焦炉煤气钌甲烷化催化剂的制备及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,环保要求日趋严格,节能减排步伐逐渐加快,同时,天然气资源短缺,焦炉煤气制天然气引起了人们的密切关注,此项工作也正在成为焦炉煤气利用的一项重要技术途径。且利用我国丰富的剩余焦炉煤气制天然气对解决天然气短缺,在能源安全、节能减排方面具有重要意义。许多文献已报道了少量CO和CO2甲烷化的钌系或镍系催化剂研究,但是,对焦炉煤气制天然气过程的钌基催化剂开发研究报道甚少。因此,本文选择负载型Ru催化剂为研究对象,系统考察了活性氧化铝载Ru催化剂的甲烷化性能。
     1、研究了不同载体对负载型钌催化剂的影响。结果表明,不同载体负载钌催化剂的活性顺序为:Ru/Al2O3>Ru/MgO>Ru/SiO2。
     2、研究了不同活性组分以γ-Al2O3为载体的催化剂性能,结果表明催化剂活性顺序为:Ru/Al2O3>Co/Al2O3>Ni/Al2O3,负载型钌催化剂不仅具有最低的活化能,而且具有较高的活性。
     3、研究了制备方法(等体积浸渍法和超声波浸渍法)、超声波浸渍时间、超声波频率、Ru负载量对催化剂活性的影响。结果表明,Ru负载量为0.5wt%,超声波浸渍不仅可以提高催化剂活性而且可以缩短浸渍时间,超声波浸渍法制备催化剂合适的超声浸渍时间为20min,超声波频率为40kHz。不同钌含量的Ru/Al2O3催化剂活性随着Ru负载量增加CO转化率和甲烷选择性先增加后逐渐降低,但副产物CO2的选择性也逐渐增加。Ru负载量为2wt%,CO转化率达98.33%,甲烷化选择性达83.29%,催化剂性达到最佳。
     4、研究了制备条件(焙烧温度和还原温度)、助剂等对催化剂活性的影响。结果表明,催化剂最佳制备的焙烧温度为500℃,还原温度为400℃。催化剂不论是添加Ni,Co等Ⅷ族金属还是添加Ce,La和K等非Ⅷ族助剂,催化剂活性改善不明显,甚至有不同程度地降低。另外,氯离子的去除对催化剂活性也有影响,催化剂浸渍后用去离子水结合氨水洗涤,可有效去除氯离子,提高催化剂活性。
     5、研究了空速、原料气配比和反应温度对Ru/Al2O3催化剂上CO甲烷化反应的影响,并对催化剂的热稳定性和耐毒性进行了初步的考察。结果表明,空速等于3000h-1时,CO转化率和CH4选择性达到最大;催化剂活性随着H2和CO比值的增加而急剧升高;CO的转化率和甲烷选择性随反应温度的升高先增加后略微下降,研究表明300-400℃为较适宜的反应温度;催化剂在测试时间26h内活性稳定高效,催化剂耐毒性测试其极限耐毒量为1.72μL.g-1。
In recent years, cleanning coke oven gas conversion has stirred attention from both environmental protection and energy-saving emission reduction. At the same time, because of lack of nature gas, conversion coke oven gas to SNG (substitude nature gas) is becoming an important technology. It is of great significance to solve our future natural gas demand、energy security、energy saving and emission reduction. Many studies have reported Ru or Ni catalyst research for CO and CO2 methanation for purifying fuel cell or ammonia synthesis feed gas, but very few results for ruthenium-based catalyst for high CO concentrations about coke oven gas to natural gas. Therefore, this dissertation it has been highlighted that the tests of the methanation performance of Ru catalysts supported on oxides in coke oven gas.
     1、The effect of supports on the methanation of CO of Ru catalysts has been investigated. The order of activity is shown as follows:Ru/Al2O3> Ru/MgO> Ru/SiO2.
     2、The methanation performances of a series of y-Al2O3 supported transition metal catalysts have been explored by the employment of activity test. The order of catalytic activity is shown as follows:Ru/Al2O3> Co/Al2O3> Ni/Al2O3. Among the catalysts Ru/Al2O3 catalyst has the highest activity for the methanation of CO with the least activation energy.
     3、The influences of preparation method (wet impregnation and ultrasonic impregnation) and ultrasonic impregnation time and frequence, Ru loadings of Ru/Al2O3 on the activity of catalysts have been investigated. The results showed that when Ru loadings 0.5 wt%, compared with the catalyst prepared by impregnation method, the catalyst prepared by ultrasonic impregnation method performed higher activity and also save catalyst impregnation time, the right impregnation time was 20 min and ultrasonic frequence 40 kHz. As the Ru content increases, CO conversion not change significantly and seems to attain a plateau, while methane selectivity decreased gradually, CO2 selectivity increased gradually.2% wt% Ru is appropriate catalyst metal loading, the conversion of CO and CH4 selectivity are 98.33% and 83.29%, respectively.
     4、The influences of preparation condition (calcined temperature and reduction temperature)、addition of promoters and effect of Cl- on activity of Ru/Al2O3 catalyst have been investigated. A suitable catalyst calcination temperature was 500℃, reduction temperature was 400℃. The addition of promoters of VIII metal and non-VIII metal into the single Ru metal catalyst will result in more or less decrease of Catalytic activity. Addition, filtrating the sample after RuCl3 was impregnated, It can effectively remove Cl- and improve catalyst activity, in particular, the effect of washing with dilute ammonia and deionized water is evident.
     5、The influences of space velocity、ratio of CO and H2、reaction temperature on activity of Ru/Al2O3 catalyst have been investigated and then examined the catalyst thermal stability and sulfer resistance. The optimal reaction conditions are space velocity 3000 h-1; with ratio of CO and H2 increased, CO conversion and CH4 selectivity increaseed; as the reaction temperature increasing, CO conversion and CH4 selectivity firstly increased and then a little decreased, studies show that 300-400℃for the more appropriate reaction temperature. The study also found that the catalyst has good activity after 26 h, the catalyst sulfer-resistant amount limits was 1.72μL.g-1.
引文
[1]潘连生,张瑞和,朱曾惠.对我国煤基能源化工品发展的思考(二)[N].中国化工报,2008-4-3(3).
    [2]田基本.煤制天然气气化技术选择[J].煤化工,2009,5:8-11.
    [3]Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the Group VIII metals(V):The catalytic behavior of silica supported metals [J]. J Catal,1977, 50 (2):282-236.
    [4]Hiroshi Takeda, Tory L Walsh, Jon P Wagner. Catalyst for the conversion of carbon monoxide [P]. US:10/740144.2005.
    [5]Takashi Amano, Atsusshi Takumi, Shugou Zhang, et al.Carbon Monoxide Removing Catalyst and Production Process for the Same as Well as Carbon Monoxide Removing Apparatus[P].US:20060160697 Al,2006.
    [6]Yaccato K, Carhart R, HagemeyerA, et al. Competitive CO and CO2 methanation over supported noble metal catalysts in high through put scanning mass spectrometer [J].Appl Catal A,2005,296(1):30-48.
    [7]黄仲涛.工业催化剂手册[M].北京:化学工业出版社,2001.705-707.
    [8]Takenaka S, Shimizu T, Otsuka K. Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts [J]. Inter J Hydrogen Energy,2004,29(10):1065-1073.
    [9]Muhamad B I, Choudhury a, Shakeel Ahmed, et al. Preferential methanation of CO in a syngas involving CO2 at lower temperature range [J]. Appl Catal A,2006,314(1):472-53.
    [10]王莉萍,张永发.煤制甲烷基础研究和工艺开发进展[J].山西能源与节能,2009(1):51-55.
    [11]徐霖,余金华.低温甲烷化催化剂的研制[J].化肥工业,2005,(3):31-34.
    [12]吴浩,潘智勇.非晶态Ni合金催化剂用于低温甲烷化反应的研究[J].化工进展,2005(3):299-302.
    [13]费金华,侯昭胤等.Al2O3负载镍基催化剂上CO2氢甲烷化研究[J].高等学校化学学报,2002,23(3):457-460.
    [14]罗来涛,王敏炜,等.La2O3对Ni-Mo/γ-Al2O3催化剂CO和CO2甲烷化的影响[J].中国稀土学报,1996,17(2):120-124.
    [15]安智华,郝茂荣,张俊卿,那树人.La2O3在镍系甲烷化催化剂中的助剂作用[J].包头钢铁学院学报,1999,18(4):428-431.
    [16]石玉,江雅新,牛雪平,等.Mo-Ni/r-Al2O3甲烷化催化剂研究(Ⅱ)制备条件及还原条件对催化剂结构的影响[J].内蒙古大学学报,2000,31(5):487-492.
    [17]魏树权,李丽波,等.沉淀型Ni-La2O3/ZrO2催化剂上CO2甲烷化性能的研究[J].天然气化工,2004,29(5):10-13.
    [18]李丽波,魏树权等.第二金属组分对CO2甲烷化沉淀型镍基催化剂的影响[J].天然气化工,2004,29(1):27-31.
    [19]常慧,王萍等.镍基催化剂的制备及其催化加氢性能[J].金山油化纤,2004,23(1):36-40.
    [20]吴倩,荆泉等.催化剂制备条件对金属分散度的影响[J].燃料与化工,2008,39(2):46-49.
    [21]唐波,江琦,何锡文等.二氧化碳加氢甲烷化单组分担载型金属催化剂表面漫反射紫外可见光谱研究[J].分析科学学报,1998,14(1):31-36.
    [22]程伟,李玉敏,王日杰等.Mo-Ni/Al2O3催化剂的TPR特与加氢脱硫性能[J].化学工业与工程,1998,15(14):30-43.
    [23]郭芳,储伟,徐慧远,张涛.采用等离子体强化制备CO2甲烷化用镍基催化剂[J].催化学报,2007,28(5):429-434
    [24]武瑞芳,张因,王永钊等.ZrO2助剂对Ni/SiO2催化剂CO甲烷化催化活性及其吸附性能的影响[J].燃料化学学报,2009,37(5):578-582.
    [25]仲华,徐国林等.二氧化碳甲烷化催化剂的研究Ⅰ活性组分及担载量的选择[J].哈尔滨师范大学自然科学学报,2001,17(6):54-59.
    [26]李丽波,徐国林.二氧化碳甲烷化催化剂制备方法的研究[J].哈尔滨师范大学自然科学学报,2003,19(3):53-56.
    [27]Kustov A L, Frey A M, Larsen K E, et al. CO methanation over supported bimetallic Ni-Fe catalysts:From computational studies towards catalyst optimization [J]. Appl Catal A,2007,320:98-104.
    [28]张成.CO与CO2甲烷化反应研究进展[J].化工进展,2007,26(9):1269-1273.
    [29]Londhe V P, Kamble V S, Gupta N M. Effect of hydrogen reduction on the CO adsorption and methanation reaction over Ru/TiO2 and Ru/Al2O3 catalysts [J]. J Mol CatalA,1997,121(1):33-44.
    [30]Gorke O, Pfeifer P, Schubert K. Highly selective methanation by the use of a microchannel reactor [J]. Catal Today,2005,110(1-2):132-139.
    [31]Li D, Ichikuni N, Shimazu S, et al. Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation [J]. Applied Catalysis A:General,1998,172(2):351-358.
    [32]Jang Qi. Mechanism of CO2 methanantion over Ru/ZrO2 catalyst [J]. Journal of fuel chemistry and technology,2001,29(1):87-90.
    [33]刘静霞,侯文华.CO2还原钌催化剂的研究[J].航天医学与医学工程,2004,17(6):457-460.
    [34]Kingsley D, Randhava S. Methanation of carbon monoxide and carbon dioxide [P] US, 1970,3787468.
    [35]Dagle R A, Wang Y, Xia G G, et al.Selective CO Methanation catalysts for fuel processing applications [J]. Appl Catal A:Gen,2007,326(2):213-218.
    [36]赵瑞兰,彭美生等.Ru/Al2O3催化剂对CO2加氢转化的研究[J].环境科学,1996,17(2):23-25.
    [37]江琦,邓国才,陈荣悌,黄仲涛.二氧化碳甲烷化催化剂研究(Ⅱ)制备条件及助剂对催化剂性能的影响[J].催化学报,1997,18(1):42-45.
    [38]洪琦.Ru、Ni催化剂上CO甲烷化反应的研究[中国硕士学位论文数据库],厦门大学,1999.
    [39]卢红选,秦榜辉等.预处理及反应条件对负载型钌催化剂甲烷化性能的影响[J].2004,29(4):1-4.
    [40]罗来涛,李松军,郭建军.过渡金属对Ru/sepiolite甲烷化催化剂性能的影响[J].催化学报,2002,23(1):85-87.
    [41]易丽丽.负载钌催化剂的二氧化碳加氢性能研究[中国硕士学位论文数据库],浙江工业大学,2004.
    [42]易丽丽,李小年.Ru/C在CO2加氢中碳载体的甲烷化和气化行为的研究[J].石油化工,2004,23增刊:266-267.
    [43]Camilla Galletti, Stefania Specchia, Guido Saracco, et al. CO-selective methanation over Ru/Al2O3 catalysts in H2-rich gas for PEMFC applications [J].Chemical Engineering Science, In Press, Corrected Proof, Available online 23, June,2009
    [44]S A.Hosseini, A.Taeb, F.Feyzi,et al. Fischer-Tropsch synthesis over Ru promoted Co/γ-Al2O3 catalysts in a CSTR [J].Catalysis Communications,2004,5(4):137-143.
    [45]陈喜蓉,邹汉波等.负载型Ru/γ-Al2O3催化剂上富氢气体中CO选择性氧化去除研究[J].应用化工,2008,37(2):135-139.
    [46]Sang-Hoon Song, Sang-Bong Lee, Jong Wook Bae, et al. Influence of Ru segregation on the activity of Ru-Co/y-Al2O3 during FT synthesis:A comparison with that of Ru-Co/SiO2 catalysts [J]. Catalysis Communications.2008,9(13):2282-2286.
    [47]Robert A, Dagle, Yong Wang, et al. Selective CO methanation catalysts for fuel processing applications [J]. Applied Catalysis A:General,2007,326(2):213-218.
    [48]Zbigniew Kowalczyk,Kazimierz Stolecki, Wioletta Rarog-Pilecka,et al. Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios [J]. Applied Catalysis A:General,2008,342(1-2):35-39.
    [49]Darensboug D J, Ovalles C. Catalytic carbon dioxide methanation by alumina-supported mono-and polynuelear ruthenium carbonyls [J].Inorg.Chem,1986,25 (10):1603-1607.
    [50]Yamasaki M, Habazaki H, Yoshida T, et al. Compositional dependence of the CO2 methanation activity of Ni/ZrO2 catalysts prepared from amorphous Ni-Zr alloy precursors[J]. Appl. Catal. A:General,1997,163:187-197.
    [51]Shimamura K, Komori M, Habazaki H, et al. Rapidly quenched and metastable materials,supplement[C]//Proc.9th Int. Conf. Elsevier,Bratislava,1997,254-257.
    [52]Habazaki H, Yoshida T, Yamasaki M, et al. Advances in chemical conversions for mitigating carbon dioxide[C]//Stud. Surf. Sci.Catal,Vol.114,Elsevier,1998,363-367.
    [53]张成.CO与CO2甲烷化反应研究进展[J].化工进展,2007,26(9):1269-1273.
    [54]Ghosh A k, Kydd R A. A fourier transform infrared spectral study of propene reactions on aciditc zeolites [J]. J Catal,1986,100:185-195.
    [55]Hiroshi Takeda, Tory L Walsh, Jon P Wagner. Catalys for the conversion of carbon monoxide [P].US:10/740144,2005.
    [56]Takashi Amano, Atsusshi Takumi, Shugou Zhang, et al. Carbon Monoxide Removing Catalyst and Production Process for the Same as Well as Carbon Monoxide RemovingApparatus[P].US:20060160697 A1,2006
    [57]江琦,邓国才,陈荣悌等.Ⅰ担载型Ⅷ族金属催化剂的性能[J].催化学报,1997,18(1):42-45.
    [58]卢红选,秦榜辉,孙鲲鹏等.负载型钌/铝钛复合载体上的二氧化碳甲烷化反应[J].分子催化,2005,19(1):27-30.
    [59]Van keulen,Arjan Nicolaas Johan, et al. Hydrogen purification [P]. WO:99/15460,2000.
    [60]袁权,吴迪镛,黄彬堕等.常压水煤气甲烷化用活性非均匀布型催化剂及制造方法[P].CN:1041968A,1990-5-9.
    [61]张文胜,戴伟,王秀玲等.新型甲烷化催化剂的研究[J].石油化工,2005,34(增刊):115-116.
    [62]Xavier K O, Sreekala R, Rashid K A, et al.Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation[J]. Catal Today,1999,4(1-3):17-21.
    [63]Lee S C, Jamg J H, Lee BY, et al. J Mol Catal A:Chem,2003,186-273.
    [64]江琦,朱志,臣黄仲涛.华南理工大学学报(自然科学版)[J],1996,24(12):109-114.
    [65]Li D, Ichikuni N, Shimazu S, et al. Hydrogenation of CO2 Over Sprayed Ru/TiO2 Fine Particles and Strong Metal-support Interaction. Appl Catal Gen,1999(180):227-235
    [66].罗来涛,刘文砥,王菊枝.过渡金属对Ru/Al2O3催化剂改性的影响南昌大学学报(理科版)[J].2004,28(3):246-249
    [67]王文灼,胡常伟,陈豫,等.低镍甲烷化催化剂及其制备方法[P].CN 1043639A.1990
    [68]邓庚凤,郭年祥,罗来涛,等.稀土改性镍催化剂对C02甲烷化反应的影响[J].稀土,2002,23(5):18-21
    [69]Choudhury M B I, Shakeel Ahmed, et al. Preferential methanation of CO in a syngas involving CO2 at lower temperature range [J].Appl Catal A:Gen,2006,314(1):47-53
    [70]胡云行,万惠霖,关玉德,等.Ni催化剂上一氧化碳加氢反应机理研究[J].高等学校化学学报,1995,16(8)1289-1291.
    [71]汪海有,刘金波,许金来,等.铑催化合成气制乙醇反应中CO断键途径的研究[J].分子催化[J].J Mol Catal (China) 1994,8(2):111-116.
    [72]McCarty J G, Wise H. Hydrogenation of surface carbon on alumina-supported nickel [J].J Catal,1979,57(3):406-416.
    [73]陈绍谦.一氧化碳甲烷化反应研究[J].化学研究与应用,1998,10(2):154-158.
    [74]Fujita S, Nakamura M,Doi T, et al. Mechanisms of methanation of carbon dioxide and carbon monoxide over nickel/alumina catalysts [J]. Appl Catal A,1993,104(1):87-100.
    [75]Guo XY, Zhong B, Peng SY. Montecarlo simulation to study the kinetics of CO methanation [J]. Chem Phys Lett,1995,233(5-6):580-584.
    [76]Bajusz I G, Goodwin J G Hydrogen and temperature effects on the coverages and activities of surface intermediates during methanation on Ru/SiO2 [J].Jcatal,1997,169 (1):157-165.
    [77]Vander Wiel D P, Pruski M, King T S. A kinetic study on the adsorption and reaction of
    hydrogen over silica-supported ruthenium and silver-ruthenium catalysts using the hydr ogenation of carbon monoxide [J]. J Catal,1999,188(1):186-202.
    [78]Sehested J, Dahl S, Jacobsen J, et al. Methanation of CO over nickel:Mechanism and kinetics at high H2/CO ratios [J]. J Phys Chem B,2005,109(6):2432-2438.
    [79]于兴才.提高甲烷化催化剂活性及延长寿命的探讨[J].黑龙江石油化工,1994(2):19-24.
    [80]邱国华.水煤气部分甲烷化制取城市煤气工艺路线的分析[J].煤气于热力,1994(1):8-11.
    [81]江琦,朱志臣,黄仲涛.负载型钌催化剂对二氧化碳甲烷化的催化性能[J].华南理工大学学报,1996,24(12):109-114.
    [82]吴世华,杨树军,岳铭等.溶剂化金属原子浸渍法制备高分散负载型催化剂—ⅩⅣ.Pd催化剂的表面组成及CO2甲烷化催化性能[J].分子催化,1992,6(2):120-127.
    [83]Bartholomew C H, Pannell R B.The stoichiometry of hydrogen and carbon monoxide chemisorption on alumina and silica-supported nickel[J].J Catal,1980,65(2):390-401.
    [84]Srivastava D N, Perkas N, Seisenbaeva G A, et al. Preparation of porous cobalt and nickel oxides from corresponding alkoxides using a sonochemical technique and its application as a catalyst in the oxidation of hydrocarbons [J]. Ultrasonics Sonochemistry, 2003,10 (1):1-9.
    [85]Guo Jianguang, Li Zhong, Xi Hongxia, et al. Effect of preparation by ultrasound-assisted impregnation on properties of CuO/CeO2/γ-Al2O3catalysts for catalytic combustion of VOCs. Journal of Chemical Industry and Engineering (China),2006,57 (4):815-820.
    [86]Dantsin G, Suslick K S, Adsorption and reactions of butylspecies over Mo2C catalyst.J.Am. Chem.Soc,2000,12 (21):5214
    [87]Yu Fengwen, Ji Jianbin, Huo Chao et al. Effect of ultrasonic frequency on structure of activated carbon and activity of Ru/AC catalyst for ammonia synthesis.Chinese Journal of Catalysis,2006,27(6):511-514.
    [88]Kenneth S. Suslick, Taeghwan Hyeon, Mingming Fang, et al. Cichowlas. Sonochemical synthesis of nanostructured catalysts[J].Materials Science and Engineering A:General. 1995,2004(1/2):186-192.
    [89]T.J.Mason,A.Newman,J.P.Lorimer,et al.Ultrasonically assisted catalytic decomposition of aqueous sodium hypochlorite [J].Ultrasonics Sonochemistry.1996,3(1):53-55.
    [90]Predieri V Moggi P. Fischer-Tropsch synthesis on alumina—supported ruthenium catalysts II:Infulence of morphological factors [J]. Appl Catal A:Gen,1996,139(1):31-42.
    [91]V. Ragaini, R. Carli, C.L. Bianchi, et al. Fischer-Tropsch synthesis on alumina-supported ruthenium catalysts Ⅱ. Influence of morphological factors[J].Applied Catalysis A:General. 1996,139(1/2):31-42
    [92]李新怀,吕小婉,李耀会,等;氯对甲烷化催化剂的危害及解决办法[A];全国气体净化技术协作网2002年技术交流会论文集.[C];2002年
    [93]张淑娟.新型氨合成催化剂的制备及催化性能[D],福建:福州大学,2001.
    [94]Shiflett W K,Dumesic J A,Ind, Eng, Chem. Fundam,1981,20:246-250
    [95]Narita T, Miura H, Ohira M, et al. The effect of reduction temperature on the chemisorptive properties of Ru/Al2O3:Effect of chlorine [J]. Appl. Catal A:General, 1987,32:185-190
    [96]李瑛.以氧化物为载体的钌基氨合成催化剂研究[D],浙江:浙江工业大学,2001.
    [97]梁长海.Ru-M<'n+>/C催化剂上氨合成反应性能研究:助剂和载体的影响[D].大连:中国科学院大连化学物理研究所,2000.
    [98]Shuzo Murata, Ken-Ichi Aika.Removal of chlorine ions from Ru/MgO catalysts for ammonia synthesis [J].Applied Catalysis A:Genera.1992,82(1/2):1-12.
    [99]江琦.担载型钯催化剂对CO2加H2甲烷化反应的催化性能[J],贵金属,1998,19(2):17-22
    [100]石秋杰,陈昭萍,罗来涛等.海泡石对非晶态NiB合金催化剂的改性研究[J],物理化学学报,2000,16(6):501-505.
    [101]王敏炜,罗来涛,李凤仪.镍钥斓甲烷化催化剂催化性能的研究[J],南昌大学学报,1993,15(3-4):63-69.
    [102]伏义路,陆炜杰,黄志刚等。不同载体上硫化的钼催化剂甲烷化反应与低温氧吸附的研究[J],中国科学技术大学学报,1989,19(2):171-176.
    [103]辛勤,梁长海.固体催化剂的研究方法[J],石油化工,2001,30(3):246-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700