第三组元掺杂下Ti_5Si_3弹性性质和电子结构的第一原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取置换金属原子Zr、V、Nb、Cr,及间隙原子B、C、N和O作为第三组元添加入Ti5Si3中,利用基于密度泛函的第一原理超软赝势平面波法对合金化元素在Ti5Si3的占位及合金元素对其电子结构、弹性性质的影响做了分析。
     置换金属元素在Ti5Si3的占位是由元素半径决定的。半径大于Ti原子的元素Zr倾向于占据非链上空间较大的Ti6g位置,半径小于Ti原子的V和Cr倾向于占据链上的Ti4d位置,Nb具有与Ti原子相当的半径,可以同时占据Ti4d位和Ti6g位。Zr元素对Ti5Si3的韧性没有影响,而V、Nb和Cr可以有效提高Ti5Si3的韧性,但是各自的机制不同。置换元素对Ti5Si3的韧性改善与其半径无关,而是由电子在靠近费米能附近的d(Me4d)–d(Me4d)成键态、反键态和d(Me6g)非键态的占据决定。成键同时有利于体模量B和剪切模量G;非键的增加则会增加体模量B,降低剪切模量G;反键会同时降低体模量B和剪切模量G。
     间隙原子的添加会降低Ti5Si3的韧性。这是由于间隙原子p层电子与d(Ti6g)电子成键态加强,体模量和剪切模量同时增加。另一方面,Ti6g非键态在减少,降低了材料的体模量,提高了剪切模量。综合结果导致体模量和剪切模量都在增加,只不过体模量增加的程度没有剪切模量的大。这就导致间隙原子添加后,Ti5Si3的韧性反而在降低。
Titanium silicide, Ti5Si3 has been extensively investigated over the past few decades as a candidate material suitable for high temperature applications, due to its high melting point, low density, relatively high hardness, capacity to retain high strength up to 1200 oC, as well as good oxidation and creep resistance at and below 850 oC. However, the development and applications of Ti5Si3 are still severely restricted in recent years due to its low fracture toughness (~2.5 MPam1/2) below the ductile–brittle transition temperature. To overcome this deficiency, several toughening methodologies have been developed, including refining grains, incorporation of a second reinforcing phase to form composites, and solid solution alloying, etc. Among these approaches, element alloying is considered as a comparative way to improve the comprehensive properties of intermetallics to meet the application demands. Alloysing which can be achieved by doping with interstitial atoms, or by incorporation of substitutional atoms into Ti5Si3, has received considerable attention in recent years, can change the electronic structure, the bonding characteristics and the degree of long-rate order to enhance the ductility of crystals. Fracture studies have shown that brittleness at room temperature is not only decided by the grain boundary but also may be influenced by the chemical bonding. Therefore, it is necessary to investigate the crystal structure and chemical bonding of Ti5Si3 theoretically and systematically.
     As the first principles density functional theory method develops, this approach has been widely used to investigate many intermetallic alloys. Site occupancy of alloying elements in intermetallics, the electronic structure, and the mechanical properties improvement mechanism of alloying elements using first principle calculations are the hotspot. Recently, Ti-Al, Ni-Al, Fe-Al system intermetallics have been widely investigated. However, transition-metal silicon compounds are rarely researched.
     The present article has selected several alloying elements which had been investigated experimentally to be added into Ti5Si3. Substitional elements are as following: Zr, V, Nb and Cr. Interstitial elements are B, C, N and O. Site occupancy and the influence of alloying elements on the electronic structures and elastic properties have been studied through first–principles plane–wave pseudopotential total energy calculation.
     The results are mainly concluded as below:
     (1) The site occupancy behaviors of subtitutional elements in Ti5Si3, determined by their atom radius, are consistent with the available experimental observations: alloying elements with atomic size larger than Ti prefer to substitute the Ti in more closed space and the atoms with atomic size smaller than Ti prefer to occupy the Ti in less closed space in Ti5Si3. Among these four substitutions, only V, Nb and Cr can improve the ductility of Ti5Si3 more effectively. However, the mechanism of ductility improvement varies from each other. Both the increase of bulk modulus B and the decrease of shear modulus G are responsible for the ductility improvement in Ti5Si3 with V substitution, while Cr substitution enhances the ratio of B/G predominately through increasing the bulk modulus B, and Nb by decreasing the shear modulus G. It is shown that the ductility enhancement effect of substitutions in Ti5Si3 almost has nothing to do with the atomic size of substitutions, but can only be understood in terms of the states near EF dominated by d(Me4d)–d(Me4d) bonding, anti–bonding and d(Me6g) non–bonding states. The strengthening of d(Me4d)–d(Me4d) bonding is beneficial to increase the bulk and shear moduli. The anti–bonding of d(Me4d)–d(Me4d) can result in decrease in both the bulk and shear moduli, while the enhancement of d(Me6g) non–bonding states is beneficial to increase the bulk modulus, but adverse to the shear modulus.
     (2) Investigation shows that the lattice parameter variation trend of Ti5Si3 due to interstitial additions calculated by us is consistent with references. Interstitial atom B can increase both the a and c value, C increase c value but decrease c value, and N, O derease both a and c. It is found that interstitial atoms have negative effects on the ductility of Ti5Si3. The result is found to be correlated with the bonding between Ti6g and interstitial atoms, and the decrease of Ti6g non-bonding. The Ti6g-Z bonding lead to both the increase of bulk modulus and shear modulus, but the decrease of Ti6g non-bonding reduce the bulk modulus and increase the shear modulus. The overall result increase both the bulk modulus and shear modulus, but the extent of increase in bulk modulus is not as large as that of shear modulus. Therefore, interstitial atom addtitons lower the ductility of Ti5Si3.
引文
[1]孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料[M].北京:机械工业出版社2002:1-22.
    [2]易丹青,杜若昕,曹昱. M5Si3型硅化物的研究及相关的物理冶金问题[J].金属学报2001;37:1121-1130.
    [3] Mitra R. Microstructure and mechanical behavior of reaction hot pressed Titanium silicide and Titanium silicide-based alloys and composites [J]. Metall. Mater. Trans 1998;A29:1629-1641.
    [4] Tang Z. H., Williams J. J., Thom A. J., Akinc M. High temperature oxidation behavior of Ti5Si3-based intermetallics [J]. Intermetallics 2008;16:1118-1124.
    [5] Wang H. Y., LüS. J., Zha M., Li S. T., Liu C., Jiang Q. C. Influence of Cu addition on the self-propagating high-temperature synthesis of Ti5Si3 in Cu–Ti–Si system [J]. Mater. Chem. Phys. 2008;111:463-468.
    [6] Kumar K. S. Intermetallic compounds [M]. edited by J. H. Westbrook, R. L. Fleisc. John Wiley & Sona Ltd. 1994;2:211.
    [7] Zhang L., Wu J. Ti5Si3 and Ti5Si3-based alloys: alloying behavior, microstructure and mechanical property evaluation [J]. Acta Mater. 1998;46:3535-3546.
    [8] Fu C. L., Zou J. Site preference of ternary alloying additions in FeAl and NiAl by first-principles calculations [J]. Acta Mater. 1996;44:1471-1478.
    [9] Zhang C. L., Han P., Li J. M., Chi M. First-principles study of the mechanical properties of NiAl microalloyed by M(Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd) [J]. J. Phys. D: Appl. Phys. 2008;41:095410.
    [10] Zhou C. T., Xiao B., Feng J., Xing J. D., Xie X. J., Chen Y. H., Zhou R. First principles study on the elastic properties and electronic structures of (Fe, Cr)3C [J]. Comput. Mater. Sci. 2009;45:986-992.
    [11] Jiang C., Sordelet D. J., Gleeson B. A first-principles study of the site preference of Cr in B2 NiAl [J]. Scripta Mater. 2006;54:405-410.
    [12] Djajaputra D., Cooper B. R. Systematic first-principles study of impurity hybridization in NiAl [J]. Phys. Rev. B 2002;66:205108.
    [13] Jiang C. First-principles study of site occupancy of dilute 3d, 4d and 5d transition metal solutes in L10 TiAl [J]. Acta Mater. 2008;56:6224-6231.
    [14] Waghmare U. V., Kaxiras Efthimios, Bulatov V.V., Duesbery M. S. Effects of alloying on the ductility of MoSi2 single crystals from first-principles calculations [J]. Modelling Simul. Mater. Sci. Eng. 1998;6:493-506.
    [15] Fu C. L., Wang X. D. Thermal expansion coefficients of Mo-Si compounds by first-principles calculations [J]. Philos. Mag. Lett. 2000;80:683-690.
    [16] Fu C. L., Wang X. D., Ye Y. Y., Ho K. M. Phase stability, bonding mechanism, and elastic constants of Mo5Si3 by first-principles calculation [J]. Intermetallics 1999;7:179-184.
    [17] Schneibel J. H., Rawn C. J., Watkins T. R., Payzant E. A. Thermal expansion anisotropy of ternary molybdenum silicides based on Mo5Si3 [J]. Phys. Rev. B 2002;65:134112.
    [18] Fu C. L., Schneibel J. H. Reducing the thermal expansion anisotropy in Mo5Si3 by Nb and V additions: theory and experiment [J]. Acta Mater. 2003;51:5083-5092.
    [19] Schneibel J. H., Rawn C. J. . Thermal expansion anisotropy of ternary titanium silicides based on Ti5Si3 [J]. Acta Mater. 2004;52:3843-3848.
    [20] Counihan P. J., Crawford A., Thadhani N. N. Influence of dynamic densification on nanostructure formation in Ti5Si3 intermetallic alloy and its bulk properties [J]. Mater. Sci. Eng., A 1999;267:26-35.
    [21] Rosenkranz R., Frommeyer G., Smarsly W. Microstructures and properties of high melting point intermetallic Ti5Si3 and TiSi2 compounds [J]. Mater. Sci. Eng., A 1992;152:288-294.
    [22] Williams J. J., Ye Y. Y., Kramer M. J., Ho K. M., Hong L., Fu C. L., Malik S. K. Theoretical calculations and experimental measurements of the structure of Ti5Si3 with interstitial additions [J]. Intermetallics 2000;8:937-943.
    [23] Chen Y., Shang J. X., Zhang Y. Bonding characteristics and site occupancies of alloying elements in different Nb5Si3 phases from first principles [J]. Phys. Rev. B2007;78:184204.
    [24]Wehrmann R. High-temperature Materials and Technology [M], edited by Campbell I. E. and Sherwood E. M. John Wiley & Sona Ltd 1967:399-430.
    [25] Rice R. W., Freiman S. W., Becher P. F. Grain-size dependence of fracture energy in ceramics: II, A model for noncubic materials [J]. J. Am. Ceram. Soc. 1981;64:345-350.
    [26] Min K. S., Ardell A. J., Eck S. J., Chen F.C. A small-specimen investigation of the fracture toughness of Ti5Si3 [J]. Journal of Materials Science 1995;30:5479-5483.
    [27] Reuss S., Vehoff H. Temperature dependence of the fracture toughness of single phase and two phase intermetallics [J]. Scripta Metallurgica et Materialia 1990;24:1021-1026.
    [28] Petrovic J. J. Toughening strategies for MoSi2-based high temperature structural silicides [J]. Intermetallics 2000;8:1175-1182.
    [29]易丹青. MoSi2基复合材料的研究进展[J].中国钼业2006;30:3-12.
    [30] Yan J., Zhang H., Tang S., Xu J. Room temperature mechanical properties and high temperature oxidation behavior of MoSi2 matrix composite reinforced by adding La2O3 and Mo5Si3 [J]. Mater. Charact. 2009;60:447-450.
    [31] Subramanian P. R. , Mendiratta M. G., Dimiduk DM. The development of Nb-based advanced intermetallic alloys for structural applications [J]. JOM 1996;48:33-38.
    [32] Lee J. I., Hecht N.L., Mah T.I. In Situ Processing and Properties of SiC/MoSi2 Nanocomposites [J]. J. Am. Ceram. Soc. 1998;81:421-424.
    [33] Seifert H. J., Lukas H. L., Petzow G. Thermodynamic Optimization of the Ti-Si System [J]. Z. Metallkd 1996;87:2-13.
    [34] Shon I. J., Kim H. C., Rho D. H., Munir Z. A. Simultaneous synthesis and densification of Ti5Si3 and Ti5Si3-20 vol% ZrO2 composites by field-activated and pressure-assisted combustion [J]. Mater. Sci. Eng., A 1999;269:129-135.
    [35]李建林,江东亮,谭寿洪.原位生成TiC/Ti5Si3纳米复合材料的显微结构研究[J].无机材料学报2000;15:336-340.
    [36] Li J., Jiang D., Tan S. Microstructure and mechanical properties of in situ produced Ti5Si3/TiC nanocomposites [J]. J. Eur. Ceram. Soc. 2002;22:551-558.
    [37] Wang L., Jiang W., Qin L. Effect of starting SiC particle size on in situ fabrication ofTi5Si3/TiC composites [J]. Mater. Sci. Eng., A 2006;425:219-224.
    [38] Suzuki Y., Sekino T., Niihara K. Effects of ZrO2 addition on microstructure and mechanical properties of MoSi2 [J]. Scripta Metall Mater. 1995;33:69-74.
    [39] Yukinori Ikarashi, Kozo Ishizaki, Tamotsu Nagai, Yutaka Hashizuka, Kondo Y. Reduction of thermal expansion anisotropy for intermetallic silicides of 16H crystal structure [J]. Intermetallics 1996;4:S141-145.
    [40] Taisuke Hayashi, Kazuhiro Ito, Misako Takamoto, Katsushi Tanaka. The Effect of Nb and W Alloying Additions to the Thermal Expansion Anisotropy and Elastic Properties of Mo5Si3 [J]. Metall. Mater. Trans. A 2005;36:533-538.
    [41]殷为民,郭建亭,胡壮麒.硼对Fe3Al合金力学性能和显微组织的影响[J].金属学报1994;30 A:515-520.
    [42] Choe H. C., Kim H. S., Choi D. C., Kim K. H. Effects of alloying elements on the electrochemical characteristics of iron aluminides [J]. Journal of Materials Science 1997;32:1221-1227.
    [43]高小玫,钱祥荣. Cr对Fe3Al的韧化作用[J].金属学报1994;30 A:307-310.
    [44] Zhang L., Wu J. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3 [J]. Scripta Mater. 1998;38:307-313.
    [45] Williams J. J., Kramer M. J., Akinc M. Thermal expansion of Ti5Si3 with Ge, B, C, N, or O additions [J]. J. Mater. Res. 2000;15:1780-1785.
    [46] Thom A. J., Young V. G., Akinc M. Lattice trends in Ti5Si3Zx (Z=B,C,N,O and 0    [47] Groenbeck H. First principles studies of metal-oxide surfaces [J]. Top. Catal. 2004;28:59-69.
    [48] Hohenberg P., Kohn W. Inhomogeneous electron gas [J]. Phys. Rev. B 1964;136:864-871.
    [49] Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. 1965;140:1133-1138.
    [50] Rinke P., Qteish A., Neugebauer J., Freysoldt C., Scheffler M. Combined GW calculations with exact-exchange density-functional theory: an analysis of valence-bandphotoemission for compound semiconductors [J]. New J. Phys. 2005;7:126.
    [51]Perdew J. P., Chevary J. A., Vosko S. H., Jackson Koblar A., Pederson Mark R., Singh D. J., Fiolhais Carlos. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B 1992;46:6671-6687.
    [52]Ceperley D. M., Alder B. J. Ground State of the Electron Gas by a Stochastic Method [J]. Phys. Rev. Lett. 1980;45:566-569.
    [53] Slater J.C. An augmented plane wave method for the periodic potential problem [J]. Phys.Rev 1953;93(3):603-608.
    [54] Yuan Lanfeng, Yang Jinlong, Deng Ke, Zhu Qingshi. First-principles investigation for M(CO)n/Ag(110) (M=Fe, Co, Ni, Cu, Zn, and Ag; n=1, 2) systems: Geometries, STM images, and vibrational frequencies [J]. Phys. Rev. B 2002;65:035415.
    [55]胡艳军,彭平,周惦武,李贵发,郑采星,韩绍昌. 3d过渡金属在NiAl中占位的第一原理计算[J].中国有色金属学报2004;14:2102-2107.
    [56] Song Y., Guo Z. X., Yang R., Li D. First principles study of site substitution of ternary elements in NiAl [J]. Acta Mater. 2000; 49:1647.
    [57]胡艳军,彭平,李贵发,周惦武,韩绍昌. NiAl力学性质合金化效应的第一原理计算[J].中国有色金属学报2006;16:47-53.
    [58] Hu Xuelan, Zhang Ying, Lu Guanghong, Wang Tianmin, Xiao Penghao, Yin Penggang, Xu Huibin. Effect of O impurity on structure and mechanical properties of NiAl intermetallics: A first-principles study [J]. Intermetallics 2009;17:358-364.
    [59] Hu Xuelan, Zhang Ying, Lu Guanghong, Wang Tianmin. Bonding characteristics in NiAl intermetallics with O impurity: a first-principles computational tensile test [J]. J. Phys. Condens. Matter 2009;21:025402.
    [60] Liu W., Li J. C., Zheng W. T., Jiang Q. NiAl(110)/Cr(110) interface: A density functional theory study [J]. Phys. Rev. B 2006;73:205421.
    [61] Song Y., Yang R., Li D. A first principles study of the influence of alloying elements on TiAl: Site Preference [J]. Intermetallics 2000;8:563-568.
    [62] Song Y, Guo Z. X., Yang R., Li D. First principles study of influence of alloyingelements on TiAl: cleavage strength and deformability [J]. Comput. Mater. Sci. 2002;23:55-61.
    [63]陈律,彭平,李贵发,胡艳军,周惦武,张为民. L10-TiAl金属间化合物Mn,Nb合金化电子结构的计算[J].航空材料学报2005;25:15-19.
    [64]陈律,彭平,韩亚利. L10-TiAl基本物性的计算与比较研究[J].材料科学与工艺2007;15:47-51.
    [65]陈律. 3d过渡金属L10-TiAl中占位的第一原理计算[J].长沙航空职业技术学院学报2008;8:43-48.
    [66] Yu R., He L. L., Ye H. O. Effect of W on structural stability of TiAl intermetallics and the site preference of W [J]. Phys. Rev. B 2002;65:184102.
    [67]尚家香,喻显扬. 3d过渡金属在NiAl中的占位及对键合性质的影响[J].物理学报2008;57:2380-2385.
    [68] Morinaga M., Saito J., Yukawa N. Electronic effect on the ductility of alloyed TiAl compound [J]. Acta Metall. Mater. 1990;38:25-29.
    [69] Zhou HongBao, Wei Ye, Liu Yue-Lin, Zhang Ying, Lu GuangHong. First-principles investigation of site preference and bonding properties of alloying element in TiAl with O impurity [J]. Modelling Simul. Mater. Sci. Eng. 2010;18:015007.
    [70] Long X., Chong Z. Electronic structure of titanium silicides [J]. Trans Nonferrous Meta Soc China 1994;4:25-35.
    [71] Ekman M., Ozolin V. Electronic structure and bonding properties of titanium silicides [J]. Phys. Rev. B 1998;57:4419-4424.
    [72] Segall M. D., Lindan P. J. D., Probert M. J., Pickard C. J., Hasnip P. J., Clark S. J., Payne M. C. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J.Phys.: Condens Matter 2002;14:2717.
    [73] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B 1990;41:7892-7895.
    [74] Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations-a reply [J]. Phys. Rev. B 1977;16:1748-1749.
    [75] Fischer T. H., Almlof J. General methods for geometry and wave function optimization[J]. J. Phys. Chem. 1992;96:9768-9774.
    [76]石德珂,金志浩.材料力学性能[M].西安交通大学出版社1998:3-8.
    [77] Voigt W. Lehrbuch der Kristallphysik [M] (Teubner, Leipzig, 1928). 1928:716.
    [78] Reuss A., Angew Z. Calculation of flow limits of mixed crystals on the basis of plasticity of single crystals [J]. Math. Mech. 1929;9:49-57.
    [79] Hill R. The elastic behavior of a crystalline aggregate. Phys. Soc. London A 1952; 65:349-354.
    [80] Kishida Kyosuke, Fujiwara Masakazu, Adachi Hiroki, Tanaka Katsushi, Inui Haruyuki. Plastic deformation of single crystals of Ti5Si3 with the hexagonal D88 structure. Acta Mater. 2010;58:846-857.
    [81] Filippi C., Singh D. J., Umrigar C. J. All-electron local-density and generalized-gradient calculations of the structures properties of semiconductors [J]. Phys. Rev. B 1994;50:14947-14951.
    [82] Pugh S. F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philos. Mag. 1954;45:823-843.
    [83] Chen Yue, Shang JiaXiang, Zhang Yue. The establishment of the statistical-thermodynamic model of D81-structure and its application toα-Nb5Si3 [J]. Intermetallics 2007;15:1558-1563.
    [84] Jhi S. H., Ihm J., Loule S. G. Electronic mechanism of hardness enhancement in transition-metal carbonitrides [J]. Nature 1999;399:132-134.
    [85] Wang J. Y., Zhou Y. C. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti, V, Nb, and Cr) ceramics [J]. Phys. Rev. B 2004;69:214111:214111-214119.
    [86]Pettifor D. Theoretical predictions of structure and related properties of intermetallics [J]. Mater. Sci. Technol. 1992;8:345-349.
    [87] Segall M. D., Shah R., Pickard C. J., Payne M. C. Population analysis of plane-wave electronic structure calculations of bulk materials [J]. Phys. Rev. B 1996;54:16317-16320.
    [88] Grossman J. C., Mizel A., Cote M., Cohen M. L., Louie S. G. Transition metals and theircarbides and nitrides: Trends in electronic and structural properties [J]. Phys. Rev. B 1999;60:6343-6347.
    [89] Li C. B., Li M. K., Ying D., Liu F. Q., Fan X. J. First principles study on the charge density and the bulk modulus of the transition metals and their carbides and nitrides [J]. Chin. Phys. 2005;14:2287-2292.
    [90] Kajitani T., Kawase T., Yamada K., Hirabayashi M. Site Occupation and Local vibration of Hydrogen Isotopes in Hydrogen Ti5Si3Hx [J]. Trans. Jpan. Inst. of Met. 1986;27:639-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700