厦门海域现代沉积环境及重金属元素的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口和海湾地区,由于海陆相互作用活跃,对自然过程和人类活动的响应敏感,因而,该区域的环境演化直接关系到人类的生存空间、生存质量和社会的可持续发展。在这些海域的沉积物中,重金属元素的分布特征及地球化学行为与区域内的沉积环境密切相关。
     本文以具有复杂水动力条件及复杂地形特征的厦门海域4个海区为研究对象,通过表层和柱状沉积物的粒度分析、沉积物中重金属元素的横向和垂向分布变化及其赋存形态分析、沉积物中有机碳和硫化物含量分析、沉积物中重金属元素的环境质量评价等,对厦门海域不同海区的沉积环境及现代沉积环境变化、重金属元素的环境地球化学特征、重金属元素在厦门海域的污染状况进行了较深入的研究。本文研究得到以下几方面成果:
     详细分析了厦门海域不同海区间、同一海区不同站位间的沉积环境特征,同时以各海区典型柱状沉积物的粒度特征为依据,分别探讨了4个海区的现代沉积环境变化。
     在重金属元素Cu、Zn、Pb、Cd、Cr、Hg和As含量及分布特征的基础上,根据不同站位间沉积物组成的较大差异,采用多种分析方法,获得了不同元素在厦门海域表层沉积物中相应的富集组分。
     研究发现,Zn、Cu、Pb、As、Cr在细砾和粗砂中的含量可以反映它们在该地区背景值的大小。这为分析和判别沉积物中这些元素的人为污染程度提供了更便捷的途径。
     对不同海区、不同站位表层沉积物中Cu、Zn、Pb、Cd、Cr和As元素的各形态含量及分布特征进行了详细分析。发现尽管各元素物理性质不同,各形态在各站位分布情况各异,但形态分析中各元素的“非稳态”含量可以反映各海区间、同一海区不同站位间人为因素的影响。
     通过对厦门西港重金属元素累计特征及剖面沉积物的粒度分析,对该海区沉积环境变化、人为活动的影响及重金属元素的污染历史进行了较为客观的反演。研究发现:20世纪30年代以来,厦门西港沉积环境和水动力有较大变化,尤其自高集海堤建成(1956年)后,海域内沉积环境明显不同。海堤建成后沉积物粒度组成相对稳定,水动力变弱,沉积物来源相对集中。总体来看,重金属在1947~1990年间污染最严重,从20世纪90年代初期以来,污染程度呈减轻趋势。沉积物来源越稳定,沉积物粒径越小,分选性越好,则重金属含量越高。同时,绝大部分重金属元素与有机碳和硫化物呈显著正相关关系,个别元素因受污染源的影响,与有机碳或硫化物间的相关关系不明显。
     采用目前国内外主要的评价方法,全面、客观评价了厦门海域各海区、各站位表层沉积物中重金属元素的污染程度。综合各种评价方法,我们认为,Cu在厦门西港,尤其是在16和21号站位的高含量,应引起足够重视。同时发现,Cd元素不适合采用次生相与原生相分布比值法进行污染评价,该结论有待进一步研究探讨。
Estuarine and coastal areas, which interact actively for ocean and land, respond sensitively for natural processes and human activities. There are good connections within living space, survival quality of human and social continuable development and environment evolvement of these areas. In sediments of these areas, the distribution and geochemistry characteristic of heavy metals are influenced directly by depositional environment.
     In this paper, 4 sea areas of Xiamen seas, which have complex hydrodynamic feature and landform were investigated. Basing on the data of grain size analysis of surficial sediment and core sediment, the spatial distribution and morphological analysis of heavy metals in the sediments, concentrations of TOC and AVS, environmental quality valuation et al., we analyzed the depositional environment of different sea areas. The variety of depositional environment was reappeared by analysis of the sediment cores. The environmental Geochemistry characteristic of heavy metals was discussed. The pollution level of the main heavy metal elements was impersonality appraised. The results of this investigation were just as follows: The depositional environment in different sea area, different station in the same sea area of Xiamen seas was analyzed in full. On the base of granularity of the typical core sediment, the variation of modern depositional environment of the four sea areas in Xiamen seas were discussed.
     According as content and distribution characteristics of Cu, Zn, Pb, Cd, Cr, Hg and Arsenic, and a rather large difference of sediment composition in different station, the enrichment components of each element in surface sediment were acquired by multi-analytical method.
     It is found that the content of Zn, Cu, Pb, Arsenic and Cr in fine gravel and in coarse sand could reflect their background value. Which offer a more handy means for analyzing and judging the man-made pollution of these elements.
     The speciation analysis of the elements Cu, Zn, Pb, Cd, Cr and Arsenic was carried out among the surface sediment in different sea areas, different stations. The content of heavy metals unsteady states reflected different influence of anthropogenic factors among different sea areas, different stations of the same sea area.
     The variation of depositional environment, influence of anthropogenic factors and pollution history of heavy metals in Xiamen seas were reviewed objectively, according to the vertical distribution of heavy metals and grain size analysis of the sediment cores. It is found that since 1930s, a rather large variation of hydrodynamic feature and depositional environment in the Xiamen West Harbour was found. The depositional environment was different distinctly, grain size composition of the sediment was stable relatively, hydrodynamic became weak, sediment source was concentrated relatively, especially after the Gaoji sea wall was built (1956a). On the whole, the highest polluted period was 1947~1990. Since 1990s, the pollution levels appeared lighten trend. For the sediment, the more stable of the source, smaller of the grain size, better of the separation, then the content of heavy metals in sediment was higher. There was markedly positive correlation between the concentrations of the most heavy metals and the concentration of organic carbon and sulfide. For the influence of point source pollution, there was not evidence correlativity among one or two element of heavy metal, organic carbon and sulfide.
     The pollution degree of heavy metals in surface sediment was appraised fully and impersonality. As a synthesis point of appraising views, there was different pollution degree of Cu, Zn, Pb and Arsenic in different sea areas, different station of the Xiamen seas. The element of Cu has elevated concentrations in Xiamen West Harbour, and should be paid more attention. At the same time, it was found that for the element Cd, it did not fit to appraise by the ratio of secondary phase and primary phase. As a result of that, need more investigation.
引文
[1] Adami G, Barbieri P, Reisenhofer E. An improved index for monitoring metal pollutants in surface sediments. Toxicol Environ Chem, 2000, 77: 189-197
    [2] Adamo P, Arienzo M, Imperato M, et al. Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere, 2005, 61: 800-809
    [3] Aloupi M., Angelidis M.O. Normalization to lithum for the assessment of metal contamination in coastal sediment cores from the Aegean Sea,Greece.Marine Environmental Research, 2001, 52: 1-12.
    [4] Ankley G. Evaluation of metal/acid-volatile sulfur relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates. Environmental Toxicology and Chemistry, 1996, 15: 2138-2146
    [5] Ankley G, Phipps G, Leonard E, et al. Acid-volatile sulfide as a factor mediating cadmium and nickel bioavailability in contaminated sediments. Environ Toxicol Chem, 1991, 10: 1299-1307
    [6] Ariza J. L. G. Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Analytica Chimica Acta, 2000, 414: 151-164
    [7] Bostick BC, Hansel CM, La Force MJ, et al. Seasonal fluctuations in zinc speciation within a contaminated wetland. Environ Sci Technol, 2001, 35: 3823-3829
    [8] Bricker, O. P., Troup, B. N. Sediment-water exchange in Chesapeake Bay. In: Estuarine Research. Cronin, L.E. (ed.). New York: Academic Press, 1975, Vo1. 1: 3-27
    [9] Budimir S, Marko B. Distribution of Cd, Pb, Cu and Zn in carbonate sediments from the Krka river estuary obtained by sequential extraction. Science of the Total Environment, 1995, 170: 101-18
    [10] Buynevich, I. V., FitzGerald, D. M. Textural and compositional characterization of recent sediments along a paraglacial estuarine coastline, Maine, USA . Estuarine, Coastal and Shelf Science, 2003, 56(1): 139-153
    [11] Campanello, L., D’Orazio, D., Petronio, B.M., et al. Proposal for a metal speciation study in sediments. Anal.Chim. Acta, 1995, 309: 387-393
    [12] Caruso J.A., Klaue B., Michalke B., et al. Group assessment: elemental speciation. Ecotoxicology and Environmental Safety, 2003, 56: 32-44
    [13] C. Caplat, H. Texier, D. Barillier, et al. Heavy metals mobility in harbour contaminated sediments: The case of Port-en-Bessin. Marine Pollution Bulletin, 2005, 50(5): 504-511
    [14] Chen J S, Wang F Y, Li X D, et al. Geographical variations of trace elements of the major rivers in eastern China. Environ Geol, 2000, 39(12): 1334-1340
    [15] Chester, R. Marine Geochemistry, Blackwell Science Ltd, 2000, 506
    [16] Cheung KC, Poon BHT, Lan CY, et al. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere, 2003, 52: 1431-1440
    [17] Christl I, Milne CJ, Kinniburgh DG, et al. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environ Sci Technol, 2001, 35: 2512-2517
    [18] Chun-gang Yuan, Jian-bo Shi, Bin He, et al. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 2004, 30(6): 769-783
    [19] Clark MW, McConchie D, Lewis DW, et al. Redox stratification and heavy metal partitioning in Aíicennia-dominated mangrove sediments: a geochemical model. Chemical Geology, 1998, 149:147-171
    [20] Chun-gang Yuan, Jian-bo Shi. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 2004, 30: 769-783
    [21] Davidson C. M. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Analytica Chimica Acta, 1994, 291: 277-286
    [22] Di Toro D M, Mahony J D, Hansen D J, et al. Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environmental Toxicology and Chemistry, 1990, 9: 1487-1502
    [23] Di Toro, D.M., Zarba, C.S., et al. Technical basis for establishing sediment quality criteria for non-ionic organic chemicals by using equilibrium partitioning. Environ. Toxicol. Chem. 1991, 10: 1541-1583
    [24] Duursma E K and Dawson R. 海洋有机化学 [M]. 北京: 海洋出版社, 1992. 223-286.
    [25] Fang T. H., Hong E. Mechanisms influencing the spatial distribution of trace metals in surficial sediments off the south-western Taiwan. Marine Pollution Bulletin, 1999, 38 (11): 1026-1037
    [26] Fang T., Li X. D., Zhang G. Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 2005, 61: 420-431
    [27] Ferrand J L, Hamlin B, Mocano A. Isotopic tracing of Antropogenic Pb inventers and sedimentary fluxes in the Gulf of Lions (NW Mediterranean Sea). Continental Shelf Res. Ambo, 1999, 20: 2-6
    [28] Fukue M, Nakamura T, Kato Y, et al. Degree of pollution for marine sediments. Eng Geol, 1999, 53: 131-137
    [29] Fukue M, Yanai M, Sato Y, et al. Background values for evaluation of heavy metal contamination in sediments. Journal of Hazardous Materials, 2006, 136: 111-119
    [30] Gabriel P J, Juan A M, Borrego J, et al. Evolution of estuarine facies in a tidal channel environment, SW Spain: evidence for a change from tide- to wave-domination. Marine Geology, 1998, 147: 43-62
    [31] Gitty G.H. et al, Journal of sediment Research, 1996, 66A: 107-118
    [32] Grossman E E , Eittreim S L , Field M E., et al. Shallow stratigraphy and sedimentationhistory during high-frequency sea-level changes on the central California shelf. Continental Shelf Research, 2006, 26(10): 1217-1239
    [33] Hakanson L. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res, 1980, 14 (8): 975-1001
    [34] Ho, M.D., Evans, G.J. Sequential extraction of metal contaminated soils with radiochemical assessment of readsorption effects.Environ.Sci. Technol, 2000, 34: 1030-1035
    [35] Huang Kuoming, Lin Saulwood. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere, 2003, 53: 1113-1121
    [36] Irabien. M. J, Velasco. F. Heavy metals in Oka river sediments (Urdabai Nationas Biosphere Maher W.A.) Evalution of a sequential extraction scheme to study associations of trace elements in estuarine and oceanic sediments, Bull. Environ.Contam. Toxicol, 1984, 32: 339-344
    [37] Ivone S. da Silva, Gilberto Abate, et al. Heavy metal distribution in recent sediments of the Tietê-Pinheiros river system in S?o Paulo state, Brazil. Applied Geochemistry, 2002, 17(2): 105-116
    [38] Keon, N.E., Swartz, C.H., Brabander, D.J., et al. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ.Sci. Technol, 2001, 35: 2778-2784
    [39] Liang Y, Wong M. H. Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve. Hong Kong Chemosphere, 2003, 52: 1647-1658
    [40] Lindberg, S.E., Andren, A.W., Harriss, R.C. Geochemistry of mercury in the estuarine environment. In: Estuarine Research, 1975.VoI. 1, Cronin, L.E.(ed.). New York: Academic Press.
    [41] Lin S, Hsieh I. J., Huang K. M., et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology, 2002, 182: 377-394
    [42] Lin S., Huang K. M., Chen S. K. Organic carbon deposition and its control on iron sulfide formation of the Southern East China Sea continental shelf sediments. Cont Shelf Res, 2000, 20: 619-635
    [43] Lorenzo Giusti. Heavy metal contamination of brown seaweed and sediments from the UK coastline between the Wear river and the Tees river. Environ Intern, 2001, 26: 275-286
    [44] Loring D. H. Normalization of heavy metal data from estuary and coastal sediments. Journal of marine science, 1991, 48:101-115
    [45] Loring D. H, Rantala R. T. T. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Science Reviews, 1992, 32: 235-283
    [46] Loska, K., Wiechula, D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir.Chemosphere, 2003, 51: 723-733
    [47] Mackey A. P., Mackay S. Spatial distribution of acid-volatile sulphide concentration and metal bioavailability in mangrove sediments from the Brisbane River, Australia. Environmental Pollution, 1996, 93(2): 205-209
    [48] Martino1 M., Turner A., Nimmo M., et al. Resuspension, reactivity and recycling of trace metals in the Mersey Estuary, UK. Mar Chem, 2002, 77: 171-186
    [49] Mclaren, P., Bowles, D., The effects of sediment transport on grain-size distributions, Journal of Sedimentary Petrology, 1985, 55: 457-470
    [50] McMurtry G. M., Wiltshore J. C., Kauahikaua J. P. Heavy metal anomalies in coastal sediments of O’ ahu. Hawaii Pac. Sci, 1995, 49: 452-470
    [51] Morford J. L., Emerson S. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 1999, 63: 1735-1750
    [52] Müller G. Index of geoaccumulation in sediments of the Rhine River. Geo. Journal. 1969, 2: 108-118.
    [53] Müller G. Schwermetalle in den sedimenten des Rheins—Ver?nderungen seit 1971. Umschau 1979, 7: 78-83
    [54] Nameroff T. J., Balistrieri L. S., Murray J. W. Suboxic trace metal geochemistry in the eastern tropical North Pacific. Geochimica et Cosmochimica Acta, 2002, 66: 1139-1158
    [55] Nirel, P. M. V., Morel, F. M. M. Pitfalls of sequential extractions.Water Res, 1990, 24: 1055-1056
    [56] Nirel, P. M. V., Thomas, A. J., Martin, J. M. A critical evaluation of sequential extraction techniques.In : Bulman, R.A., Cooper, J.R. (Eds.), Speciation of Fission and Activation Products in the Environment.El sevier, London, 1986, 19-26
    [57] Rauret, G. Extraction procedure for the determination of heavy metals in contaminated soil and sediment. Talanta, 1998, 46: 449-455
    [58] Reineck H. E., Singh I. B. Depositional Sedimentary Environments-with Reference to Terrigenous Clastics. Berlin: Springer-Verlag, 1973.
    [59] Rudolf J, Piero R. G., Yong C., et al. Organic compounds and trace metals of anthropogenic origin in sediments from Montego Bay, Jamaica: assessment of sources and distribution pathways. Environmental Pollution, 2003, 123: 291-299
    [60] Ruiz F. Trace metals in estuarine sediments from the southwestern Spanish Coast. Marine Pollution Bulletin, 2001, 42: 482-490
    [61] Saulnier I., Mucci A. Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada. Applied Geochemistry, 2000, 15: 203-222
    [62] Sauvé S., Hendershot W., Allen H. E. Solid–solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol, 2000, 34 (7): 1125-1131
    [63] Schindler P.W. Surface complexes at oxide/water interfaces. IN: M.A. Anderson and A. J.Rubin, Adsorption of Inorganics at the Solid/Liquid Interface. Ann Arbor Science Publ., Ann Arbor, M I. 1981
    [64] Selley R C. An Introduction to Sedimentology. London: Academic Press. 1976
    [65] Simeonov V, Massart D L, Andreev G. M, et al. Assessment of metal pollution based on multivariate statistical modeling of ‘hot spot’sediments from the Black Sea. Chemosphere, 2000, 41: 1411-1417
    [66] Singh A.K.,Hasnain S.I.,Banerjee D.K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River-a tributary of the lower Ganga,India. Environmental Geology, 1999, 39(1): 90-98
    [67] Salomons W., F?rstner U. Standardization of methods of analysis for heavy-metals in sediments. Hydrob iol, 1980, 91: 689-695
    [68] Tam N. F. Y, Yao M. W. Y. Normalization and heavy metal contamination in mangrove sediments. The Science of the Total Environment, 1998, 216: 33-39
    [69] Tania L, Micaela P, Malcolm C. Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia. Environment International, 2003, 29: 935-948
    [70] Tessier, A., Campbell, P.G.C., Bisson, M. Sequential extraction procedure for the speciation of trace metals. Anal. Chem, 1979, 51: 844-851
    [71] Ujevi? I., Od?ak N., Bari? A. Trace metal accumulation in different grain size fractions of the sediments from a semienclosed bay heavily contaminated by urban and industrial wastewaters. Water Research, 2000, 34(11): 3055-3061
    [72] Ure A. M., Quevauviller P. h., Muntau H., et al. Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 1993, 51: 135
    [73] Yaman M., Dilgin Y., Gucer S. Speciation of lead in soils and relation with its concentration in fruits. Analytica Chimica Acta, 2000, 410(1-2): 119-125
    [74] Yuan Chun-gang, Shi Jian-bo, He Bin, et al. Speciation of heavy metals in marine sediments from the East China Sea by ICP-MS with sequential extraction. Environment International, 2004, 30: 769-783
    [75] Zhuang G., Yi Z., Duce R. A., et al. Chemistry of iron in marine aerosols. Global Biogeochemical Cycles, 1992, 6(2): 161-173
    [76] 鲍永恩, 符文侠. 东湾北部沉积物对重金属集散的控制作用. 海洋学报, 1994, 16(3): 139-142.
    [77] 毕春娟, 陈振楼, 郑祥民, 等. 根际环境重金属地球化学行为及其生物有效性研究进展. 地球科学研究进展, 2001,16(3): 387-393
    [78] 蔡月娥, 陈维杰, 蔡爱智. 厦门湾的沉积环境.海洋地质与第四纪地质, 1987, 7(1): 27-37
    [79] 陈吉余, 王宝灿, 虞志英 主编. 中国海岸发育过程和演变规律[M]. 上海:上海科学技术出版社, 1989
    [80] 陈金泉,傅子琅,何发祥,等.厦门湾潮、余流及其对泥沙、污染物质迁移的影响.台湾海峡, 1985, 4(1): 16-20
    [81] 陈静生.铜在沉积物各相中分配的实验模拟与数值模拟研究—以鄱阳湖为例.环境科学学报, 1987, 7(2): 140-149
    [82] 陈静生, 刘玉机. 中国水环境重金属研究[M]. 陈静生, 周家义主编. 北京: 中国环境科学出版社, 1992, 168-170
    [83] 陈静生,王飞越,宋吉杰,等.中国东部河流沉积物中重金属含量与沉积物主要性质的关系.环境化学, 1996, 15(1): 8-14
    [84] 陈静生, 王飞越, 陈江麟. 论小于 63μm 粒级作为水体颗粒物重金属研究介质的合理性及有关粒级转换模型研究. 环境科学学报, 1994, 14(4): 419-425
    [85] 陈松, 廖文卓, 许爱玉, 等. 厦门西港表层沉积物的化学特征. 台湾海峡, 1992, 11(2): 131-137.
    [86] 陈正新, 王保军, 黄海燕, 等. 胶州湾底质痕量元素污染研究. 海洋与湖沼, 2006, 37(3): 280-288.
    [87] 陈宗团,徐 立,洪华生. 河口沉积物—水界面重金属生物地球化学研究进展. 地球科学进展, 1997,12(5): 434-439
    [88] 成国栋, 薛春汀.黄河三角洲沉积地质学[M]. 北京: 地质出版社, 1997
    [89] 崔 毅, 辛福言, 马绍赛, 等. 乳山湾沉积物重金属污染及其生态危害评价. 中国水产科学, 2005, 12(1): 83-90
    [90] 戴明, 李纯厚, 贾晓平, 等. 珠江口近海浮游植物生态特征研究. 应用生态学报, 2004, 15(8): 1389-1394
    [91] 郭炳火, 黄振宗, 李培英, 等. 中国邻近海域海洋环境. 北京,海洋出版社,2004, 313
    [92] 海热提, 谢涛, 齐凤霞. 天津海域底质重金属分布与矿物质特征研究. 环境科学与技术, 2006, 29(6): 6-8
    [93] 何起祥. 沉积地球科学的历史回顾与展望. 沉积学报, 2003, 21(1): 10-18
    [94] 何起祥 等. 编著 中国海洋沉积地质学,海洋出版社,2006, 北京.
    [95] 洪斌. 微生物对砷的地球化学行为的影响. 地球科学进展, 2006, 21(1): 77-83
    [96] 洪华生, 林杰. 厦门港、九龙江口海洋微表层营养盐、有机物、微量金属分布特征初探. 海洋学报, 1988, 10(6): 696-703
    [97] 黄慧珍, 唐宝根, 杨文达 等. 长江三角洲沉积地质学[M]. 北京: 地质出版社, 1997
    [98] 黄小平,李向东,岳维忠 等,深圳湾沉积物中重金属污染累积过程,环境科学, 2003, 24(4): 144-149
    [99] 贾振邦, 梁涛, 林健枝 等. 香港河流中金属污染及潜在生态危害研究. 北京大学学报, 1997, 33(4): 485-492
    [100] 蓝先洪. 中国近岸海域的沉积环境地球化学. 海洋地质动态, 2004, 20(2): 1-4
    [101] 李从先, 汪品先 等. 长江晚第四纪河口地层学研究[M]. 北京: 科学出版社, 1998
    [102] 李任伟, 李禾, 李原, 等. 黄河三角洲沉积物重金属、氮和磷污染研究. 沉积学报, 2001, 19(4): 622-630
    [103] 李文权,李淑英.137Cs法测定厦门西港和九龙江口现代沉积物的沉积速率.海洋通报, 1991, 10(3): 63-68
    [104] 李杨帆,朱晓东,邹欣庆 等. 江苏盐城海岸湿地景观生态系统研究. 海洋通报, 2005, 24(4): 46-52
    [105] 廖文卓, 潘皆再, 陈松. 九龙江口厦门港沉积物中镉、铜、铅的分布和行为. 台湾海峡, 1983, 2(1): 47-53
    [106] 林景星,张静,史世云 等. 大连湾 60 多年来生态环境地质演化. 地质学报,2001,75(4):527-536.
    [107] 林敏基,李木荣,许永水. 应用六氯化苯测年法对厦门港现代沉积速率的测定.海洋与湖沼, 1993, 24(3):325-331
    [108] 刘昌岭,张经. 颗粒态重金属通过河流与大气向海洋输送. 海洋环境科学, 1996, 15(4):68-76
    [109] 刘芳文, 颜 文, 王文质 等. 珠江口沉积物重金属污染及其潜在生态危害评价.海洋环境科学, 2002, 21(3): 34-38
    [110] 刘海洋,城志军. 中国近海污染现状分析及对策. 环境保护科学, 2001, 106(8)
    [111] 刘景春, 严重玲, 胡 俊. 水体沉积物中酸可挥发性硫化物(AVS)研究进展. 生态学报, 2004, 24(4): 812-818
    [112] 刘 俐,宋存义,熊代群 等.渤海湾表层沉积物重金属在不同粒级有机-矿质复合体中的分布.环境科学研究, 2006, 19(1):75-79
    [113] 刘 俐,熊代群,高新华等,海河及邻近海域表层沉积物重金属污染及其分布特征. 海洋环境科学,2006,25(2):40-44
    [114] 刘琼玉,洪华生,洪丽玉.厦门西海域表层沉积物重金属的分布特征及来源探讨.海洋通报, 1995,14(6):46-52
    [115] 刘素美, 张经. 沉积物中重金属的归一化问题—以 Al 为例. 东海海洋, 1998, 16(3):48-55
    [116] 刘文新, 栾兆坤, 汤鸿霄. 乐安江沉积物中金属污染的潜在生态风险评价. 生态学报, 1999, 19(2):206-211
    [117] 隆茜,张经. 陆架区沉积物中重金属研究的基本方法及其应用. 海洋湖沼通报, 2002
    [118] 龙云作 等. 珠江三角洲沉积地质学[M]. 北京: 地质出版社, 1997
    [119] 罗小三,周东美,陈怀满. 土壤中重金属形态分析研究进展. http://www.paper.edu.cn
    [120] 马德毅. 海洋沉积物的污染指示作用和检测方法. 海洋通报, 1993, 12(5):89-97
    [121] 孟 翊, 刘苍字, 程 江. 长江口沉积物重金属元素地球化学特征及其底质环境评价. 海洋地质与第四纪地质, 2003, 23(3): 38-43
    [122] 齐君. 胶州湾现代沉积速率与沉积物中重金属的累积分析. 中国科学院研究生硕士学位论文, 2005
    [123] 秦蕴珊, 赵一阳, 陈丽蓉 等. 东海地质[M]. 北京: 科学出版社, 1987
    [124] 秦蕴珊, 赵一阳, 陈丽蓉 等. 黄海地质[M]. 北京: 科学出版社, 1989
    [125] 乔 磊, 袁旭音, 李阿梅. 江苏海岸带的重金属特征及生态风险分析. 农业环境科学学报, 2005, 24(增刊): 178-182
    [126] 乔永民, 黄长江. 柘林湾表层沉积物重金属分布及污染初步评价. 海洋科学, 2006, 30(3): 41-45
    [127] 乔永民. 粤东近岸海域沉积物重金属环境地球化学研究. 暨南大学博士学位论文. 2004, 68
    [128] 丘耀文,朱良生,黎满球 等.海陵湾沉积物重金属与粒度分布特征.海洋通报, 2004, 23(6):49-53
    [129] 任明达,王乃梁. 现代沉积环境概论[M]. 北京,科学出版社, 1985, 8-32; 231
    [130] 宋金明,李延,朱仲斌. Eh 和海洋沉积物氧化还原环境的关系. 海洋通报, 1990,9(4): 33-39
    [131] 宋金明,徐亚岩,张英,等,中国海洋生物地球化学过程研究的最新进展. 海洋科学, 2006, 30(2): 69-78
    [132] 孙永传,李惠生. 碎屑岩沉积相和沉积环境. 地质出版社, 1986
    [133] 王宝灿,黄仰松. 海岸动力地貌上海. 华东师范大学出版社, 1989, 271
    [134] 王菊英,马德毅,鲍永恩等. 黄海和东海海域沉积物的环境质量评价. 海洋环境科学, 2003, 22(4): 21-24
    [135] 王绍芳,魏明瑞,林景星. 大连湾近 100 年来重金属污染度的演变. 地学前缘, 2002,9(3): 209-215
    [136] 王 宪,李文权,张 钒. 福建省近岸港湾沉积物质量状况. 海洋学报, 2002,24(4):127-131
    [137] 王颖,朱大奎. 海岸地貌学. 北京:高等教育出版社, 1994, 46-52
    [138] 吴建政, 余晓玲, 鲍 鹏 等. 芝罘湾近期沉积物中重金属元素记录. 中国海洋大学学报, 2006, 36(1):141-144
    [139] 吴景阳.海洋环境地球化学研究[A].曾呈奎.中国海洋科学研究与开发[C]. 青岛:青岛出版社, 1993. 265-271
    [140] 吴瑜端, 林月玲. 九龙江口厦门海区表层沉积物中重金属人为增量的测定. 海洋学报, 1988, 10(6): 772-777
    [141] 吴瑜端.台湾海峡西岸主要港湾的重金属及其生态效应.见:陈静生,周家义,中国水环境重金属研究,北京:中国环境科学出版社,1992,329-368
    [142] 厦门市海岛资源综合调查办公室,厦门市海岛资源综合调查研究报告,海洋出版社,1996。
    [143] 徐茂泉, 陈友飞编著.海洋地质学[M]. 厦门: 厦门大学出版社, 1999.103.
    [144] 徐晓达, 林振宏, 李绍全,胶州湾的重金属污染研究. 海洋科学,2005,29(1):48-53
    [145] 许志峰.厦门晚第四纪沉积物年代和沉积速率.厦门市海洋调查研究论文集. 北京:海洋出版社,1996, 35-36.
    [146] 杨 蕾,李春初,田向平,珠江磨刀门河口表层沉积物中重金属含量及其分布特征. 生态环境, 2006, 15(3): 490-494.
    [147] 杨世伦. 海岸环境和地貌过程导论. 北京:海洋出版社, 2003,24-25
    [148] 张才学, 孙省利, 陈春亮. 湛江港湾表层沉积物重金属的分布特征及潜在生态危害评价. 湛江海洋大学学报, 2006, 45(3): 45-49
    [149] 张效龙, 徐家声, 金永德, 尹 毅. 天津永定新河口海区海底表层沉积物的污染. 海洋地质动态, 2006, 22(5): 11-14
    [150] 张经. 中国河口地球化学的一些研究进展. 海洋与湖沼,1994,25(4):438-445
    [151] 张丽洁, 王 贵, 姚 德 等. 近海沉积物重金属研究及环境意义. 海洋地质动态, 2003, 19(3): 6-9
    [152] 赵一阳. 中国海大陆架沉积物地球化学的若干模式. 地质科学, 1983, (4): 307-314
    [153] 赵一阳, 鄢明才. 中国浅海沉积物地球化学[M]. 北京: 科学出版社, 1994
    [154] 郑家麟 主编.厦门市海岛调查研究论文集[C].北京:海洋出版社, 1996, 35-36
    [155] 中国海湾志编纂委员会,中国海湾志第八分册,北京:海洋出版社,1993.
    [156] 中国科学院海洋研究所海洋地质研究室.渤海地质[M], 北京: 科学出版社, 1985
    [157] 中科院南海海洋研究所. 南海海区综合调查报告(二),北京,科学出版社,1985
    [158] 朱广伟,秦伯强,高光等. 太湖近代沉积物中重金属元素的累积. 胡泊科学, 2005, 17(2): 143-150
    [159] 庄云龙,石秀春,张荣亮,重金属在沉积物系统中吸附行为的研究进展. 四川环境, 2002,21(2): 13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700