基于高速跳频技术的宽带WPAN若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
个人通信的宽带化是当前无线通信网络研究的重大课题之一,如何充分利用有限的频率资源来提供宽带高速应用具有重要的意义。本学位论文针对这种需求,深入研究了基于高速跳频技术的宽带WPAN若干关键技术,主要内容包括高速跳频-码分多址(FH-CDMA)、多链路并行传输、提高纠错能力的信道编码方法等。
     本论文主要围绕提高基于高速跳频技术的WPAN的带宽问题展开,提出一个多路并行传输高速跳频通信系统,依靠多链路并行传输技术来提高传输速率,从而提高系统带宽。多链路并行技术要求多个相同的系统共存,必须考虑抗干扰问题,从而提高系统容量,论文以BCH码为例提出一种全新的简单的查表译码算法,以扩展某些BCH码的纠错能力。这样再采用交织技术,从而可以提高整个系统的抗干扰能力。
     论文首先以Bluetooth跳频算法为基础,系统地讨论了它的跳频特性并进行了仿真,在此基础上对Bluetooth系统的自干扰性能进行了重点分析,推导出在满足特定QoS情况下同时工作的Piconet数目的解析式。这些推导和仿真工作为本论文提出的多链路并行传输方案奠定了理论基础。
     在前面理论推导的基础上,论文提出了一个多路并行传输高速跳频通信系统的方案,并以Bluetooth技术为例加以实现。给出了该方案的设计思想、系统模型、设备框图和具体实施,重点分析了它的优点和创新之处。文中以文件传输为例,论证了并行传输的路数与系统传输速率和吞吐量间的关系,证明了该方案能够合理解决宽带高速应用与大容量间的矛盾,有效提高频谱利用率。
     接着,对所提出的多路并行传输技术中涉及到的并行多链路的调度算法和流量控制算法进行了讨论。在总结现有各种算法的基础上,分析了本文实验系统采用的算法及其性能,并对多路并行传输技术在WPAN环境下的应用进行了阐述。
     最后,为了提高多路并行传输高速跳频通信系统的抗干扰能力,论文还对差错控制编码领域做了一些研究,主要围绕提高BCH码的纠错能力展开,提出一种全新的简单的BCH码的译码算法——查表法译码。首先搜索出BCH(n,k,t)码能够纠正的码重为t+1的错误图样,再将这些错误图样与码重小于t+1的错误图样放在一起,根据它们对应的伴随式大小进行排序并存储于硬件设备中,从而进行查表法译码。仿真表明:对于某些BCH码,采用这种译码方法,在相同的码长和信息比特数的条件下,能够比一般的BCH译码方法多纠正1比特错误,而且译码电路相对简单,译码速度快。这种提高纠错能力的译码方法对所有的二进制线性循环码都是适用的。采用BCH码的新译码算法后,再进行交织技术,就可以一定程度上提高宽带WPAN系统的抗干扰能力,从而也可以提高系统容量。
Wideband tendency of personal communications has become one of hot issues in current wireless communication networks. How to provide wideband high-rate applications with limited frequency resource for personal communications has great significances. To satisfy the demand, some key technologies of wideband WPAN based on high-rate frequency hopping technology are studied thoroughly, mainly including FH-CDMA, parallel transferring technology by multiple links, channel coding methods of improving error-correcting capability, and etc.
     With improving frequency bands of WPAN based on high-rate frequency-hopping technology as the general objective, a high-rate frequency hopping system with multi-link parallel transferring is presented, whose data rate and system frequency band are both improved by multi-link parallel transferring technology. Because parallel data transfer technology by multiple links requires several same systems co-existing, anti-interference problems have to be considered to improve system capacity. With BCH codes as an example, a novel and simple table-search decoding algorithm is put forward to extend the error-correcting capability of some BCH codes. After that, interleaving technology is applied to BCH codes so that the anti-interference capability of the whole system can be improved.
     Firstly, Bluetooth frequency hopping algorithm is implemented and its frequency hopping characteristics are analyzed. On the basis of simulation, Bluetooth’s self-interference characteristic is elaborated on. And then two formulas of numbers of co-existing Piconet under some specific QoS are deduced. The deduction and simulation lay a theoretical foundation for the presented multi-link parallel transferring system.
     Secondly, according to the previous theoretical deduction, a high-rate frequency hopping system with multi-link parallel transferring is given and implemented based on Bluetooth systems. The design principle, system model, module diagrams and concrete implementations of the designed system are then demonstrated with the emphasis on its advantages and creativeness. File transfer taken for example, performances of data rate and throughput of the implemented system with Bluetooth are analyzed, and the feasibility of the designed system is proved. Thus the contradiction between frequency resource and wideband high-rate applications can be reasonably settled down.
     Thirdly, multi-link scheduling algorithms and flow control algorithms concerned with the presented multi-link parallel transferring technology are studied. After several kinds of current algorithms are summed up, the algorithms used in the implemented system and their performances are analyzed. And to show the meaning of multi-link parallel transferring technology, its applications under WPAN environment are further extended.
     Finally, in order to improve anti-interference capability of the high-rate frequencyhopping system with multi-link parallel transferring, error-control coding theory is also researched with improving the error-correcting capability of some BCH codes. A new and simple decoding algorithm for BCH codes is brought forth to improve error-correcting capability of some BCH codes, which is called table-search decoding. All the error patterns with weights equal to t+1 and that BCH (n, k, t) codes can correct are found out with the decoding algorithm. Then these error patterns and those whose weights are less than t+1 are ordered according to their corresponding syndrome values. The ordered error patterns are stored in hardware devices so that decoding can be realized by searching the relation tables. The following results are shown through simulations. To BCH codes, when the code bits and information bits are the same, this decoding method can correct one more error bits than usual decoding methods. And moreover, the decoding circuits are comparatively simpler and the decoding speeds are faster. This decoding method of improving the error-correcting capability is applicable to all binary linear cyclic codes. After this BCH decoding algorithm is applied, interleaving technology is then practiced to improve anti-interference capability of the wideband WPAN system in a degree. And thus the system capacity can also be extended.
引文
[1] Ojanpera T, Prasad R. An overview of air interface multiple access for IMT- 2000 /UMTS [J]. IEEE Magazine, 1998, 36(9): 82-86.
    [2] 尤肖虎,曹淑敏,李建东. 第三代移动通信系统发展现状与展望[J].电子学报,1999, 27(11A): 3-8.
    [3] Y Kim, B J Jeong, J Chung, et al, Beyond 3G: vision, requirements, and enabling technologies. IEEE Communication Magazine, 2003, 41(3): 120-124.
    [4] Niebert N, Schieder A, Abramowicz H, et al, Ambient networks: an architecture for communication networks beyond 3G. IEEE Wireless Communications, 2004, 11(2):14- 22.
    [5] 张平. 第四代移动通信系统的关键技术及分析[J]. 电信科学,2002, 18(8):30-34.
    [6] Lara Srivastava. Broadband mobile communications towards a converged world [R]. Seoul: International Telecommunication Union, 2004.
    [7] ETSI project BRAN. High performance radio local area network (HIPERLAN) type 2: requirements and architectures for wireless broadband access[S]. No.101-031. 1999.
    [8] Ying Li, Shihua Zhu, Pinyi Ren, et al, Path toward next generation wireless Internet [A]. In: Proceedings of IEEE TEBCON’02 [C]. Beijing: IEEE, 2002. 1146-1149.
    [9] Akio Moridera, Kazuo Murano. The network paradigm of the 21st century and its key technologies [J]. IEEE Communication Magazine, 2000, Nov: 94-98.
    [10] Ivan Vilovic, Branka Zovko-Cihlar. Performance of the Bluetooth-based WPAN for multimedia Communication [A]. In: 4th EURASIP Conference focused on Video/Image Processing and Multimedia Communications [C]. Zagreb, Croatia: IEEE, 2003. 783-788.
    [11] Marko H, Timo D H, Markku N, et al. Trends in personal wireless data communications [J]. Computer communications, 2002, Vol.25: 84-99.
    [12] Heile R F. WPAN Background [R]. IEEE 802.15 project report P802.15-99/027rl,1999.
    [13] EEE802.15. Telecommunications and Information Exchange Between Systems - LAN/MAN Specific Requirements: Draft Standard for Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for Wireless Personal Area Networks (WPANs)[S]. IEEE 802.15.1-2002 DRAFT. Institute of Electrical and Electronics Engineers. 21-Mar-2002.
    [14] IEEE. Homepage of IEEE 802.15 Working Groups [EB/OL]. Http://grouper.ieee.org/groups/802/ 15. 2002-10/2003-01-12.
    [15] Roberto A, Gerald D R. Ultra-wideband system [J]. IEEE microwave magazine, 2003, Vol.6: 36-47.
    [16] Fontana R, Ameti A, Richley E, et al. Recent advances in ultra wideband communications systems [A]. In: Proceedings of IEEE Conference on UWB systems and Technologies [C]. Baltimore, USA : 2002, 129-133.
    [17] ETSI TR 101 683. Broadband Radio Access Networks (BRAN),HIPERLAN Type 2; System Overview [S]. V1.1.1, 2000-04.
    [18] ETSI TS 101 475. Broadband Radio Access Networks (BRAN); HIPERLAN Type 2 Physical (PHY) layer [S]. V1.1.1, 2000-04.
    [19] ETSI TS 101 761-2. Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) layer; Part 2: Radio Link Control (RLC) sublayer [S]. V1.1.1, 2000-04.
    [20] Patrick Kinney. ZigBee Technology: Wireless control that simply works [A]. In: Proceeding ofCommunications Design Conference 2003 [C]. San Francisco, CA: 2003, 1-20.
    [21] Louts E F. The ZigBee is growing [EB/OL]. http://www.zigbee.org/. 2004-01-12/2004-03-01.
    [22] S Williams. IrDA: past, present and future [J]. IEEE Personal Communications, 2000, vol.7: 11-19.
    [23] D Estrin, L Girod, G Pottie, et al. Instrumenting the world with wireless sensor networks [A]. In: International Conference on Acoustics, Speech, and Signal Processing [C]. Salt Lake City, Utah, 2001.
    [24] Gregory J Pottie. Wireless Sensor Network [R]. Killarney, Ireland: IWT, 1998.
    [25] Katayoun S, Jay Gao, Vishal A, et al. Protocols for self-organization of a wireless sensor network [J]. IEEE Personal Communications, 2000, 10: 16-22.
    [26] G J Pottie. Hierarchical information processing in distributed sensor networks [D]. USA:ISIT, Cambridge, 1998.
    [27] G J Pottie, W J Kaiser. Wireless integrated network sensors [J]. Communications of ACM, 2000, vol.43, 551-558.
    [28] Warneke B, Last M, Liebowitz B, et al. Smart Dust: Communicating with a cubic-millimeter computer [J]. IEEE Computer Magazine, 2001, vol. 34(1): 44-51.
    [29] 任丰原,黄海宁,林闯. 无线传感器网络[J]. 软件学报, 2003, 14: 1282-1291.
    [30] Marko H. Design of Quality of Service support for wireless local area networks [D]. Finland: Tampere University of Technology, 2002.
    [31] Matteo Cesana. An overview of WLAN Standards [EB/OL]. http://www.elet.polimi.it/upload/ cesana/didattica/wlan.pdf. 2000-07-12/2004-03-02.
    [32] IEEE802.11. IEEE Standard for Telecommunications and Information Exchange between Systems-LAN/MAN Specific Requirements - Part 11: Wireless Medium Access Control (MAC) and physical layer (PHY) specifications: High Speed Physical Layer in the 5 GHz band[S]. IEEE 802.11a-1999. Institute of Electrical and Electronics Engineers. 01-May-1999.
    [33] Nancy C-W, Tim Moore, Dorothy Stanley, et al. IEEE 802.11i Overview [EB/OL]. http://csrc.nist.gov/wireless/S10_802.11i%20Overview-jw1.pdf. 2000-01-23/2004-03-03.
    [34] 王电平,魏激波,董兆鑫. 多载波调制(MCM)系统及其性能分析[J]. 重庆邮电学院学报. March, 1998. Volume: 10, Issue: 1: 30-33.
    [35] Justin Chuang, Nelson Sollenberger. Beyond 3G: Wideband Wireless Data Access Based on OFDM and Dynamic Packet Assignment [J]. IEEE Communications. July, 2000. Volume 38, Issue 7, Page(s):78 – 87.
    [36] Proakis J G. Digital Communications [M], 3rd Edition. New York: McGraw-Hill, 1995.
    [37] Bello P A. Characterization of Randomly Time-Variant Linear channels [J]. IEEE Transactions on communications. Dec. 1963. 360-393.
    [38] Theodore S Rappaport. Wireless Communications Principles and Practice [M]. Prentice-Hill, Inc, 1996.
    [39] Jakes W C. Microwave Mobile Communications [M]. John Wiley & Sons. New York. 1974.
    [40] Moher M L, Lodge J H. TCMP-Modulation and Coding Strategy for Rician Fading Channel[J]. IEEE Journal on Selected Areas in Communications. Dec. 1989, 7(9). 1347-1355.
    [41] Ezio Biglieri, John Proakis, Shlomo Shamai(Shitz). Fading Channels: Information-Theoretic and Communications Aspects [J]. IEEE Transactions on Information Theory, invited paper, 1998, 44(6): 2619-2692.
    [42] Peter Hoeher. A Statistical Discrete-Time Model for the WSSUS Multipath Channel [J]. IEEE Transactions on Vehicular Technology, 1992, 41(4): 461-467.
    [43] Samir S Soliman, Karim Mokran. Performance of Coded Systems Over Fading DispersiveChannels. IEEE Transactions on Communications, 1992, 40(1): 51-59.
    [44] R I Pickholtz, D L Schilling, L B Misltein. Theory of Spread-Spectrum Communications—A Tutorial [J]. IEEE Transactions on Communications. May 1982, 30: 855-884.
    [45] A J Viterbi. Spread Spectrum Communications: Myths and Realities [J]. IEEE Communications Magazine, 50th Anniversary Commemorative Issue, May 2002: 34-41.
    [46] R A Scholtz. The Origins of Spread-Spectrum Communications [J]. IEEE Transactions on Communications. May 1982, 30: 822-854.
    [47] A J Viterbi. Wireless Digital Communication: A View Based on Three Lessons Learned [J]. IEEE Communications Magazine, September 1991: 33-36.
    [48] K K Wong, T O'Farrell. Spread spectrum techniques for indoor wireless IR communications [J]. IEEE Wireless Communications [see also IEEE Personal Communications]. April 2003, Volume: 10, Issue: 2, Pages: 54-63.
    [49] D A Wiegandt, Zhiqiang Wu, C R Nassar. High-performance, high-throughput IEEE 802.11 DSSS WLAN via carrier-interferometry chip-shaping [C]. 2001 IEEE Emerging Technologies Symposium on Broadband Communications for the Internet Era Symposium digest, 10-11 September 2001. Pages: 124 – 128.
    [50] L B Milstein. Wideband code division multiple access [J]. IEEE Journal on Selected Areas in Communications, August 2000. Volume: 18, Issue: 8, Pages: 1344 – 1354
    [51] J P Stephens, D M Norman. Direct-sequence spread spectrum system [C]. IEEE National Proceedings of Aerospace and Electronics Conference, NAECON 1991. 20-24 May 1991, Volume: 1, Pages: 462 – 466.
    [52] A C Bingham. Multicarrier Modulation for Data Transmission: An Idea whose time has come [J]. IEEE Communications Magazine. 1990, vol. 5: 5-14.
    [53] Wiegandt, D.A.; Nassar, C.R.; High-throughput, high-performance OFDM via pseudo-orthogonal carrier interferometry type 2 [C]. The 5th International Symposium on Wireless Personal Multimedia Communications, 2002. 27-30 Oct. 2002. Volume: 2, Pages: 729 – 733.
    [54] Fernando, W.A.C.; Rajatheva, R.M.A.P.; Ahmed, K.M.; Performance of coded OFDM with higher modulation schemes [C]. 1998 International Conference on Communication Technology Proceedings. ICCT '98. 22-24 Oct. 1998. Volume: 2, Pages: 5.
    [55] Saberinia, E.; Tang, J.; Tewfik, A.H.; Parhi, K.K.; Pulsed OFDM modulation for ultra wideband communications [C]. Proceedings of the 2004 International Symposium on Circuits and Systems, 2004. ISCAS '04, 23-26 May 2004. Volume: 5, Pages: V-369 - V-392.
    [56] Nangia, V.; Baum, K.L.; Experimental broadband OFDM system: field results for OFDM and OFDM with frequency domain spreading [C]. 2002 IEEE Proceedings of 56th Vehicular Technology Conference, VTC 2002-Fall, 24-28 Sept. 2002. Volume: 1, Pages: 223 - 227.
    [57] Suto, K.; Ohtsuki, T.; Performance evaluation of space-time-frequency block codes over frequency selective fading channels [C]. 2002 IEEE Proceedings of 56th Vehicular Technology Conference, VTC 2002-Fall, 24-28 Sept. 2002. Volume: 3, Pages: 1466 - 1470.
    [58] L J Cimini. Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing [J]. IEEE Transactions on Communications, 1985. Volume: 33, Issue: 7, Pages: 665-675.
    [59] S Hara, R Prasad. Overview of Multicarrier CDMA [J]. IEEE Communications Magazine, December 1997: 126-133.
    [60] Lie-Liang Yang, L Hanzo. Multicarrier DS-CDMA: A Multiple Access Scheme for Ubiquitous Broadband Wireless Communications [J]. IEEE Communications Magazine, October 2003:116-124.
    [61] R Esmailzadeh, M Nakagawa, A Jones. TDD-CDMA for the 4th Generation of Wireless Communications [J]. IEEE Wireless Communications, August 2003: 8-15.
    [62] ITU-R.DOC8A/TENP/69. Digital cellular land mobile telecommunication System. 1993,10.
    [63] Berjekamp Elwyu R. The Application of error control to communications [J]. IEEE Communication Magazine. April 1987.
    [64] Lauer J P, Cioffi J M. Turbo coding for discrete multitone transmission systems [C]. IEEE Global Telecommunications Conference, 1998. GLOBECOM 98. The Bridge to Global Integration. 8-12 November 1998. Volume: 6, Pages: 3256 – 3260.
    [65] Woodard J P, Hanzo L. Comparative Study of Turbo Decoding Techniques: An Overview [J]. IEEE Transactions on Vehicular Technology, November 2000. Volume: 49, Issue: 6, Pages: 2208 – 2233.
    [66] Robertson P, Hoeher P, Villebrum E. Optimal and suboptimal maximum a posteriori algorithms suitable for turbo decoding [J]. European Transactions On Telecommunications, 1997. Vol. 8: 119-125.
    [67] Meixia Tao, Cheng R S. Generalized layered space-time codes for high data rate wireless communications [J]. IEEE Transactions on Wireless Communications, July 2004. Volume: 3, Issue: 4, Pages: 1067 – 1075.
    [68] Baro S, Bauch G., Hansmann A. Improved codes for space-time trellis-coded modulation [J]. IEEE Communications Letters, January 2000. Volume: 4, Issue: 1, Pages: 20 – 22.
    [69] Chen Z, Yuan J, Vucetic B. Improved space-time trellis coded modulation scheme on slow Rayleigh fading channels [J]. IEE Electronics Letters, 29 March 2001. Volume: 37, Issue: 7, Pages: 440 – 441.
    [70] Firmanto W, Chen Z, Vucetic B, Yuan J. Design of space-time turbo trellis coded modulation for fading channels [C]. IEEE Global Telecommunications Conference 2001, GLOBECOM '01, 25-29 November 2001. Volume: 2, Pages: 1093 - 1097.
    [71] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs [J]. IEEE Transactions on Information Theory, July 1999. Volume: 45, Issue: 5, Pages: 1456 – 1467.
    [72] Junghoon Suh, Howlader M M K. Design schemes of space-time block codes concatenated with turbo codes [C]. IEEE 55th Vehicular Technology Conference, 2002. VTC Spring 2002. 6-9 May 2002, Volume: 2, Pages:1030 - 1034l.
    [73] N. Golmie; F. Mouveaux. Interference in the 2.4 GHz ISM band: impact on the Bluetooth access control performance [C]. IEEE International Conference on Communications, 11-14 June 2001. Volume: 8, Pages: 2540 - 2545.
    [74] Bill Munday. Bluetooth introduction. Ericsson EBSK Document [DB(DB/OL)]. http://www. ericsson.com.
    [75] S. Souissi; E. F. Meihofer. Performance evaluation of a Bluetooth network in the presence of adjacent and co-channel interference [C]. Emerging Technologies Symposium: Broadband, Wireless Internet Access, 2000 IEEE, 10-11 April, 2000, Pages: 6.
    [76] Ericsson, etc. Bluetooth voice and data performance in 802.11 DS WLAN environment [J]. SIG Publication. May 31th,1999.
    [77] Jim Zyren. Reliability of IEEE 802.11 high rate DSSS WLANs in a high density Bluetooth environment [J]. Harris Semiconductor. June 8,1998.
    [78] Jim Lansford; Adrian Stephens, etc. Wi-Fi (802.11b) and Bluetooth: enabling coexistence [J]. IEEE Network. September-October, 2001. Volume: 15, Issue: 5, Pages: 20 – 27.
    [79] I. Howitt. IEEE 802.11 and Bluetooth coexistence analysis methodology [C]. Vehicular Technology Conference, 2001. VTC 2001 Spring. IEEE VTS 53rd, 6-9 May, 2001, Volume: 2, Pages: 1114 - 1118.
    [80] M. Fainberg; D. Goodman. Analysis of the interference between IEEE 802.11b and Bluetooth systems [C]. Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th, 7-11 October, 2001. Volume: 2, Pages: 967 - 971.
    [81] Jaap C. Haartsen. The Bluetooth radio system. IEEE Personal Communications [see also IEEE Wireless Communications]. February, 2000, Volume: 7, Issue: 1, Pages: 28 - 36.
    [82] 梅文华,杨义先. 跳频通信地址编码理论[M]. 北京:国防工业出版社,1996.
    [83] Bluetooth Special Interest Group. Specification of the Bluetooth system(Core)Version 1.1 [DB(DB/OL)]. Dec. 2000, http://www.bluetooth.org/spec/.
    [84] 曲刚等. Bluetooth 跳频算法及性能分析[J]. 南京航空航天大学学报,2001,33(6):574-578.
    [85] 沈连丰. 无线电寻呼和无绳通信[M]. 南京:东南大学出版社,1996.
    [86] Tsung-Hsien Lin; Sanchez H; Rofougaran R; Kaiser W J. Micropower CMOS RF components for distributed wireless sensors [C]. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 7-9 June, 1998. Volume: VIII (3), Pages: 157-160.
    [87] Lindsey, J F, III; Williams, D T. An embedded radio frequency sensor for application in an electrically non-conductive composite structure [C]. IEEE Antennas and Propagation Society International Symposium, 16-21 June 2002. Volume: 4, Pages: 382 – 385.
    [88] Schurgers, C; Tsiatsis, V; Srivastava, M B. STEM: Topology management for energy efficient sensor networks [C]. IEEE Aerospace Conference Proceedings, 9-16 March 2002, Volume: 3, Pages: 3-1099 – 3-1108.
    [89] Jinfeng Liu; Chou, P H. Optimizing mode transition sequences in idle intervals for component-level and system-level energy minimization [C]. IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004. 7-11 Nov. 2004. Pages: 21 – 28.
    [90] Tsung-Hsien Lin; Sanchez, H; Rofougaran, R; Kaiser, W J. CMOS front end components for micropower RF wireless systems [C]. 1998 International Symposium on Low Power Electronics and Design, 1998. Proceedings. 10-12 August 1998. Pages: 11 – 15.
    [91] Nosovic, W; Todd, T D. Scheduled rendezvous and RFID wakeup in embedded wireless networks [C]. IEEE International Conference on Communications, 2002. ICC 2002. 28 April-2 May 2002. Volume: 5, Pages: 3325 - 3329.
    [92] Brent A.Miller , Chatschik Bisdikian 著,宋俊德等译,蓝牙核心技术 ——全球无线通信开放规范的权威性指南[M]. 北京:机械工业出版社,2001:1-5,8-15,44-72.
    [93] 沈连丰. 蓝牙技术 [J]. 科技术语研究,2001,3(3):43-46.
    [94] 沈连丰,宋铁成等. Bluetooth 系统基带关键算法的研究及仿真[J]. 电子学报,2000, 28(11):165-168.
    [95] Macker J P; Corson M S. Mobile ad hoc networking and the IETF. Mobile Computing and Communications. August 1999. Rev., Volume: 17, No. 8, Pages: 1426-1438.
    [96] Corson M S; Macker J P. Mobile Ad Hoc Networking (MANET): routing protocol performance issues and evaluation considerations [S]. IETF RFC 2501, 1999.
    [97] Bangnan Xu; Hischke, S; Walke, B. The role of ad hoc networking in future wireless communications [C]. International Conference on Communication Technology Proceedings, 2003. ICCT 2003, 9-11 April 2003. Volume: 2, Pages: 1353 - 1358.
    [98] Zhao, S.; Seskar, I.; Raychaudhuri, D.; Performance and scalability of self-organizinghierarchical ad hoc wireless networks [C]. 2004 IEEE Wireless Communications and Networking Conference, WCNC. 21-25 March 2004. Volume: 1, Pages: 132 – 137.
    [99] Chadha, R.; Managing mobile ad hoc networks [C]. Network Operations and Management Symposium, 2004. NOMS 2004. IEEE/IFIP, 19-23 April 2004. Volume: 1, Pages: 922.
    [100] Kaveh Pahlavan, Prashant Krishnamurthy. Principles of Wireless Networks: A Unified Approach [M]. 刘剑,安晓波,李春生译,无线网络通信原理与应用[M]. 北京:清华大学出版社,2002:386-401.
    [101] 朱刚,谈振辉等,蓝牙技术原理与协议[M]. 北京:清华大学出版社,2002: 156-178.
    [102] 马建仓等, 蓝牙核心技术及应用[M]. 北京:科学出版社,2003:12-26.
    [103] 沈连丰. 蓝牙系统及其发展[J]. 半导体技术,2000,25(6):1-4.
    [104] 谭浩强,张基温,唐永炎. C 语言程序设计教程[M]. 高等教育出版社,1995.
    [105] Jeffrey Richter 著. 王建华,张焕生,侯丽坤 等译. Windows 核心编程[M]. 北京:机械工业出版社,2000.
    [106] 单方骥,张力军. 蓝牙跳频算法仿真和系统容量分析[J]. 电讯技术,2002, 3:105-108.
    [107] Ericsson, etc. Bluetooth Voice and Data Performance in 802.11 DS WLAN Environment [C]. Bluetooth SIG Publication, 1999.
    [108] Jim Zyren. Reliability of IEEE 802.11 Hi Rate DSSS WLANs in a High Density Bluetooth Environment [C]. Bluetooth SIG, 1999.
    [109] Jim Lansford; Adrian Stephens,etc. Wi-Fi (802.11b) and Bluetooth: Enabling Coexistence [J]. IEEE Network, 2001, 15(5):20-27.
    [110] Howitt I. IEEE 802.11 and Bluetooth coexistence analysis methodology [J]. IEEE VTS 53rd, 2001, 2:1114-1118.
    [111] Fainberg M; Goodman D. Analysis of the interference between IEEE 802.11b and Bluetooth systems [J]. IEEE VTS 54th, 2001, 2:967-971.
    [112] 严德政等. 多个蓝牙皮克网共存的系统建模与性能仿真[J]. 通信学报, 2002, 23(3):35-43.
    [113] Souissi S; Meihofer E F. Performance Evaluation of a Bluetooth Network in the Presence of Adjacent and Co-channel Interference [C]. Proc. Of IEEE: Emerging Technologies Symposium: Broadband, Wireless Internet Access, 2000.
    [114] Sklower K.; Lloyd B.; McGregor G.; Carr D.; Coradetti T.. The PPP Multilink Protocol (MP) [S]. IETF RFC 1990. August, 1996.
    [115] 张全新,李红. 计算机网络进网级流量控制的分析. 兰州铁道学院学报. Dec. 1999.
    [116] Akaike T., Ishikawa K., Saito K., Mito M. . A Very High Speed Data Link Control System Using Multiple Protocol Controllers. IEEE International Conference(ICC ’92). 1992.
    [117] 冯元勇. 一种基于通信时间延迟的流量分配/路由选择算法. 计算技术与自动化. Sept. 2000.
    [118] Joiner L L, Komo J J. Decoding binary BCH codes [J]. IEEE Proceedings: Southeastcon '95. 'Visualize the Future', 1995:67 - 73.
    [119] 沈连丰,叶芝慧. 信息论与编码[M]. 北京:科学出版社,2004. 277-299.
    [120] Lu E H, Chang T. New decoder for double-error-correcting binary BCH codes [J]. IEE Proceedings on Communications, 1996, 143(3 ):129 – 132.
    [121] Hwang T. Parallel decoding of binary BCH codes [J]. IEE Electronics Letters, 1991, 27(24):2223-2225.
    [122] Chen Chin-Long. High-speed decoding of BCH codes [J]. IEEE Transactions on Information Theory, 1981, 27(2):254 - 256.
    [123] 孙怡,田上力,林建英. BCH 码译码器的 FPGA 实现 [J]. 电路与系统学报,2000,5(4):98-100.
    [124] 王建华,郑坤,张军. 基于 VC 的 BCH 码迭代译码算法实现 [J]. 哈尔滨师范大学自然科学学报,2003,19(5):26-30.
    [125] 张瑞华. BCH(31,21)码的解码及其软件实现 [J]. 通信技术,2002,131:22-24.
    [126] Vardy A, Be'ery Y. Maximum-likelihood soft decision decoding of BCH codes [J]. IEEE Transactions on Information Theory, 1994, 40(2):546-554.
    [127] Koga K. A simple decoding of BCH codes over GF(2m) [J]. IEEE Transactions on Communications, 1998, 46(6): 709-716.
    [128] Bernard Sklar. Digital Communications: Fundamentals and Applications. Second Edition [M]. New Jersey: Prentice Hall PTR, 2001. 349-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700