表面电阻等研究了其掺杂后的性能。从实验结果可以看出,掺杂量很少时,碳纳米管在液晶中可以很好的分散。当掺杂量增大时,由于碳纳米管的自发团聚作用,液晶的指向矢变得混乱,并且碳纳米管束在该液晶相变过程中具有晶核的作用。掺杂碳纳米管后该液晶的电导率有很大的提高,但是热稳定性却降低了。
     (2)采用高温溶液缩聚法合成了一种热致性液晶聚合物,并利用原位聚合法制备了不同浓度的热致型液晶聚合物/碳纳米管复合材料,通过差示扫描量热法、热重、X-射线衍射、偏光显微镜等研究了其复合物的性能。X-射线衍射说明碳纳米管的加入对液晶聚合物的晶型结构的影响不大。扫描电镜和偏光显微镜说明少量的碳纳米管能够很好的分散在聚合物基体中,而且碳纳米管沿着液晶聚合物的矢量方向很好的排列。热重分析和差示量热扫描结果说明加入少量的碳纳米管能够改善聚合物的热稳定性能,并会提高聚合物的熔融转变温度和各向同性相转变温度。
Due to their unique structure, excellent mechanical and photo-electronic properties, carbon nanotubes (CNTs) have been envisioned as promising fillers for nanocomposites. And so many researchers have done much work on the preparation and the study of the properties. In this paper, we prepared two liquid crystal/carbon nanotubes composites through doping, and characterized them.
     (1) In present work, the MPPB nanocomposites with various concentration MWNTs were prepared by melt mixing to investigate the effect of MWNT doping, via polarized optical microscopy (POM), thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), Raman spectroscopy and surface resistance respectively. From the results, the MWNTs were well dispersed in host matrix at low concentration. The LC director field was influenced by the MWNT aggregates which probably acted as the nucleation centres. The sample presented a highly performance in electrical conductivity, expressed as the decrease in surface resistance. For the nanocomposites, no improvement in thermal stability was seen at the initial state of degradation.
     (2) We synthesized a TLCP via high-temperature solution polycondensation and prepared various concentrations of TLCP/MWNTs by in situ polymerization. Differential scanning calorimetry (DSC), TGA, X-ray diffraction (XRD) and POM were used to investigate the thermal behavior, crystalline structure and liquid crystalline properties of the pure TLCP and TLCP/MWNTs nanocomposites. SEM images showed that the MWNTs were well separated in the TLCP matrix. The X-ray diffraction results suggested that the addition of MWNTs to TLCP did not significantly change the crystal structure of TLCP matrix. The TGA indicated that a small amount of MWNTs could improve the thermal stability of TLCP domains.
引文
[1]H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerence. Nature 1985,318:162-163.
    [2]lijima S, Helical microtubules of graphitic carbon. Nature 1991,354:56-58.
    [3]P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology, Wiley-VCH, Verlag GmbH & Co.KGaA, Weinheim, Germany,2003.
    [4]H.S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, vol.5, Academic Press, New York, USA,2000.
    [5]M.S. Dresselhaus, G. Dresslhous, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, USA,1996.
    [6]M.S. Dresselhaus, G. Dresslhous, P. Avouris, Carbon Nanotubes:Synthesis, Structure, Properties and Application, Springer, Berlin, Germany,2001.
    [7]H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett.1998,72:188-190.
    [8]O. Lourie, D.M. Cox, H.D. Wagner, Buckling and Collapse of Embedded Carbon' Nanotubes. Phys. Rev. Lett.1998,81:1638-1641.
    [9]D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett.2000,76: 2868-2870.
    [10]J.P. Salvetat, A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro, Elastic and Shear Moduli of Single-Walled Carbon Nanotube. Ropes. Phys. Rev. Lett.1999,82:944-947.
    [11]L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett.1998,73:1197-1199.
    [12]E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, K. Dahmen, Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J. Appl. Phys.2003,94: 6034-6039.
    [13]X.L. Xie, Y.W. Mai, X.P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix:A review. Mater. Sci. Eng. R 2005,49:89-112.
    [14]P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Single-walled carbon nanotube-polymer composites:strength and weakness. Adv. Mater.2000,12: 750-753.
    [15]J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 1999,40:5967-5971.
    [16]X.L. Xie, X.P. Zhou, J. Tang, H.C. Hu, H.B. Wu, J.W. Zhang, Effect of maleic anhydride grafted SEBS on properties of polypropylene/carbon nanotube composites. China Synth. Rubber Ind.2002,25:46-46.
    [17]X.L. Xie, K. Aloys, X.P. Zhou, F.D. Zeng, Ultrahigh Molecular mass Polyethylene/Carbon Nanotube CompositesCrystallization and melting properties. J. Therm. Anal. Calorim.2003,74:317-323.
    [18]Z.X. Jin, K.P. Pramoda, S.H. Goh, G.Q. Xu, Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites. Mater. Res. Bull.2002,37:271-278.
    [19]X.Y. Gong, J. Liu, S. Baskaran, R.D. Voise, J.S. Young, Surfactant-assisted processing of carbon nanotube/polymer composites. Chem. Mater.2000,12: 1049-1052.
    [20]B.Z. Tang, H.Y. Xu, Preparation, Alignment, and Optical Properties of Soluble Poly(phenylacetylene)-Wrapped Carbon Nanotubes. Macromolecules 1999,32: 2569-2576.
    [21]J.H. Fan, M.X. Wan, D.B. Zhu, B.H. Chang, Z.W. Pan, S.S. Xie, Synthesis, characterizations and physical properties of carbon nanotubes coated by conducting polypyrrole. J. Appl. Polym. Sci.1999,74:2605-2610.
    [22]A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes. Angew. Chem. Int. Ed.2001,113:1771-1775.
    [23]M. Cochet, W.K. Maser, A. Benitor, A. Callejas, M.T. Martinez, J.M. Benoit, J. Schreiber, O. Chauvet, Synthesis of a new polyaniline/nanotube composite:"in-situ" polymerisation and charge transfer through site-selective interaction. Chem. Commun. 2001,1450-1451.
    [24]Q.F. Xiao, X. Zhou, The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochem. Acta 2003,48:575-580.
    [25]Z.J. Jia, Z.J. Wang, C.L. Xu, J. Liang, B.Q. Wei, D.H. Wu, S.W. Zhu, Study on Poly(methyl methacrylate)/Carbon Nanotube Composites. Mater. Sci. Eng. A:Struct. 1999,271:395-400.
    [26]C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith Jr., S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L. St. Clair, Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett.2002,364: 303-308.
    [27]C. Velasco-Santos, A.L. Marti'nez-Herna'ndez, F.T. Fisher, R. Ruoff, V.M. Castan~o, Improvement of Thermal and Mechanical Properties of Carbon Nanotube Composites through Chemical Functionalization. Chem. Mater.2003,15:4470-4475.
    [28]J. Jang, J. Bae, S.H. Yoon, A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide-carbon nanotube composites. J. Mater. Chem. 2003,13:676-681.
    [29]T.W. Ebbesen, P.M. Ajayan, H. Hiura, K. Tanigaki, Purification of nanotubes. Nature 1994,367:519-519.
    [30]H. Hiura, T.W. Ebbesen, K. Tanigaki, Opening and purification of carbon nanotubes in high yields. Adv. Mater.1995,7:275-276.
    [31]K. Tohji, H. Takahashi, Y. Shinoda, N. Shimizu, B. Jeyadevan, I. Matsuoda, Y. Saito, A. Kasuya, S. Ito, Y. Nishina, Purification Procedure for Single-Walled Nanotubes. J. Phys. Chem. B 1997,101:1974-1978.
    [32]J.M. Bonard, T. Stora, J.P. Salvetat, F. Maier, T. Stockli, C. Duschl, L. Forro,W.A. deHeer, A. Chatelain, Purification and size-selection of carbon nanotubes. Adv. Mater. 1997,9:827-831.
    [33]S. Bandow, A. Rao, K.A. Williams, A. Thess, R.E. Smalley, P.C. Eklund, Purification of Single-Wall Carbon Nanotubes by Microfiltration. J. Phys. Chem. B 1997,101:8839-8842.
    [34]G.S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth, Separation of carbon nanotubes by size exclusion chromatography. Chem. Commun.1998,435-436.
    [35]K. Yamamoto, S. Akita, Y. Nakayama, Orientation and purification of carbon nanotubes using ac electrophoresis. J. Phys. D:Appl. Phys.1998,31:L34-L36.
    [36]J.N. Coleman, A.B. Dalton, S. Curran, A. Rubio, A.P. Davey, A. Drury, B. McCarthy, B. Lahr, P.M. Ajayan, S. Roth, R.C. Barklie, W.J. Blau, Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer. Adv. Mater.2000,12:213-213.
    [37]B. McCarthy, J.N. Coleman, R. Czerw, A.B. Dalton, M. in het Panhuis, A. Maiti, A. Drury, P. Bernier, J.B. Nagy, B. Lahr, H.J. Byrne, D.L. Carroll, W.J. Blau, A Microscopic and Spectroscopic Study of Interactions between Carbon Nanotubes and a Conjugated Polymer. J. Phys. Chem. B.2002,106:2210-2216.
    [38]J. Liu, A.G. Rinzler, H.J. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Fullerene Pipes. Science 1998,280:1253-1256.
    [39]M.S.P. Shaffer, X. Fan, A.H. Windle, Dispersion and packing of carbon nanotubes. Carbon 1998,36:1603-1612.
    [40]M.S.P. Shaffer, A.H. Windle, Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater.1999,11:937-937.
    [41]J. Chen, A.M. Rao, S. Lyuksyutov, M.I. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, R.C. Haddon, Dissolution of Full-Length Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2001,105:2525-2528.
    [42]B.Y. Wu, A.H. Liu, X.P. Zhou, Z.D. Jiang, Graft Polymerization of Acrylamide onto Carbon Black Surface. Chem. J. Chinese Univ.1995,16:1641-1644.
    [43]W. Zhou, Bachelor Thesis, Huazhong University of Science and Technology, Wuhan, China,2003.
    [44]Q.D. Chen, L.M. Dai, M. Gao, S.M. Huang, A. Mau, Plasma Activation of Carbon Nanotubes for Chemical Modification. J. Phys. Chem. B 2001,105:618-622.
    [45]E.T. Mickelson, C.B. Huffman, A.G. Rinzler, R.E. Smalley, R.H. Hauge, J.L Margrave, Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett.1998,296: 188-194.
    [46]D.B. Mawhinney, V. Naumenko, A. Kuznetsova, J.T. Yates, Infrared Spectral Evidence for the Etching of Carbon Nanotubes:Ozone Oxidation at 298 K. J. Am. Chem. Soc.2000,122:2383-2384.
    [47]J.L. Bahr, J.P. Yang, D.K. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour, Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper Electrode. J. Am. Chem. Soc.2001,123: 6536-6542.
    [48]V. Georgakilas, K. Kordatos, M. Prato, D.M. Guldi, M. Holzinger, A. Hirsch, Organic functionalization of carbon nanotubes. J. Am. Chem. Soc.2002,124: 760-761.
    [49]Y. Chen, R.C. Haddon, S. Fang, A.M. Rao, W.H. Lee, E.C. Dickey, E.A. Grulke, J.C. Pendergrass, A. Chavan, B.E. Haley, R.E. Smalley, Chemical attachment of organic functional groups to single-walled carbon nanotube material. J. Mater. Res. 1998,13:2423-2431.
    [50]M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R.Weiss, F. Jellen, Sidewall Functionalization of Carbon Nanotubes. Angew. Chem. Int. Ed.2001, 40:4002-4005.
    [51]J.L. Bahr, J.M. Tour, Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem.2002,12:1952-1958.
    [52]J.E. Riggs, Z. Guo, D.L. Carroll, Y.P. Sun, Strong Luminescence of Solubilized Carbon Nanotubes. J. Am. Chem. Soc.2000,122:5879-5880.
    [53]Y. Lin, B. Zhou, K.A.S. Fernando, P. Liu, Y.P. Sun, Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer. Macromolecules 2003,36:7199-7204.
    [54]L. Cao, H.Z. Chen, M. Wang, J.Z. Sun, Photoconductivity Study of Modified Carbon Nanotube/Oxotitanium Phthalocyanine Composites. J. Phys. Chem. B 2002, 106:8971-8975.
    [55]D.E. Hill, Y. Lin, A.R. Rao, L.F. Allard, Y.P. Sun, Functionalization of Carbon Nanotubes with Polystyrene. Macromolecules 2002,35:9466-9471.
    [56]C. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Dispersion of Functionalized Carbon Nanotubes in Polystyrene. Macromolecules 2002,35: 8825-8830.
    [57]G. Viswanathan, N. Chakrapani, H. Yang, B.Wei, H. Chung, K. Cho, C.Y. Ryu, P.M. Ajayan, Single-Step in Situ Synthesis of Polymer-Grafted Single-Wall Nanotube Composites J. Am. Chem. Soc.2003,125:9258-9259.
    [58]S. Qin, D. Qin, W.T. Ford, D. Resasco, J.E. Herrera, Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate. J. Am. Chem. Soc.2004,126:170-176.
    [59]H. Kong, C. Gao, D.Y. Yan, Controlled Functionalization of Multiwalled Carbon Nanotubes by in Situ Atom Transfer Radical Polymerization. J. Am. Chem. Soc.2004, 126:412-413.
    [60]R. Andrews, D. Jacques, A.M. Rao, T. Rantell, F. Derbyshire, Y. Chen, Nanotube composite carbon fibers. Appl. Phys. Lett.1999,75:1329-1331.
    [61]W. Feng, X.D. Bai, Y.Q. Lian, J. Liang, X.G. Wang, K. Yoshino, Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 2003,41:1551-1557.
    [62]W.A. de Heer,W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, D. Ugarte, Aligned carbon nanotube films:production and optical and electronic properties. Science 1995,268:845-847.
    [63]D.A.Walters, M.J. Casavant, X.C. Qin, C.B. Huffman, P.J. Boul, L.M. Ericson, E.H. Haroz, M.J. O'Connell, K. Smith, D.T. Colbert, R.E. Smalley, In-plane-aligned membranes of carbon nanotubes. Chem. Phys. Lett.2001,338:14-20.
    [64]M.J. Casavant, D.A. Walters, J.J. Schmidt, R.E. Smalley, Neat macroscopic membranes of aligned carbon nanotubes. J. Appl. Phys.2003,93:2153-2156.
    [65]J.E. Fischer, W. Zhou, J. Vavro, M.C. Llaguno, C. Guthy, R. Haggenmuller, M.J. Casavant, D.A. Walters, R.E. Smalley, Magnetically aligned single wall carbon nanotube films:Preferred orientation and anisotropic transport properties. J. Appl. Phys.2003,93:2157-2163.
    [66]Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science 1998, 282:1105-1107.
    [67]Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett.1998,73:3845-3847.
    [68]Z.F. Ren, Z.P. Huang, D.Z.Wang, J.G.Wen, J.W. Xu, J.H.Wang, L.E. Calvet, J. Chen, J.F. Klemic, M.A. Reed, Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett.1999,75:1086-1088.
    [69]C. Bower, W. Zhu, S.H. Jin, O. Zhou, Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett.2000,77:830-832.
    [70]C. Bower, O. Zhou, W. Zhu, D.J. Werder, S.H. Jin, Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 2000,77:2767-2769.
    [71]M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 2000,77:3468-3470.
    [72]H. Cui, O. Zhou, B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 2000,88:6072-6074.
    [73]W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Large-Scale Synthesis of Aligned Carbon Nanotubes. Science 1996,274: 1701-1703.
    [74]J. Li, C. Papadopoulos, J.M. Xu, M. Moskovits, Highly-ordered carbon nanotube arrays for electronics applications. Appl. Phys. Lett.1999,75:367-369.
    [75]J.I. Sohn, S.H. Lee, Y.H. Song, S.Y. Choi, K.I. Cho, K.S. Nam, Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays. Appl. Phys. Lett.2001,78: 901-903.
    [76]Z.H. Yuan, H. Huang, H.Y Dang, J.E. Cao, B.H. Hu, S.S. Fan, Field emission property of highly ordered monodispersed carbon nanotube arrays. Appl. Phys. Lett. 2001,78:3127-3129.
    [77]X.B. Wang, Y.Q. Liu, P.A. Hu, G. Yu, K. Xiao, D.B. Zhu, Fabrication of Aligned Carbon Nanotube Alignments:Selective Position and Different Lengths. Adv. Mater. 2002,14:1557-1560.
    [78]B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Organized assembly of carbon nanotubes. Nature 2002,416:495-496.
    [79]R.R. Schlittler, J.W. Seo, J.K. Gimzewski, C. Durkan, M.S.M. Saifullan, M.E. Welland, Single Crystals of Single-Walled Carbon Nanotubes Formed by Self-Assembly. Science 2001,292:1136-1139.
    [80]Z. Yao, H.Ch. Postma, L. Balents, C. Dekker, Carbon nanotube intramolecular junctions. Nature 1999,402:273-276.
    [81]R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon Nanotubes--the Route Toward Applications. Science 2002,297:787-792.
    [82]A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Logic Circuits with Carbon Nanotube Transistors. Science 2001,294:1317-1320.
    [83]H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, M. Yumura, Dispersion of metal nanoparticles for aligned carbon nanotube arrays. Appl. Phys. Lett.2000,77:79-81.
    [84]H. Yanagi, E. Sawada, A. Manivannan, L. Nagahara, Self-orientation of short single-walled carbon nanotubes deposited on graphite. Appl. Phys. Lett.2001,78: 1355-1357.
    [85]P.M. Ajayan, O. Stephen, C. Colliex, D. Trauth, Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite. Science 1994,265: 1212-1214.
    [86]B. Vigolo, A. Pe'nicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes. Science 2000,290:1331-1334.
    [87]R. Haggenmuller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett.2000,330:219-225.
    [88]E.T. Thostenson, T.W. Chou, Aligned multi-walled carbon nanotube-reinforced composites:processing and mechanical characterization. J. Phys. D:Appl. Phys.2002, 35:L77-L80.
    [89]B. Safadi, R. Andrews, E.A. Grulke, Multiwalled carbon nanotube polymer composites:Synthesis and characterization of thin films. J. Appl. Polym. Sci.2002,84: 2660-2669.
    [90]A.B. Bhattachacharyya, T.V. Sreekumar, T. Liu, S. Kumar, L.M. Ericson, H. Hauge, R.E. Smalley, Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 2003,44:2373-2377.
    [91]C.A. Cooper, D. Ravich, D. Lips, J. Mayer, H.D. Wagner, Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Comput. Sci. Technol.2002,62:1105-1112.
    [92]T. Kimura, H. Ago, M. Tobita, Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater.2002,14:1380-1383.
    [93]T. Takahashi, K. Yonetake, K. Koyama, T. Kikuchi, Polycarbonate Crystallization by Vapor-Grown Carbon Fiber with and without Magnetic Field. Macromol. Rapid Commun.2003,24:763-767.
    [94]Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman, Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning. Langmuir 2003,19:7012-7020.
    [95]F. Ko, Y. Gogotsi, A. Ali, N. Naguib, H. Ye, G. Yang, C. Li, P. Wills, Electrospinning of Continuous Carbon Nanotube-Filled Nanofiber Yarns. Adv. Mater. 2003,15:1161-1165.
    [96]R. Sen, B. Zhao, D. Perea, M.E. Itkis, H. Hu, J. Love, E. Bekyarova, R.C. Haddon, Preparation of Single-Walled Carbon Nanotube Reinforced Polystyrene and Polyurethane Nanofibers and Membranes by Electrospinning. Nano Lett.2004,4: 459-464.
    [97]J.B. Gao, A.P. Yu, M.E. Itkis, E. Bekyarova, B. Zhao, S. Niyogi, R.C. Haddon, Large-Scale Fabrication of Aligned Single-Walled Carbon Nanotube Array and Hierarchical Single-Walled Carbon Nanotube Assembly. J. Am. Chem. Soc.2004,126; 16698-16699.
    [98]J.J. Ge, H.Q. Hou, Q. Li, M.J. Graham, A. Greiner, D.H. Reneker, F.W. Harris, S.Z.D. Cheng, Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments:Electrospun composite nanofiber sheets. J. Am. Chem. Soc.2004,126:15754-15761.
    [99]H.Q. Hou, J.J. Ge, J. Zeng, Q. Li, D.H. Reneker, A. Greiner, S.Z.D. Cheng, Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes. Chem. Mater.2005,17:967-973.
    [100]M. Kawasumi, N. Hasegawa, A. Usuki, A. Okada, Nematic liquid crystal/clay mineral composites. Mater. Sci. Eng. C 1998,6:135-143.
    [101]M. Kawasumi, N. Hasegawa, A. Usuki, A. Okada, Liquid crystal/clay mineral composites. Appl. Clay Sci.1999,15:93-108.
    [102]X.L. Xie, Z.Y. Guo, X.P. Zhou, Y.-W. Mai, in:Proceedings of Australia-China Materials Symposium, Brisbane, Australia,22-25 October,2004.
    [103]M.D. Lynch, D.L. Patrick, Organizing Carbon Nanotubes with Liquid Crystals. Nano Lett.2002,2:1197-1201.
    [104]W.H. Song, I.A. Kinloch, A.H. Windle, Nematic liquid crystallinity of multiwall carbon nanotubes. Science 2003,302:1363-1363.
    [105]R.A. Mrozek, B.S. Kim, V.C. Holmberg, T.A. Taton, Homogeneous, Coaxial Liquid Crystal Domain Growth from Carbon Nanotube Seeds. Nano Lett.2003,3: 1665-1669.
    [106]M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, Carbon nanotube composites for thermal management. Appl. Phys. Lett.2002,80: 2767-2729.
    [107]M. Cadek, J.N. Coleman, V. Barron, K. Hedicke, W.J. Blau, Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett.2002,81:5123-5125.
    [108]O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 2004,45: 739-748.
    [109]H. Miyagawa, L.T. Drzal, Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer 2004,45: 5163-5170.
    [110]R.E. Gorga, R.E. Cohen, Toughness Enhancecments in Poly (methyl methacrylate) by Addition of Oriented Multiwall Carbon Nanotubes. J. Polym. Sci., Polym. Phys.2004,42:2690-2702.
    [111]R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci.2004,8:31-37.
    [112]S.L. Ruan, P. Gao, X.G. Yang, T.X. Yu, Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 2003, 44:5643-5654.
    [113]M.C. Weisenberger, E.A. Grulke, D. Jacques, T. Rantell, R. Andrews, Enhanced Mechanical Properties in Polyacrylonitrile/Multiwall Carbon Nanotube Composite Fibers. J. Nanosci. Nanotechnol.2003,3.
    [114]A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Super-tough carbon-nanotube fibres. Nature 2003,423:703-703.
    [115]E. Assouline, A. Lustiger, A.H. Barber, C.A. Cooper, E. Klein, E.Wachtel, H.D.Wagner, Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J. Polym. Sci., Polym. Phys.2003,41:520-527.
    [116]R. Blake, Y.K. Gun'ko, J. Coleman, M. Cadek, A. Fonseca, J.B. Nagy, W.J. Blau, A Generic Organometallic Approach toward Ultra-Strong Carbon Nanotube Polymer Composites. J. Am. Chem. Soc.2004,126:10226-10227.
    [117]Y.-W. Mai, S.C. Wong. X.H. Chen, Application of fracture mechanics for characterization of toughness of polymer blends, in:D.R. Paul, C.B. Bucknall (Eds.), Polymer Blends, vol.2, Performance, John Wiley & Sons, Inc, NY, USA,2002,, pp. 17-58,36 Chapters, ISBN 0-471-35280-2.
    [118]T. Kashiwagi, E. Grulke, J. Hilding, R. Harris, W. Awad, J. Douglas, Thermal Degradation and Flammability Properties of Poly(propylene)/Carbon Nanotube Composites. Macromol. Rapid Commun.2002,232:761-765.
    [119]S. Kirkpatrick, Percolation and Conduction. Rev. Mod. Phys.1973,45:574-588.
    [120]J.N. Coleman, S. Curran, A.B. Dalton, A.P. Davey, B. McCarthy, W. Blau, R.C. Barklie, Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B 1998,58:R7492-R7495.
    [121]J.K.W. Sandier, J.E. Eirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44:5893-5899.
    [122]J-M. Benoit, B. Corraze, S. Lefrant, W. J. Blau, P. Bernier, O. Chauvet, Transport properties of PMMA-Carbon Nanotubes composites. Synth. Metals 2001, 121:1215-1216.
    [123]B.E. Kilbride, J.N. Coleman, P. Fournet, A. Cadek, S. Hutzler, S. Roth, W.J. Blau, Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 2002,92:4024-4030.
    [124]S.M. O'Flaherty, R. Murphy, S.V. Hold, M. Cadek, J.N. Coleman, W.J. Blau, Material Investigation and Optical Limiting Properties of Carbon Nanotube and Nanoparticle Dispersions. J. Phys. Chem. B 2003,107:958-964.
    [125]H.W. Goh, S.H. Goh, G.Q. Xu, K.Y. Lee, G.Y. Yang, Y.W. Lee, W.D. Zhang, Optical Limiting Properties of Double-C60-End-Capped Poly(ethylene oxide), Double-C60-End-Capped Poly(ethylene oxide)/Poly(ethylene oxide) Blend, and Double-C60-End-Capped Poly(ethylene oxide)/Multiwalled Carbon Nanotube Composite. J. Phys. Chem. B 2003,107:6056-6062.
    [126]Y.C. Chen, N.R. Raravikar, L.S. Schadler, P.M. Ajayan, Y.P. Zhao, T.M. Lu, GC.Wang, X.C. Zhang, Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm Appl. Phys. Lett.2002,81:975-977.
    [127]H. Ago, M.S.P. Shaffer, D.S. Ginger, A.H. Windle, R.H. Friend, Electronic interaction between photoexcited poly(p-phenylene vinylene) and carbon nanotubes. Phys. Rev. B 2000,61:2286-2290.
    [128]H.S. Woo, R. Czerw, S. Webster, D.L. Carroll, J. Ballato, A.E. Strevens, D. O'Brien, W.J. Blau, Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-p-phenylene vinylene). Appl. Phys. Lett.2000,77:1393-1395.
    [129]P. Fournet, J.N. Coleman, B. Lahr, A. Drury, W.J. Blau, D.F. O'Brien, H.H. Horhold, Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys.2001,90:969-975.
    [130]J.Y. Kim, M. Kim, H. Kim, J. Joo, J.H. Choi, Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Opt. Mater. 2002,21:147-151.
    [131]E. Kymakis, G.A.J. Amaratunga, Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett.2002,81:112-114.
    [132]E. Kymakis, I. Alexandrou, G.A.J. Amaratunga, High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J. Appl. Phys.2003, 93:1764-1768.
    [133]H.J. Li, X.B. Wang, Y.L. Song, Y.Q. Liu, Q.S. Li, L. Jiang, B.D. Zhu, Super-Amphiphobic" Aligned Carbon Nanotube Films. Angew. Chem. Int. Ed.2001,40: 1743-1746.
    [134]T.L. Sun, G.J. Wang, H. Liu, L. Feng, L. Jiang, D.B. Zhu, Control over the Wettability of an Aligned Carbon Nanotube Film. J. Am. Chem. Soc.2003,125: 14996-14997.
    [135]L. Feng, S.H. Li, Y.S. Li, H.Y. Li, L.J. Zhang, J. Zhai, Y.L. Song, B.Q. Liu, L Jiang, D.B. Zhu, Super-hydrophobic surfaces:from natural to artificial. Adv. Mater. 2002,14:1857-1860.
    [136]H. Chen, W. Lee and N. Clark, Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension. Appl. Phys. Lett.2007,90:033510.
    [137]S. Y. Jeon, S. H. Shin, S. J. Jeong, S. H. Lee, S. H. Jeong, Y. H. Lee, H. C.Choi and K. J. Kim, Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field. Appl. Phys. Lett.2007,90:121901.
    [138]W. Lee, C. Wang and Y. Shih, Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host. Appl. Phys. Lett. 2004,85:513-515.
    [139]C. Huang, C. Hu, H. Pan and K. Lo, Electrooptical Responses of Carbon Nanotube-Doped Liquid Crystal Devices. Jpn. J. Appl. Phys.2005,44:8077-8081.
    [140]1. S. Baik, S. Y. Jeon, S. H. Lee, K. A. Park, S. H. Jeong, K. H. An and Y. H. Lee, Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell. Appl. Phys. Lett.2005,87:263110.
    [141]C. Huang, H. Pan and C. Hsieh, Electrooptical Properties of Carbon-Nanotube-Doped Twisted Nematic Liquid Crystal Cell. Jpn. J. Appl. Phys. 2006,45:6392-6394.
    [142]H. Chen and W. Lee, Suppression of field screening in nematic liquid crystals by carbon nanotubes. Appl. Phys. Lett.2006,88:222105.
    [143]G. Scalia, J. P. F. Lagerwall, S. Schymura, M. Haluska, F. Giesselman and S. Roth, Carbon nanotubes in liquid crystals as versatile functional materials. Phys. Status Solidi B 2007,244:4212-4217.
    [144]G. Scalia, C. von Buhler, C. Hagele, S. Roth, F. Giesselmann and J. P. F. Lagerwall, Spontaneous macroscopic carbon nanotube alignment via colloidal suspension in hexagonal columnar lyotropic liquid crystals. Soft Matter 2008,4: 570-576.
    [145]J. P. F. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, S. Roth and F. Giesselmann, Nanotube Alignment Using Lyotropic Liquid Crystals Adv. Mater.2007,19:359-364.
    [146]J. P. F. Lagerwall, G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, S. Roth and F. Giesselmann, Simultaneous alignment and dispersion of carbon nanotubes with lyotropic liquid crystals. Phys. Status Solidi B 2006,243:3046-3049.
    [147]I. Dierking, G. Scalia and P. Morales, Liquid crystal-carbon nanotube dispersions. J. Appl. Phys.2005,97:044309.
    [148]I. Dierking and S. San, Magnetically steered liquid crystal-nanotube switch. Appl. Phys. Lett.2005,87:233507.
    [149]G. Scalia, M. Haluska, U. Dettlaff-Weglikowska, F. Giesselmann and S. Roth, Polarized Raman spectroscopy study of SWCNT orientational order in an aligning liquid crystalline matrix. AIP Conf. Proc.2005,786:114-117.
    [150]I. Dierking. G. Scalia, P. Morales and D. Leclere, Aligning and re-orienting carbon nanotubes by nematic liquid crystals. Adv. Mater.2004,16:865-869.
    [151]S. E. Moulton, M. Maugey, P. Poulin and G. G. Wallace, Liquid Crystal Behavior of Single-Walled Carbon Nanotubes Dispersed in Biological Hyaluronic Acid Solutions. J. Am. Chem. Soc.2007,129:9452-9457.
    [152]P. Rai, R. Pinnick, A. Parra-Vasquez, V. Davis, H. Schmidt, R. Hauge, R. Smalley and M. Pasquali, Isotropic-Nematic Phase Transition of Single-Walled Carbon Nanotubes in Strong Acids. J. Am. Chem. Soc.2006,128:591-595.
    [153]S. Zhang, I. Kinloch and A. Windle, Mesogenicity drives fractionation in lyotropic aqueous suspensions of multiwall carbon nanotubes. Nano Lett.2006,6: 568-572.
    [154]W. Song and A. Windle, Isotropic-Nematic Phase Transition of Dispersions of Multiwall Carbon Nanotubes. Macromolecules 2005,38:6181-6188.
    [155]S. Badaire, C. Zakri, M. Maugey, A. Derre, J. Barisci, G.Wallace and P. Poulin, Liquid Crystals of DNA-Stabilized Carbon Nanotubes. Adv. Mater.2005, 17:1673-1676.
    [156]V. Davis, L. Ericson, A. Parra-Vasquez, H. Fan, Y. Wang, V. Prieto, J. Longoria, S. Ramesh, R. Saini, C. Kittrell, W. Billups, W. Adams, R. Hauge, R. Smalley and M. Pasquali, Phase Behavior and Rheology of SWNTs in Superacids. Macromolecules 2004,37:154-160.
    [157]G. Duesberg, I. Loa, M. Burghard, K. Syassen and S. Roth, Polarized Raman Spectroscopy on Isolated Single-Wall Carbon Nanotubes. Phys. Rev. Lett.2000,85: 5436-5439.
    [158]J. P. F. Lagerwall, R. Dabrowski and G. Scalia, Antiferroelectric liquid crystals with induced intermediate polar phases and the effects of doping with carbon nanotubes. J. Non-Cryst. Solids 2007,353:4411-4417.
    [159]J. P. F. Lagerwall and F. Giesselmann, Current Topics in Smectic Liquid Crystal Research. ChemPhysChem 2006,7:20-45.
    [160]S. Kumar and H. Bisoyi, Aligned Carbon Nanotubes in the Supramolecular Order of Discotic Liquid Crystals. Angew. Chem.. Int. Ed.2007,46:1501-1503.
    [161]S. Y. Jeon, S. H. Shin, J. H. Lee, S. H. Lee and Y. H. Lee, Effects of Carbon Nanotubes on Nematic Backflow in a Twisted Nematic Liquid-Crystal Cell. Jpn. J. Appl. Phys.2007,46:7801-7802.
    [162]V. Weiss, R. Thiruvengadathan and O. Regev, Preparation and Characterization of a Carbon Nanotube-Lyotropic Liquid Crystal Composite. Langmuir 2006,22: 854-856.
    [163]W. Q. Jiang, B. Yu, W. M. Liu and J. C. Hao, Carbon Nanotubes Incorporated within Lyotropic Hexagonal Liquid Crystal Formed in Room-Temperature Ionic Liquids. Langmuir 2007,23:8549-8553.
    [164]L. Q. Amaral and M. E. Marcondes Helene, Nematic domain in the sodium lauryl sulfate/water/decanol system。J. Phys. Chem.1988,92:6094-6098.
    [165]M. Islam, E. Rojas, D. Bergey, A. Johnson and A. Yodh, High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. Nano Lett.2003, 3:269-273.
    [166]I. Koltover, T. Salditt, J. O. Radler and C. R. Safinya, An Inverted Hexagonal Phase of Cationic Liposome-DNA Complexes Related to DNA Release and Delivery. Science 1998,281:78-81.
    [167]G. Forster, C. Schwieger, F. Faber, T. Weber and A. Blume, Influence of poly(1-lysine) on the structure of dipalmitoylphosphatidylglycerol/water dispersions studied by X-ray scattering. Eur. Biophys. J.2007,36:425-435.
    [168]C. Zakri and P. Poulin, Phase behavior of nanotube suspensions: from attraction induced percolation to liquid crystalline phases. J. Mater. Chem.2006,16:4095-4098.
    [169]L. M. Ericson, H. Fan et al, Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers. Science 2004,305:1447-1450.
    [170]1. Onsager, The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci.1949,51:627-659.
    [171]A. Donald, A. Windle and S. Hanna. Liquid Crystalline Polymers. Cambridge University Press, Cambridge, UK,2006.
    [172]P. Poulin, personal communication,2008.
    [173]J.P.F. Lagerwall, G. Scalia, Carbon nanotubes in liquid crystals. J. Mater. Chem. 2008.18:2890-2898.
    [1]C. Zakri, Carbon nanotubes and liquid crystalline phases. Liq. Cryst. Today 2007, 16: 1-11.
    [2]J.P.F. Lagerwall, G. Scalia, Carbon nanotubes in liquid crystals. J. Mater. Chem. 2008,18:2890-2898.
    [3]V.N. Bliznyuk, S. Singamaneni, R.L. Sanford, D. Chiappetta, B. Crooker, P.V. Shibaev, Matrix mediated alignment of single wall carbon nanotubes in polymer composite films. Polymer 2006,47:3915-3921.
    [4]H. Nomura, S. Ando, T. Matsuoka, S. Koda, Relationship between segmental anisotropy in polarizability and stationary ultrasonically induced birefringence in polymer solutions. J. Mol. Liq.2004,110:57-62.
    [5]G. Scalia, J.P.F. Lagerwall, M. Haluska, U. Dettlaff-Weglikowska, F. Giesselmann, S. Roth, Effect of phenyl rings in liquid crystal molecules on SWCNTs studied by Raman spectroscopy. Phys. Stat. Sol. (b) 2006,243:3238-3241.
    [6]D.F. Wu, L. Wu, M. Zhang, Y.L. Zhao, Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym. Degrad. Stab.2008,93:1577-1584.
    [7]J.F. Dai, Q. Wang, W.X. Li, Z.Q. Wei, G.J. Xu, Properties of well aligned SWNT modified poly (methyl methacrylate) nanocomposites. Mater. Lett.2007,61:27-29.
    [8]D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor & Francis, London,1994.
    [9]R.D. Sherman, S.M. Jacobs, Electron transport processes in conductor-filled polymers. Polym. Eng. Sci.1983,23:36-46.
    [10]X. Liang, L. Ling, C. Lu, L. Liu, Resistivity of carbon fibers/ABS resin composites. Mater. Lett.2000,43:144-147.
    [11]N. Lebovka, T. Dadakova, L. Lysetskiy, O. Melezhyk, G. Puchkovska, T. Gavrilko, J. Baran, M. Drozd, Phase transitions, intermolecular interactions and electrical conductivity behavior in carbon multiwalled nanotubes/nematic liquid crystal composites. J. Mol. Struct.2008,887:135-143.
    [1]赵周明,林永渭,吴叙勤,热致性液晶芳香族共聚酯增强材料的合成及加工.高分子材料科学与工程1991,7:1-6.
    [2]李敏,周恩乐,徐纪平,新型液晶聚合物的分子设计及功能.高分子通报1996,(1):45-50.
    [3]P.W. Morgan, Linear condensation polymers from phenolphthalein and related compounds. J. Polym. Sci. A 2003,2:437-459.
    [4]D.J. Liaw, Preparation and Properties of Flame-Retardant Polyphosphate Esters: Low-Temperature Solution Polycondensation of 3,3',5,5'-Teteabromobiphenol AF and Arylphosphorodichloridates. J. Appl. Polym. Sci.1997,65:59-65.
    [5]由英才,郝济远,张保龙,杜宗杰,4,4’-对苯二甲酰二氧二苯甲酸/聚乙二醇共聚酯的合成及液晶行为研究.南开大学学报(自然科学)1998,31:63-67.
    [6]B.A. Yu, A.V. Tenkovtsev, S.S. Skorokhodov, Thermoplastic polyesters,1. Synthesis of complex monomers for polycondensations. Makromol. Chem., Rapid Commun.1985,6:209-213.
    [7]G. Scalia, J.P.F. Lagerwall, M. Haluska, U. Dettlaff-Weglikowska, F. Giesselmann, S. Roth, Effect of phenyl rings in liquid crystal molecules on SWCNTs studied by Raman spectroscopy. Phys. Stat. Sol. (b) 2006,243:3238-3241.
    [8]E. Lafuente, M. Pinol, L. Oriol, E. Munoz, A.M. Benito, W.K. Maser, A.B. Dalton, J.L. Serranob and M.T. Martineza, Polyazomethine/carbon nanotube composites. Mater. Sci. Eng. C 2006,26:1198-1201.
    [9]I. Dierking, G. Scalia, P. Morales and D. Leclere, Aligning and re-orienting carbon nanotubes by nematic liquid crystals. Adv. Mater.2004,16:865-869.
    [10]I. Dierking, G. Scalia, P. Morales, Liquid crystal-carbon nanotube dispersions. J. Appl. Phys.2005,97:044309.
    [11]V.N. Bliznyuk, S. Singamaneni, R.L. Sanford, D. Chiappetta, B. Crooker, P.V. Shibaev, Matrix mediated alignment of single wall carbon nanotubes in polymer composite films. Polymer 2006,47:3915-3921.
    [12]Mingjun Yang, Vasileios Koutsos, and Michael Zaiser, Interactions between Polymers and Carbon Nanotubes:A Molecular Dynamics Study. J. Phys. Chem. B 2005,109:10009.
    [13]Jian Chen, Haiying Liu, Wayne A. Weimer, Mathew D. Halls, David H. Waldeck, and Gilbert C. Walker, Noncovalent Engineering of Carbon Nanotube Surfaces by Rigid, Functional Conjugated Polymers. J. Am. Chem. Soc.2002,124:9034-9035.
    [14]A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes. Angew. Chem. Int. Ed.2001,113:1771-1775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700