不同硼效率油菜品种硼吸收运转及细胞膜透性差异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以硼高效甘蓝型油菜品种QY10和低效品种Bakow为研究材料,采用土壤培养和溶液培养,利用嫁接技术和10B同位素示踪技术,从硼的吸收分配、转移再利用以及硼与细胞膜功能的关系等方面探讨了不同硼效率甘蓝型油菜品种硼效率的差异。获得主要结果如下:
     1.嫁接试验表明,缺硼胁迫下,油菜能否获得产量主要由接穗控制,同时一定程度上受砧木影响。缺硼显著降低QY10、Ba及其相互嫁接植株的地上部和根系硼含量和累积量,高效品种地上部和根系硼含量、累积量最高,低效品种最低,嫁接植株均居于高效品种和低效品种之间,说明甘蓝型油菜体内硼含量不只是受根系或地上部某一部位影响,而是受两者共同控制。
     2.供硼充足时,低效品种Ba各部位中硼含量、累积量及整株累积量均高于高效品种QY10,而在缺硼胁迫时却表现相反的趋势,特别是上部叶表现更明显。说明低效品种正常生长时需硼量较多,高效品种在缺硼条件下能够从环境吸收更多的硼,且向上部生长中心转运能力更强。
     3.无论是缺硼还是正常条件下,高效品种QY10各部位中的水溶性硼累积占全硼累积的比例均高于低效品种Ba,随着培养液中硼浓度的增加,2个不同硼效率油菜品种各部位中的水溶性硼积累量占全硼累积量的比例均在增加,且均表现为上部叶中的水溶性硼的量明显高于下部叶和根。
     4.缺硼对硼在不同硼效率甘蓝型油菜品种不同部位的分配比例影响显著,缺硼时2个油菜品种上部叶中的的硼累积量占全株的比例均有所上升,表明2个油菜品种体内的硼能向上运转,但Ba在严重缺硼胁迫(0.005 mg·L-1)时才开始显现出向上部叶运转能力,而高效品种QY10只要轻度缺硼时(0.05 mg·L-1)就能表现出较高的硼运转能力。
     5.在硼饥饿3d后,用硼酸浸泡叶片新吸收的10B能够向上部叶、下部叶和根系运输,但2个油菜品种对硼的运输能力不同,在中部叶片施硼1d后,高效品种施硼叶片向邻近部分转运硼能力大于低效品种,3d后低效品种又大于高效品种。
     6.在硼饥饿3d后根系供硼,供硼10d与5d时相比,高效品种上部叶、下部叶中新吸收10B量占整株比例呈上升趋势,根系有所下降,而低效品种却呈相反趋势。表明缺硼饥饿后供硼,不同硼效率油菜品种吸收硼均优先供应生长中心——上部幼嫩组织,高效品种向生长中心转运硼能力大于低效品种。
     7.随着外界溶液中硼浓度的降低,不同硼效率油菜品种各部位的细胞膜相对透性和离子外渗量均显著增加或有增加趋势,高效品种QY10各部位增加幅度均要明显小于低效品种Ba,表明遭受缺硼胁迫时,高效品种QY10的细胞膜比低效品种Ba受伤害的程度要小,高效品种QY10较低效品种Ba耐低硼胁迫的能力强。
Pot culture and solution culture were conducted to discuss the boron different of the boron efficient rapeseed (Brassica napus L.)cultivar'QY10'and the boron inefficient one 'Ba'in boron uptake, distribution retranslocation and the relationships between boron and the cell membrane composition with grafting techniques and 10B isotope tracer. Main results are as follows:
     1.Grafting experiments indicated that the yield of rape can be mainly affected by scion, while to some extent by the rootstock under boron deficiency. The boron content and accumulation of the high boron efficiency cultivar was the highest and that of the boron inefficiency cultivar was the least under boron deficient condition. The results suggested that the boron in rape was affected by both stock and scion.
     2.When boron is sufficient, the boron content and accumulation of all parts and whole plant accumulation of boron inefficient cultivar'Ba'were more than the boron efficient cultivars'QY10',but when the boron was deficiency it appeared opposite trend, especially the upper leaves. It showed that the boron inefficient cultivar 'Ba'needed more boron to grow than the boron efficient cultivar'QY10',and the boron absorption capacity of boron efficient rape cultivar'QY10'was higher than the inefficient one.
     3.Whether boron deficient or boron sufficient conditions, the proportion of water extractable boron accumulation in different parts of boron efficient rape cultivar'QY10' accounting for the total boron accumulation was higher than boron inefficient cultivar 'Ba'.With the increasing of boron concentration in culture medium, the proportion of water extractable boron accumulation of different parts of two different boron efficiency rape cultivars accounting for total boron accumulation were increased, and the water extractable boron accumulation of upper leaves was significantly higher than the lower leaves and roots.
     4.There were amount of significant difference in boron distribution proportion between the two different boron efficiency rapeseed cultivars under boron deficiency conditions.The proportion of boron in the upper leaves accounting for the whole plant of the two rape cultivars rose under boron deficiency conditions.The results showed that boron in the two rape cultivars can be retranslocated from the lower leaves to the upper. However, boron in the boron inefficient cultivar'Ba' can be retranslocated just under boron deficiency severely (0.005 mg·L-1),boron in the boron efficient cultivar'QY10'can be retranslocated efficiently under boron deficiency gently (0.05 mg·L-1).
     5.The 10B can be retranslocated from the soaked leaves to the upper leaves, the lower leaves and the root after boron starvation three day, but the two rape cultivars with different boron efficiency have different boron retranslocation capacity. The capacity of boron retranslocation in efficient rape cultivar'QY10'was better than the boron inefficient one when leaf was immersed in 10B solution one day. The trend was opposite when leaf was immersed in 10B solution three day.
     6 Compared to supply boron five day, when the root was immersed in 10B solution the newly take-up 10B in upper leaves and lower leaves of the boron efficient rape cultivar 'QY10'was upward, but the root was downward. The boron inefficient rape cultivar'Ba' was opposite. The experiment showed that supply boron after starvation the newly take-up boron in rapes with different boron efficiency give priority to the growth center----top young tissues, and the retranslocation capacity of boron efficient rape cultivar was better than the boron inefficient one.
     7. With the decreasing of boron concentration in culture medium, the cell membrane relative permeability and ion leakage of different parts of two rape cultivars increased or had upward trend. The increase extent of the cell membrane relative permeability and ion leakage of different parts of boron efficient cultivar'QY10'were significant less than boron inefficient cultivar'Ba',which show that the injury extent of cell membrane of boron efficient cultivar was smaller than the boron inefficient cultivar under boron deficiency conditions, and the ability of enduring boron stress of boron efficient cultivar was better than boron inefficient one.
引文
1.曹享云,刘武定,皮美美,等.对缺硼反应不同的油菜品种根系活力和酶活性的差异.中国油料,1997,19(2):19-21
    2.曹燕红.不同硼效率油菜品种对硼的吸收和转运差异及其机理研究.[硕士学位论文].武汉:华中农业大学,2009
    3.陈钢,易妍睿,周谟兵,等.植物营养研究进展.安徽农业科学,2006,34(16):4060-4061,4066
    4.褚海燕,喻敏.甘蓝型油菜品种硼利用效率差异研究.华中农业大学学报,1999,18(2):134-138
    5.褚天铎,陈家驹,刘昌智,等.油菜缺硼花而不实原因的探讨.植物营养与肥料学报,1996,2(1):23-31
    6.方益华,杨玉爱.不同水分条件下硼对油菜营养生理的影响.中国油料作物学报,1999,21(3):52-55
    7.耿明建,曹享云,朱端卫,等.硼对甘蓝型油菜不同品种花期生理特性的影响.中国油料作物学,1998,20(1):70-73
    8.耿明建,曹享云,朱端卫,等.硼对甘蓝型油菜不同品种苗期生理特性的影响.植物营养与肥料学报,1999,5(1):81-84
    9.耿明建,吴礼树,刘武定.植物硼的长距离运输.华中农业大学学报,2002,21(5):487-493
    10.耿明建,朱建华,吴礼树,等.硼对不同硼效率棉花品种苗期叶片膜脂过氧化和多胺含量的影响.植物营养学与肥料学报,2003,9(3):337-341
    11.耿明建,郭丽丽,赵竹青,等.甘蓝型油菜品种间相互嫁接及对其生长发育的影响.中国油菜作物学报,2009,31(2):85-189
    12.郭丽丽.采用嫁接方法研究不同硼效率甘蓝型油菜品种硼效率差异机制.[硕士学位论文].武汉:华中农业大学,2007a
    13.郭丽丽.采用嫁接试验探讨不同甘蓝型油菜品种硼效率差异机理初报.土壤,2007b,39(6):996-999
    14.郭丽丽,赵竹青,石磊,等.硼对不同硼效率甘蓝型油菜嫁接植株下部叶片矿质 养分含量的影响.中国油料作物学报,2010,32(1):89-93
    15.郭素枝,邓传远,张国军,等.低温对单、双瓣茉莉叶片细胞膜透性的影响.中国生态农业学报,2006,14(1):42-44
    16.何建新.植物对硼吸收转运机理的研究进展.中国沙漠,2008,2:266-273
    17.何子平,皮美美.硼钾营养相互配合对油菜叶片CAT和POD活性及根膜透性的影响.华中农业大学学报,1993,12(5):468-471
    18.胡秋辉,徐光壁,史瑞和.不同油菜品种硼素营养的遗传性差异机理研究.南京农业大学学报,1990,13(1):80-86
    19.姜佰文,戴建军,王春宏,等.干旱胁迫下硼对大豆植株保护酶活性的影响.作物杂志,2009,1:49-53
    20.李合生主编.植物生理生化实验原理和技术.北京:高等教育出版社,2000:167-169,260-263
    21.刘碧容,甄畅迪,萧洪东,等.硼对草坪草超氧化物歧化酶活性、超氧阴离子产生速率和丙二醛含量的影响.华中农业大学学报,2008,27(3):378-381
    22.刘静,刘艳平.细胞揭密.发明与革新,2001,8:38-39
    23.刘鹏.钼、硼对大豆品质和产量影响的营养和生理机制研究.[博士学位论文]杭州:浙江大学,2000
    24.刘鹏,吴建之,杨玉爱.土壤中的硼及其植物效应的研究进展.农业环境保护,2000,19(2):119-122
    25.刘鹏.硼胁迫对植物的影响及硼与其它元素关系的研究进展.农业环境保护,2002,2(4):372-374
    26.刘武定,皮美美,王运华.棉田缺硼诊断.土壤通报,1986(3):133-135
    27.刘武定主编.微量元素营养与微肥施用.北京,中国农业出版社,1995
    28.刘铮编著.微量元素的农业化学.北京:农业出版社,1991,78-80
    29.娄云生.不同水肥条件下油菜(Brassica napus L.)基因型硼吸收效应的研究:[博士学位论文].杭州:浙江农业大学,1998
    30.年夫照,彭慧元,徐芳森等.不同硼效率甘蓝型油菜苗期对硼镁营养的反应.植物营养与肥料学报,2004,10(5):511-515
    31.彭青枝,皮美美,曹享云,等.硼对油菜不同品种酶活性和根系活力的影响.植 物营养与肥料学报,1996,2(3):233-237
    32.彭青枝,皮美美,刘武定,等.芥菜型油菜不同品种硼吸收与分配的差异.华中农业大学学报,1995,(增刊)21:98-102
    33.屈红征,王丽萍,吴国良.植物硼素营养研究进展.山西农业大学学报,2000,2(12):173-177
    34.沈振国,沈康.硼在油菜体内分配与运转的研究.南京农业大学学报,1991,14(4):13-17
    35.沈振国,张秀省,王震宇,等.硼素营养对油菜花粉萌发的影响.中国农业科学,1994,27(1):51-56
    36.沈康,沈振国,徐汉卿,等.油菜硼营养与结实特性的研究.作物学报,1993,19(6):539-565
    37.施益华,刘鹏.硼要植物体内生理功能研究进展.亚热带植物科学,2002,31(2):64-69
    38.田如男,薛建辉,潘良,等.铅胁迫对4种常绿阔叶行道树幼苗细胞膜透性的影响.南京林业大学学报(自然科学版)2004,4(28):43-47
    39.石磊,徐芳森.植物硼营养研究的重要进展与展望.植物学通报,2007,24(6):789-798
    40.王春利.植物缺硼的生理伤害.植物生理学通讯,2001,37(4):352-355
    41.王芳,刘鹏,朱靖文.镁对大豆根系活力叶绿素含量和膜透性的影响.农业环境科学学报,2004,23(2):235-239
    42.王火焰.不同硼效率甘蓝型油菜品种硼钙相互作用机理的研究.[博士学位论文]武汉:华中农业大学,1999
    43.王火焰.硼钙营养对甘蓝型油菜IAA含量的影响.华中农业大学学报,1998,19(4)341-344
    44.王炜,吴礼树,王运华.调控乙烯对缺硼棉花体内乙烯释放量和ACC的影响.华中农业大学学报,1995,(增刊)21:55-61
    45.汪鑫,徐建明.硼的植物生理功能研究综述.安徽农业科学,2007,35(30):9611-9613,9693
    46.王晓云,程炳嵩.锌、硼对生姜(Zingiber officinale Rosc.)的增产效果及吸收、 分配规律的研究.山东农业大学学报,1994,25(1):77-81
    47.王运华,黄竹根,张晓钟编.硼肥.北京:化学工业出版社,1988.
    48.王运华,吴礼树,喻敏,等.甘蓝型油菜品种对硼利用效率差异的研究.国际肥料与农业发展学术讨论会论文集,1996
    49.王震宇,沈康,张福锁.硼对油菜体内核酸代谢的影响.植物生理学报,1995,21(2):189-193
    50.王震宇,张福锁,王贺,等.缺硼与低温对黄瓜一些生理反应的影响.植物生理学报,1998,24(1):59-64
    51.魏文学.缺硼对向日葵叶组织及花粉结构的影响.华中农业大学学报,1993,12(1):464-467
    52.吴礼树.硼素营养研究进展.土壤学进展,1994,22(2):1-8
    53.吴礼树.硼与乙稀及激素平衡相互关系研究.中国科协首届青年学术会议湖北卫星会议论文集.北京:中国科学出版社,1992
    54.吴礼树.硼营养与植物激素代谢及其平衡关系.华中农业大学学报,1995,(增刊)21:18-22
    55.谢青,魏文学,王运华.硼对棉花繁殖器官解剖结构的影响.华中农业大学学报,1991,10:177-179
    56.谢青,魏文学,王运华.棉花对硼的吸收、运转和分配的研究.作物学报,1992,18(1):31-37
    57.熊双莲,吴礼树,王运华,等.不同甘蓝型油菜品种硼的吸收与分布.华中农业大学学报,1995,(增刊)21:85-91
    58.薛建明,杨玉爱.不同油菜基因型对缺硼反应的差异.浙江农业大学学报,1994,20(4):446-448
    59.薛建明,杨玉爱,叶正钱.硼对不同油菜品种生长发育及产量和品质的影响,浙江农业大学学报,1995,21(1):66-70
    60.徐芳森,王运华,李建春.甘蓝型油菜硼营养高效在F1代的遗传研究.植物营养与肥料学报,1998,4(3):305-310
    61.徐芳森,王运华,李建春.甘蓝型油菜不同硼效率品种对缺硼反应的研究.华中农业大学学报,1998,17(1):55-60
    62.徐国恒.细胞膜的双层磷脂结构与功能.生物学通报,2006,41(9):11-14
    63.杨玉华,王运华,吴礼树,等.植物硼效率的研究进展.华中农业大学学报,2002,21(1):95-100
    64.杨玉华,王运华,吴礼树,等.硼对不同硼效率甘蓝型油菜品种细胞壁组成的影响.植物营养与肥料学报,2002,8(3):340-343
    65.喻敏,褚海燕,吴礼树,等.甘蓝型油菜不同硼效率基因型对硼吸收与分配的影响.中国油料作物学报,1999,21(1):48-52
    66.张霞,李妍.铅胁迫对补血草种子萌发和幼苗初期生长及膜透性的影响.德州学院学报,2007,2(23):23-25
    67.张毅功,李春俭,张福锁,等.不同浓度硼对黄瓜植株生长发育的影响.河北农业大学学报,1999,22(3):31-35
    68.Appel HM. Phenolics in ecological interaction:the importance of oxidation. Chem. Ecol.1993,19:1521-1552
    69.Bellaloui N,Brown PH. Cultivar differences in boron uptake and distribution in celery (Apiumgraveolens),tomato (Lycopersicon esculentum) and wheat (Triticum aestivum).Plant and Soil,1998,198:153-158
    70.Bellaloui N, Brown PH, Dandekar AM. Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physio,1999,119(2):735-174
    71.Bingham FT, Elseewi A, Oertlf JJ. Characteristics of boron absorption by excised barley roots.Soil Sci.Soc.Am.Proc.,1970,34:613-617
    72.Blarney FPC, Mould D,Chapman J.Critical boron concentrations in plant tissues of two sunflower cultivators.Agron 1979,71:243-347
    73.Brown PH,Hu H. Phloem mobility of boron is species dependent:Evidence for phloem mobility in sorbitol rich species.Annals of Batony,1996,77(5):497-505
    74. Brown PH,Shelp B J. Boron mobility in plants.Plants and Sbils,1997,193:85-101
    75.Brown PH,Hu H. Boron uptake by sunflower, squash and cultured tobacco cells. Plant Physiol,1993,155/156,147-150
    76.Cakmak I,Romheld V. Boron deficiency-induced impairments of cellar functions in plants.Plant and Soil,1997,193:71-73
    77.Cakmak I, Kurz H, Marschner H. Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiol.Plant,1995,95:11-18
    78.Dannel F, Pfeffer H, Romheld V.Characterization of root boron pools, boron uptake and boron translocation in sunflower using stable isotopes 10B and 11B.Plant Physiol. 2000,27:397-405
    79.Dordas C, Chrispeels MJ, Brown PH. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots.Plant Physiol.2000, 124:1349-1361.
    80.Dugger WM.Boron on plant metabolism In:Encyclopedia of Plant Physiology. In: Lauchli A and Bieleski R L Eds.,New series. Springer-Verlag.Berlin,1983, 14:626-650
    81.Edelstein M.,Ben-Hur M.,Cohen R.,et al. Boron and salinity effects on grafted and non-grafted melon plants.Plant and soil,2005,269,273-284
    82.Fernandez-Garcia N, Martinez V, Cerda A, et al. Water and nutrient uptake of grafted tomato plants grown under saline conditions.Plant Physiol 2002;159:899-905
    83.Fernandez-Garcia N, Cerda A and Carvajal M. Grafting, a useful technique for improving tolerance of tomato? Acta Hort.2003,609,251-256
    84. Findeklee P, Goldbach H E. Rapid effects of boron deficiency on cell wall elasticity modulus in Cucurbita pepo roots.Bot Acta,1996,109:463-465
    85.Garcia-Gonzales M, Mateo P, Bonilla I.Boron requirement for envelope structure and function in Anabaena PCC7119 heterocysts.J Exp Bot,1991,42:925-929
    86.Gassert B,Sprich E, Pfeffer H, et al. Characterization of boron uptake in higher plants.In:Goldbach HE, Brown PH,Rerkasem B et al eds.Boron in Plant and Animal Nutrition. Kluwer Academic/Plenum Publishers.2002,119-126
    87.Goldbach H. Influence of boron nutrition on net uptake and efflux of 32P and 14C-glucose in Hejianthus annuus roots and cell cultures of Daucus carota.Plant Physiol,1985,118:431-438.
    88.Goldbach HE, Hartmann D, Rotzer T. Boron is required for the ferricyanide induced proton release by auxins in suspension-cultured cells of Daucus carota and Lycopersicon esculentum.Physiol.Plant.1990,80,114-118
    89.Hanson EJ. Morement of boron out of tree fruit leaves.HortScience,1991, 261:271-273
    90. Hirsch AM, Torrey JG.Ultrastructural changes in sunflower root cells in relation to boron deficiency and added auxin.Can JBot,1980,58:856-866
    91.Heyes JA,white PJ and Loughamn BC.The role of boron in some membrane characteristics of plant cells and protoplasts,in:Randall DD,Blevins DG And Miles Eds, Current topics in Plant Biochem And Physiol.University Missouri,Columbas, 1991,10:179-194
    92.Hu H, Brown PH. Localization of boron in cell walls of squash and tobacco and its association with pectin. Evidence for a structural role of boron in the cell wall. Plant Physiol,1994,105:681-689
    93.Hu H and Brown PH. Absorption of boron by plant roots.Plant and Soil,1997, 193:49-58
    94. Hu H, Penn SG, Lebrilla CB et al. Isolation and characterization of soluble B-complexes in higher plants.Plant Physiol,1997,113:649-655
    95.Huang LB,Bell RW and Dell B.Evidence of phloem boron transport in response tointerrupted boron supply in white lupin (Lupinus albus L. cv. Kiev Mutant) at the reproductive stage.Journal of Experimental Botany,2008,59(3):575-583
    96.Huang LB,Ye ZQ, Bell RW. The importance of sampling immature leaves for the diagnosis of boron deficiency in oilseed rape (Brassia nupus cv.Eureka).Plant and Soil,1996,183(2):187-198
    97.Iwai H, Hokura A, Oishi M, et al. The gene responsible for borate cross-linking of pection rhamnogalacturonan-Ⅱ is required for plant reproductive tissue development and fertilization.Proc Natl Acad Sci USA 2006,103,16592-16597
    98.James CRS,Brown PH, Bellaoui N, et al. The efficiency of boron utilization in canola.Aust.J.Plant Physiol.,2001,28:1109-1114
    99.Jenkin M. Investigation of boron uptake at the cellular level. Barrow N Jed. Plant Nutrition from Genetic Engineering to Field Practice.Dordrecht, The Netherlands: Kluwer Academic Publishers,1993.157-160
    100.Jiang Y,Miles PW. Generation of H2O2 during enzymic oxidation of catechin. Phytochem,1993,33:29-34
    101.Juan M.Ruiz, Juan J. Rios, et al. Grafting between tobacco plants to enhancesalinity tolerance. Journal of Plant Physiology,2006,1229-1237
    102.Kakegawa K, Ishii T, Matsuna T. Effects of boron deficiency in cell suspension cultures Populus of opulus alba L. Plant Cell Reports,2005,23(8):573-578
    103.Kerrien F, Chamel A, Iambert JL. Comparative study of foliar uptake and translocation of boron(10B) supplied as four different products in radish plants.In: Bell R W and Rerkasem B,Eds.,Boron in Soils and Plants. Kluwer Academic Publishers.1997,191-195
    104.Kobayashi M, Matoh T, Azuma J. Two chains of rhamnogalacturonan II aer cross-linked by borate-diol ester bonds in higher plant cell walls.Plant Physiol. 1996,110:1017-1020
    105.Kouchi H, Kumazawa K. Anatomical responses of root tips to boron deficiency. Ⅲ.Effect of boron deficiency on sub-cellular structure of root tips,particularly on morphology of cell wall and its related organelles.Soil Sci Plant Nutr,1976,22:53-71
    106.Lee SG, Aronoff S.Boron in plants:a biochemical role.Science,1967,158:798-780
    107.Lehto T, Kallio E, Aphalo PJ. Boron mobility in two coniferous species.Annals of Botany,2000,8(3):547-550
    108.Marschner H.Mineral Nutrition of Higher Plants,2nd ed. Academic Press, New York, 1995.
    109.Martini F, Thellier M. Use of (n, a) nuclear reaction to study the long-distance transport of boron in Trifolium repens after foliar application. Planta,1980, 150:197-205
    110.Matoh T, Ishigaki K, Mizutani M, et al.Boron nutrition of cultured Tobacco By-2 cells.1.Requirement for and intracellular localization of boron and selection of cells that tolerate low levels of boron. Plant Cell Physiol.,1990,33(3):1135-1141
    111.Matoh T, Ishigaki K, Ohno K, et al.Isolation and characterization of a boron-polysaccharide complex from radish roots.Plant cell Physiol,1993,34(4): 639-642.
    112.Mtoh T. Boron in plant cell walls. Plant and Soil,1997,193:59-70
    113.Matoh T Ochiai K. Distribution and prtitioning of newly taken-up boron in sunflower. Plant and Soil,2005,278:351-360
    114.O'Neill MA, Darvill AG, Albersheim P. The pectic polysaccharides of primary cell walls.In:Dey PM, ed. Methods in Plant Biochemistry(Vol2).London:Academic Press. 1990,pp.415-441
    115.Parr AJ, Loughman BC. Boron and membrane function in plants.In:D A Robb and WS Pierpoint.Eds.Metals and Micronutrients, Uptake and Utilization by Plants. Academic Press,New York.1983,87-107
    116.Picchioni GA, Weinbaum SA,Brown PH.Retention and the kinetics of uptake and export of foliage-applied, labelled boron by apple,pear,prune,and sweet cherry leaves Amer,Soc Hort Sci,1995,120:28-35
    117.Pollard AS,Parr P J, Loughman B C. Boron in relation to membrane function in higher plants. Exp Bot,1977,28:831-841
    118.Poole RJ.Energy coupling for membrane transport. Ann Rev Plant Physiol,1978, 29:437-46
    119.Rajaratnam JA,Lowry JB.The role of boron in the oil-palm. Am B.1974,38:193-200
    120.Raven JA. Short and long-distance transport of boric acid in plants.New Phytol, 1980,84:231-249
    121.Robortson GA,Louhman B C. Rubidium uptake and boron deficiency in Vicia faba L. Exp Bot,1973,24:1046-1052
    122.Robertson GA, Loughman BC.Reversible effects of boron on the absorption and incorporation of phosphate on Vicia faba L.New Phytol.1974,73;291-298
    123.Roldan M, Belver A, Rodriguez-Rosales P, et al. In:vivo and in vitro effects of boron on the plasma membrane proton pump of sunflower roots.Physiol Plant, 1992,84:49-54
    124.Romero L, Belakbir A, Ragala L et al. Response of plant yield and leaf pigments to saline conditions:effectiveness of different rootstocks in melon plant (Cucumis melo L.).Soil Sci. Plant Nutr.1997,43,855-862
    125.Serrano R. Structure and function of plasma membrane ATPase.Ann Rev Plant Physiol,1989,40:61-94
    126.Shelp B J. Boron mobility in plants.Plant Physiol,1995,94:356-361
    127.Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Sicence,1972,175:720-731
    128.Scott L E. An instance of boron deficiency in the grape under field conditions. Proc Amer Soc Hort Sci,1941,38:375-378
    129.Starck JR. Effect of boron on the cell walls structure of sunflower. Acta Soc Bot Pol, 1963,32:619-623
    130.Takano J, Noguchi K,Yasumori M, et al. Arabidopsis boron transporter for xylem loading. Nature 2002a,420,337-340
    131.Takano J, Noguchi K, Hayashi H, et al. Arabidopsis thaliana mutant bor1-1 is defective in boron transloction.Goldbach HE, et al. Boron in Plant and Animal Nutrition. New York:Kluwer Academic/Plenum Publishers,2002b.281-288
    132.Tanada T. Localization of boron in membranes.J Plant Nutr,1983,6:743-749
    133.Tang PM, Dela Fuente RK. The transport of indole-3-acetic acid in boron and calcium deficient sunflower hypocotyl segments. Plant Physiol,1986,81:646-650
    134.Xiao FH.Changes of protective enzymes and accumulation polyamines induced by boron deficiency in roots of rape seedlings.Pedosphere,1998,83,229-236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700