丝素蛋白共混膜仿生制备丝素蛋白/羟基磷灰石复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丝素蛋白具有良好的机械性能、环境稳定性和生物相容性。其分子结构中含有大量的活性基团,如-COOH基团,这些活性基团很容易诱导无机矿物碳酸钙和磷酸钙的沉积,对于矿化起着重要的作用。丝蛋白的结构特点为无机物在其表面的矿化提供了基础,它能为无机物提供成核位点、诱导无机离子沉积。因此近年来,丝素蛋白被作为有机模板而广泛的应用于有机/无机复合生物材料的制备。另外,研究发现非胶原类的大分子聚合物也能明显影响无机矿物的成核和生长。
     本论文利用丝素蛋白以及大分子聚合物结构上的特点,在丝素蛋白分子中引入各种不同的聚合物,目的在于进一步促进无机矿物的矿化沉积。实验中以有机大分子丝素蛋白为主体,与聚合物分子进行共混膜后,制备共混膜,在一定的温度下进行预矿化后置于1.5倍人体仿生液(1.5×SBF)中,钙磷离子在大分子聚合物/丝素蛋白的表面沉积、成核并最终聚集形成羟基磷灰石,论文着重研究不同大分子聚合物/丝素蛋白的配比、不同预矿化温度对丝素蛋白/羟基磷灰石类骨质复合材料沉积量、钙磷比以及形貌的影响。
     内容一,仿生合成聚丙烯酸/丝素蛋白/羟基磷灰石复合生物材料。将丝素蛋白与聚丙烯酸进行共混,制备不同配比的聚丙烯酸/丝素蛋白共混膜,将共混膜用乙醇改性后,用氯化钙溶液和磷酸氢二钾溶液进行预矿化处理后置于人体仿生液中仿生制备丝素蛋白/羟基磷灰石复合材料。本实验探讨了乙醇的改性处理对复合材料制备的影响。通过FTIR、XRD、SEM、EDX对样品进行表征。结果显示:1,所制备的复合生物材料中,羟基磷灰石晶体的结晶度较低,与天然骨组织中的磷灰石晶体相似;2,乙醇改性处理后的聚丙烯酸/丝素蛋白共混膜更有利于羟基磷灰石在其表面的生长。
     内容二,仿生合成聚天冬氨酸/丝素蛋白/羟基磷灰石复合生物材料。制备不同配比的聚天冬氨酸/丝素蛋白共混膜,经乙醇改性处理、于不同的温度下预矿化后置于1.5×SBF中得到有机/无机复合材料。本章实验探讨了聚天冬氨酸/丝素蛋白的配比以及预矿化温度对羟基磷灰石的形貌和沉积量的影响。利用FTIR、XRD、SEM、ICP对样品进行表征。结果显示:PASP/SF的配比以及预矿化温度会影响复合材料的形貌以及沉积量。随着共混膜中PASP含量的增加,SF/HA复合材料中磷灰石的含量增加、Ca/P比增大;预矿化温度的提高同样会促使磷灰石含量的增加、Ca/P比的增大。
     内容三,论文实验的第三部分研究了小分子的氨基酸—天冬氨酸的加入对丝素蛋白/羟基磷灰石复合材料性质的影响。首先,在预矿化液氯化钙中加入不同质量的天冬氨酸,得到不同的预矿化液。然后将乙醇改性处理后的丝素蛋白膜放入此矿化液中进行预矿化处理,后置于1.5×SBF中24h,得到丝素蛋白/羟基磷灰石复合材料。表征结果显示:天冬氨酸的加入量对复合材料的形貌有较明显影响,同时对于钙磷在丝素蛋白膜表面的沉积也有一定的影响。
     综上所述,本论文主要以丝素蛋白纤维为模板,调控钙磷在其表面的沉积、成核,制备类骨质羟基磷灰石晶体。在丝素蛋白的调控下,磷灰石晶体在其表面沉积,所制备的类骨质复合生物材料与天然骨具有组成和结构上的统一,是一种理想的复合生物材料。
Silk fibers from Bombyx mori fibroin have been used as biomedical material for a long time, because of their outstanding mechanical properties, environmental stability and biocompatibility. SF plays an important role for the mineralization, its molecular structure contains a large number of active groups, such as-COOH group, which is easy to induce inorganic mineral phase deposited, such as calcium carbonate and calcium phosphate deposition. Silk fibroin provides a lot of nucleation sites for inorganic mineral deposited. In recent years, silk fibroin was widely used as organic template for the preparation of organic/inorganic composites. Meanwhile, many studies have shown that non-collagen macromolecular polymers can significantly affect the nucleation and growth of inorganic mineral phase.
     In the study, in order to enhance the deposition of inorganic mineral, blend membranes consist of silk fibroin (SF) and different polymers were prepared. Silk fibroin was mixed with polymers to prepared different blend ratio membranes. After ethanol treatment and premineralization process, the films were immersed into a simulated body fluid with the ion concentration 1.5 times higher than that of the standard one. This process was to induce nucleation and growth of calcium and phosphorus ions on the membrane surface, and after 24h the hydroxyapatite-deposited SF films were got. We have investigated the influence of the blend ratio of polymers/SF and pre-mineralization temperature on the content of the precipitation, calcium/phosphorus ratio and morphology.
     For the first content of the thesis, the polyacrylic acid/silk fibroin/hyaroxyapatite (PAA/SF/HA) composite materials were synthesized. PAA/SF blend membranes were prepared by mixing SF and PAA together. Two different methods were used for the films treatment. The first one, the films were treated with 60%(v/v) ethanol, through a treatment with the use of Ca(OH)2 and K2HPO4 solution, the films were then immersed into SBF to induce apatite deposition. As contract, another film was untreated with ethanol, then dealed with the same method in the next process. This study investigated effect of ethanol treatment on the composite material. The results from the tests of SEM, XRD, EDX and FTIR showed that the hydroxyapatite crystals in the composite had low crystallinity, which was close to that in the natural bone. Furthermore, ethanol treatment significantly enhanced the HA deposition on the blend films.
     The second part, polyaspartic acid/silk fibroin/hyaroxyapatite (PASP/SF/HA) composite materials were synthesized. PASP/SF blend membranes were prepared by mixing different content SF and PASP together. These films were treated with 60% (v/v) ethanol, through a treatment with the use of Ca(OH)2 and K2HPO4 solution, the films were then immersed into SBF to induce apatite deposition. This study investigated the effect of the PASP/SF blend ratio and temperature of premineralization on the amount of HA deposition and its morphology. The results from the tests of SEM, XRD, ICP and FTIR showed that the amount of crystals increased with the PASP/SF ratio increasing. Meanwhile, a gradual increase of Ca/P ratio was also appeared through PASP/SF enhanced. Furthermore, the amount of apatite deposition and its Ca/P ratio were increased as the temperature of precalcification increased. A change of morphology was found as the PASP/SF blend ratio and precalcification temperature changed.
     At the third part of this thesis, the effect of aspartic acid on the SF/HA deposition was also studied. We prepared four kinds of precalcification solution by adding different volume of ASP into SF solution. After treated with 60%(v/v) ethanol solution, SF films were pretreated with the four kinds precalcification solution. The pretreatment films were then then immersed into SBF 24h to induce apatite deposition. The SEM, XRD, ICP and FTIR results showed that the amount of ASP in the precalcification can significantly influence the morphology of composite. The amount of deposition and its Ca/P ratio were also influenced by the ASP content.
     In summary, silk fibroin was used as organic template to control the nucleation and growth of calcium and phosphorous on its surface. On the regulation of silk fibroin, the apatite crystals can successfully deposited on SF surface. The composition and structure of SF/HA composite were similar to the natural bone.
引文
[1]R. Murugan, S. Ramakrishna. Development of nanocomposites for bone grafting [J]. Composites Science and Technology,2005,65(15-16):2385-2406.
    [2]Elliott J C. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier Science B. V.1999:131-136.
    [3]Riapmonti U. Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models [J]. Biomaterials,1996,17(1):31-35.
    [4]Proussaefs P, Lozada J, Valencia G, Rohrer M D. Histologicevaluation of a hydroxyapatite onlay bone graft retrieved after 9 years:a clinical report [J]. J Prosthet Dent,2002,87: 481-484.
    [5]Duckeyne P, Hench L L, Kagan A et al. Effect o f HA impregnation on skeletal bonding of porous coated implants [J]. J Biomedical Materials Research,1980,14(3):225
    [6]C. P. A. T. Klein, J. G. C. Wolke, J. M. A. De Blieck-Hogervorst et al. Calcium phosphate plasma-sprayed coating and their stability:a vivo study [J]. J Biomedical Materials Research, 1994,28(8):909-917
    [7]Eleftherios Tsiridis, Amit Bhalla, Zubier Ali et al. Enhancing the osteoinductive properties of hydroxyapatite by the addition of human mesenchymal stem cells, and recombinant human osteogenic protein-1 (BMP-7) in vitro [J]. Injury-International Journal of the Care of the in Jured,2006,37(suppl):S25-S32.
    [8]J.C. Roldan, R. Detsch, S. Schaefer et al. Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model [J]. Journal of Cranio-Maxillo-Facial Surgery,2010.
    [9]Kun Na, Sung won Kim, Bo Kyung Sun et al. Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2) [J]. Biomaterials,2007,28(16):2631-2637.
    [10]Ichiro Ono, Toshiharu Yamashita, Hai-Ying Jin et al. Combination of porous hydroxyapatite and cationic liposomes as a vector for BMP-2 gene therapy [J]. Biomaterials,25(19): 4709-4718.
    [11]Xiuli Dong, Qi Wang, Tao Wu et al. Understanding Adsorption-Desorption Dynamics of BMP-2 on Hydroxyapatite (001) Surface [J]. Biophysical Journal,2007,93(3):750-759.
    [12]A. Sachse, A. Wagner, M. Keller et al. Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep [J]. Bone,2005,37(5):699-710.
    [13]Jiang Wu, Ying-qiang Guo, Guang-fu Yin et al. Induction of osteoconductivity by BMP-2 gene modification of mesenchymal stem cells combined with plasma-sprayed hydroxyapatite coating [J]. Applied Surface Science,2008,255(2):336-339.
    [14]S. Manara, F. Paolucci, B. Palazzo et al. Electrochemically-assisted deposition of biomimetic hydroxyapatite-collagen coatings on titanium plate [J]. Inorganica Chimica Acta,2008, 361(6):1634-1645.
    [15]Shinichi Sotome, Toshimasa Uemura, Masanori Kikuchi et al. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein [J]. Materials Science and Engineering C,2004,24(3): 341-347.
    [16]M. Kikuchi, S. Itoh, S. Ichinose, K et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo [J]. Biomaterials,2001,22(13):1705-1711.
    [17]Y.S. Pek, Shujun Gao, M.S. Mohamed Arshad et al. Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds [J]. Biomaterials,2008,29(32):4300-4305.
    [18]Masanori Kikuchi, Toshiyuki Ikoma, Soichiro Itoh et al. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen [J]. Composites Science and Technology,2004,64(6):819-825.
    [19]Soichiro Itoh, Masanori Kikuchi, Yosihisa Koyama et al. Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite[J]. Biomaterials, 2002,23(19):3919-3926.
    [20]Tian Weidong, Li Shengwei, Deng Nan et al. Experimental Study for the composite of Hydroxyapatite-Fibrin Sealant as a bone Substitute [J]. Chinese Journal of Oral Implantology,1998,3 (4):170-173.
    [21]Qiaoling Hu, Baoqiang Li, Mang Wang et al. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization:a potential material as internal fixation of bone fracture [J]. Biomaterials,2004,25(5):
    779-785.
    [22]Yanzhong Zhang, Jayarama Reddy Venugopal, Adel El-Turki et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering [J]. Biomaterials,2008,29(32):4314-4322.
    [23]Joaquim M. Oliveira, Ma'rcia T et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications:Scaffold design and its performance when seeded with goat bone marrow stromal cells [J]. Biomaterials,2006,27(36):6123-6137.
    [24]Cheng Xianmiao, Li Yubao, Zuo Yi et al. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration [J]. Materials Science and Engineering C,2009,29(1):29-35.
    [25]Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose-a masterpiece of nature's arts [J]. J Materials Science,2000,35(2):261-270.
    [26]Helenius G, Backdahl H, Bodin A et al. In vivo biocompatibility of bacterial cellulose [J]. J Biomedical Material Research part A,2006,76A(2):431-438.
    [27]Hong L, Wang YL, Jia SR et al. Hydroxyapatite/bacterial cellulose nanocomposites synthesized via a biomimetic route [J]. Materials Letters,2006,60(13-14):1710-1713.
    [28]Wan YZ, Hong L, Jia SR et al. Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites [J]. Composites Science and Technology,2006,66(11-12): 1825-1832.
    [29]Wan YZ, Huang Y, Yuan CD et al. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications [J]. Materials Science and Engineering:C,2007, 27(14):855-864.
    [30]Bodin A, Gustafsson L, Gatenholm P. Surface engineered bacterial cellulose as template for crystallization of calcium phosphate [J]. J Biomaterials Science-Polymer Edition,2006, 17(4):435-447.
    [31]Hutchens SA, Benson RS, Evans BR, O'Neill HM, Rawn CJ. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel [J]. Biomaterials,2006,27(26): 4661-4670.
    [32]Cristian J. Grande, Fernando G. Torres, Clara M. Gomez et al. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications [J]. Acta Biomaterialia,2009,5(5): 1605-1615.
    [33]D. Bakos, M. Solda, I. Herna ndez-Fuentes. Hydroxyapatite-collagen-hyaluronic acid composite [J]. Biomaterials,1999,20(2):191-195.
    [34]Rebaudi A, Silvestrini P, Trisi P. Use of a resorbable hydroxyapatite-collagen chondroitin sulfate material on immediate postextraction sites:A clinical and histologic study [J]. The Journal of Prosthetic Dentistry,2004,91(1):371-379.
    [35]F. Sun, X. Pang, I. Zhitomirsky. Electrophoretic deposition of composite hydroxyapatite-chitosan-heparin coatings [J]. Journal of Materials Processing Technology, 2009,209(3):1597-1606.
    [36]P.U. Rokkanen. Absorbable materials in orthopaedic surgery, Annals of Medicine,1991,23 (2):109-115.
    [37]Y. Shikinami and M. Okuno, Bioresorble devices made of forged composites of hydroxyapatite (HA) particles and poly 1-lactide (PLLA), part Ⅰ. basic characteristics [J]. Biomaterials,1999,20 (9):859-877.
    [38]Mainil-Varlet P,Curtis R,Gogolewski S. The effect of in vivo and in vitro degradation on molecular and mechanical properties of various polylactides [J]. Journal of Biomedical Materials Research,1998,36(3):360-380.
    [39]Toshihiro Kasuga, Yoshio Ota, Masayuki Nogami et al. Preparation and mechanical properties of polylactic acid composites containing hydroxyapatite fibers [J]. Biomaterials, 2001,22(1):19-23.
    [40]Takashi Kaito, Akira Myoui, Kunio Takaoka et al. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite [J]. Biomaterials,2005,26(1):73-79.
    [41]S.S. Liao, F.Z. Cui, W. Zhang et al. Hierarchically Biomimetic Bone Scaffold Materials: Nano-HA/Collagen/PLA Composite [J]. Journal of Biomedical Material Research. Part B: Applied Biomaterials,2004,69 (2):158-165.
    [42]Po-Liang Lin, Hsu-Wei Fang, Tiffany Tseng et al. Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials [J]. Materials Letters,2007,61(14-15):3009-3013.
    [43]Yan Yonggang, Li Yubao Wang Jianxin et al. Study on Preparation and Properties of
    Polyamide 66/nano apatite Composites [J]. China Plastics Industry,2000,28 (3):38-40.
    [44]Wang Xuejiang; Wang Jianxin; Li Yubao et al. Preparation of Nanograde Hydroxyapatite Needle-like Crystals under Normal Atmospheric Pressure [J]. High Technology Letters,2000, 1 (1-6):92.
    [45]Wang Xuejiang; Li Yubao. Study on Bionic Composite of Nano-HA Needle-like Crystals and Polyamide [J]. High Technology Letters,2001:51-53
    [46]Huanan Wang, Yubao Li, Yi Zuo et al. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering[J]. Biomaterials,2007,28(22):3338-3348.
    [47]Xiaohong Wang, Jianbiao Ma, Yinong Wang et al. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements [J]. Biomaterials,2001,22(16):2247-2255.
    [48]Yokogawa Y, Pazreyes J, Mucalo M R et al. Growth of calcium phosphate on phosphorylated chintin fibers [J]. Journal of Materials Science:Materials in Medicine,1997,8(7):407-412.
    [49]Kawashita, M Nakao, M Minoda. Apatite-forming ability of carboxyl group-containing polymers gels in a simulated body fluid [J]. Biomaterials,2003,24(14):2477-2484.
    [50]Masami Tanahashi, Takehisa Matsuda. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid [J]. Journal of Biomedical Materials Research,1997,34(3):305-315.
    [51]Takahiro Kawai, Chikara Ohtsuki, Masanobu Kamitakahara. Coating of an apatite layer on polyamide films containing sulfonic groups by a biomimetic process [J]. Biomaterials,2004, 25(19):4529-4534.
    [52]H.K. Varma, Y. Yokogawa, F.F. Espinosa et al. Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method [J]. Biomaterials,1999,20(9): 879-884.
    [53]Miyazaki T, Ohtsuki C, Akioka Y et al. Apatite deposition on polyamide films containing carboxyl group in a biomimetic solution[J]. Journal of Material Science:Materials in Medicine,2003; 14(7):569-574.
    [54]Takeuchi A, Ohtsuki C, Miyazaki T et al. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid[J]. Journal of Biomedical Materials Research,2003,
    65A(2):283-289.
    [55]Tadashi Kokubo, Masayuki Hanakawa, Masakazu Kawashita et al. Apatite formation on non-woven fabric of carboxymethylated chitin in SBF [J]. Biomaterials,2004,25 (18): 4485-4488.
    [56]Amornthep Kojthung, Prateep Meesilpa, Boonya Sudatis et al. Effects of gamma radiation on biodegradation of Bombyx mori silk fibroin [J]. International Biodeterioration & Biodegradation,2008,62 (4):487-490.
    [57]Gregory H. Altman,Frank Diaz,Caroline Jakuba et al. Silk-based biomaterials [J]. Biomaterials,2003,24 (3):401-416.
    [58]Rebecca L. Horan, Kathryn Antle, Adam L. Collette et al. In vitro degradation of silk fibroin [J]. Biomaterials,2005,26 (17):3385-3393.
    [59]K. Okuyama, R. Somashekar, K. Noguchi et al. Refined molecular and crystal structure of silk I based on Ala-Gly and (Ala-Gly)2-Ser-Gly peptide sequence [J]. Biopolymers,2001, 59 (5):310-319.
    [60]T. Asakura, J. Ashida, T. Yamane et al. A repeated β-turn structure in Poly (Ala-Gly) as a model for silk I of Bombyx mori silk fibroin studied with two-dimensional spin-diffusion NMR under off magic angle spinning and rotational echo double resonance [J]. Journal of Molecular Biology,2001,306(2):291-305.
    [61]Tomoaki Hino, Masao Tanimoto, Saburo Shimabayashi. Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere [J]. Journal of Colloid and Interface Science,2003,266(1):68-73.
    [62]Asakura, T., T. Yamane, Y. Nakazawa, T. Kameda, and K. Ando. Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and C-13 cross-polarization/magic angle spinning NMR [J]. Biopolymers,2001,58(5):521-525.
    [63]Magoshi J, Magoshi Y, Nakamura S. Low energy and super spinning of silkworm (silk)-Multiple spinning of Bombyx mori[J]. Sen-1 Gakkaishi,1997,53(3):87-97.
    [64]S. Inoue, J. Magoshi, T. et al. Atomic force microscopy:Bombyx mori silk fibroin molecules and their higher order structure[J]. Journal of Polymer Science Part B,2000,38(11): 1436-1439.
    [65]J. Magoshi, Y. Magoshi, S. Nakamura et al. Viney (Eds.), ACS Symposium Series 544,
    American Chemical Society, Washington, DC,1994, Chapter 25:292-310.
    [66]Hajime Mori, Masuhiro Tsukada. New silk protein:modification of silk protein by gene engineering for production of biomaterials [J]. Reviews in Molecular Biotechnology,2000, 74(2):95-103.
    [67]Michael Lovett, Christopher Cannizzaro, Laurence Daheron et al. Silk fibroin microtubes for blood vessel engineering [J]. Biomaterials,2007,28(35):5271-5279.
    [68]Xiaohui Zhang, Cassandra B. Baughman, David L. Kaplan. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth [J]. Biomaterials,2008,29(14):2217-2227.
    [69]D. Puppi, F. Chiellini, A.M. Piras et al. Polymeric materials for bone and cartilage repair [J]. Progress in Polymer Science,2010,35(4):403-440.
    [70]Qian Fang, Denglong Chen, Zhiming Yang et al. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds [J]. Materials Science and Engineering:C,2009,29(15):1527-1534.
    [71]Joydip Kundu, Yong-Il Chung, Young Ha Kim et al. Silk fibroin nanoparticles for cellular uptake and control release [J]. International Journal of Pharmaceutics,2010,388(1-2): 242-250.
    [72]S. Hofmann, C.T. Wong Po Foo, F. Rossetti et al. Silk fibroin as an organic polymer for controlled drug delivery. Journal of Controlled Release,2006,111 (1-2):219-227.
    [73]John G. Hardy, Lin M. Romer, Thomas R. Scheibel. Polymeric materials based on silk proteins [J]. Polymer,2008,49(20):4309-4327.
    [74]Charu Vepari, David L. Kaplan. Silk as a biomaterial [J]. Progress in Polymer Science,2007, 32(8-9):991-1007.
    [75]Li Wang, Rei Nemoto, Mamoru Senna. Changes in microstructure and physico-chemical properties of hydroxyapatite-silk fibroin nanocomposite with varying silk fibroin content [J]. Journal of the European Ceramic Society,2004,24(9):2707-2715.
    [76]Toshimitsu Tanaka, Motohiro Hirose, Noriko Kotobuki et al. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells [J]. Materials Science and Engineering C,2007,27 (14):817-823.
    [77]Yucheng Li, Yurong Cai, Xiangdong Kong et al. Anisotropic growth of hydroxyapatite on the silk fibroin films [J]. Applied Surface Science,2008,255 (5):1681-1685.
    [78]Li Wang, Gui-Ling Ning, Mamoru Senna. Microstructure and gelation behavior of hydroxyapatite-based nanocomposite sol containing chemically modified silk fibroin [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,254(1-3): 159-164.
    [79]Feng Lin, Yucheng Li, Jun Jin et al. Deposition behavior and properties of silk fibroin scaffolds soaked in simulated body fluid [J]. Materials Chemistry and Physics,2008,111 (1):92-97.
    [80]Hyeon Joo Kim,Ung-Jin Kim, Hyun Suk Kim et al. Bone tissue engineering with premineralized silk scaffolds [J]. Bone,2008,42(6):1226-1234.
    [81]Kong X. D., Cui F. Z., Wang X. M. et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals [J]. Journal of Crystal Growth,2004,270(1-2):197-202.
    [82]Xin Chen, Zhengzhong Shao, David P. Knight et al. Conformation Transition Kinetics of Bombyx mori Silk Protein [J]. PROTEINS:Structure, Function, and Bioinformatics,2007, 68(1):223-231.
    [83]Yang G., Zhang L. N., Liu Y. G.:Structure and microporous formation of cellulose/silk fibroin blend membranes I. Effect of coagulants [J]. Journal of Membrane Science,2000, 177(1-2):153-161.
    [84]Simonetti M., Di Bello C.:New Fourier transform infrared based computational method for peptide secondary structure determination. I. Description of method [J]. Biopolymers,2001, 62(2):95-108.
    [85]Yao J M, Wei K M, Li L et al. Effect of Initial Bombyx mori Silk Fibroin Structure on the Protein Biomineralization [J]. Acta Chimica Sinica,2007,65(7):635-639.
    [86]Cai X., Tong H., Shen X. Y. et al. Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties [J]. Acta Biomaterialia,2009,5(7):2693-2703.
    [87]He S. J., Valluzzi R., Gido S. P.. Silk I structure in Bombyx mori silk foams [J]. International Journal of Biological Macromolecules,1999,24(2-3):187-195.
    [88]Kratky O., Schauenstein E., Sekora A.:An unstable lattice in silk fibroin [J]. Nature,1950, 165(4191):319-320.
    [89]Tao W, Li M Z, Zhao C X. Structure and properties of regenerated Antheraea pernyi silk
    fibroin in aqueous solution [J]. International Journal of Biological Macromolecules,2007, 40(5):472-478
    [90]CHENG Zhongling, WANG Song, ZHU Hesun. Structure and Thermal Characteristics of Silk Fibroin/Fucoldan Blend Films [J]. Acta Polymerica Sinica,2004, (3):446-449.
    [91]Adriana B,Elisa B,Silvia P,et al. Biomimetic Growth of Hydroxyapatite on Gelatin Films Doped with Sodium Polyacrylate[J].Biomacromolecules 2000,1(4):752-756.
    [92]Gaetano Giammona, Giovanna Pitarresi, Vincenzo Tomarchio et al. Swellable microparticles containing Suprofen:evaluation of in vitro release and photochemical behaviour [J]. Journal of Controlled Release,1998,51(2-3):249-257.
    [93]K. Prompruk, T. Govender, S. Zhang et al. Synthesis of a novel PEG-block-poly (aspartic acid-stat-phenylalanine) copolymer shows potential for formation of a micellar drug carrier [J]. International Journal of Pharmaceutics,2005,297(1-2):242-253.
    [94]Arimura, H., Ohya, Y.; Ouchi, T. The formation of biodegradable polymeric micelles from newly synthesized poly(aspartic acid)-block-polylactide AB-type diblock copolymers [J]. Macromolecular rapid communications,2004,25(6):743-747.
    [95]Nikos Spanos, Petros G. Koutsoukos. Kinetics of Precipitation of Calcium Carbonate in Alkaline pH at Constant Supersaturation. Spontaneous and Seeded Growth [J]. Journal of Physical Chemistry B,1998,102(34):6679-6684.
    [96]E.M. Burke, Y. Guo, L. Colon et al. Influence of polyaspartic acid and phosphophoryn on octacalcium phosphate growth kinetics [J]. Colloids and Surfaces B:Biointerfaces,2000,17 (1):49-57.
    [97]Tao W., Li M. Z., Zhao C. X.. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution [J]. International Journal of Biological Macromolecules,2007, 40(5):472-478.
    [98]Yu Haiyan,Zhang Huimin, Yang Jianming. SEM and XRD study on nucleation and growth of calcium oxalate in presence of various kinds of amino acids [J]. Journal of Chinese Electron Microscopy Society,2007,26(1):44-48.
    [99]Chen Chuanbao, Fang Liang, Zhang Qun. Control of DL-Aspartic Acid on Morphology and Structure of Calcium Carbonate [J]. Journal of Anqing Teachers College (Natural Science Edition),2008,14(2):45-47.
    [100]M. Azizur Rahman, Tamotsu Oomori. Aspartic Acid-rich Proteins in Insoluble Orgaic Matrix Play a Key Role in the Growth of Calcitic Sclerites in Alcyonarian Coral Chin [J]. J Biotech,2008,24(12):2127-2128.
    [101]Sara Sarig. Aspartic acid nucleates the apatite crystallites of bone:a hypothesis [J]. Bone, 2004,35(1):108-113.
    [102]Yong Shao, Yongdong Jin, Shaojun Dong. Synthesis of gold nanoplates by aspartate reduction of gold chlorideN [J].Chemistry Communication,2004,5:1104-1105.
    [103]高卫民,陈运法.片状羟基磷灰石纳米晶体的合成研究,2004年中国纳米技术应用研讨会,37-39.
    [104]J. A. Dirksen, T. A. Ring. Fundamentals of crystallization:Kinetic effects on particle size distributions and morphology [J]. Chemical Engineering Science,1991,46(10):2389-2427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700