复合中空微球的制备、改性与药物缓释性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机中空微球具有结构稳定,空腔和孔道尺寸可调控和表面易于修饰等优点,在药物缓控释方面有良好的应用前景。但是,单一壳层的中空微球在结构和表面改性方面存在一定不足,难以满足不同药物在载入、储存和释放时不同的要求。本文制备了具有复合结构的TiO2/SiO2中空微球,并针对壳层材料不同,选择性的对内层TiO2进行各种改性,考察了它们在药物缓释上的应用。同时,通过对CaCO3/SiO2核壳微球的选择性改性,对相关结论作了进一步验证。
     1.以共聚物微球为模板,制备了TiO2/SiO2复合中空微球。电镜和氮气吸附/脱附结果表明,其具有完整的球形空腔和多孔的壳层孔道结构,孔径分布良好。
     2.分别采用硬脂酸和无机磷酸盐对复合中空微球内层的TiO2进行疏水和亲水改性。以脂溶性药物布洛芬为对象,考察了不同改性基团对载药量及释药速率的影响,结果表明:硬脂酸改性的中空微球内表面疏水,具有萃取、浓缩作用,可以增大载药量(189.8 mg/g),同时降低释药速率;而磷酸改性的中空微球内表面亲水,且由于电荷排斥,药物释放加快,同时载药量减少(153.5 mg/g)。
     3.利用TiO2对卵磷脂(PC)的化学吸附作用,对TiO2/SiO2复合中空微球的内层进行了选择性改性。研究表明,由于疏水长链的引入,改性后的微球载药量增大,释药速率减慢。实验结果还表明,当采用高浓度的PC,同时加入胆固醇时,体系的释药速率进一步减缓。推测其机理,除了疏水作用外,较大浓度的PC可能在中空微球内形成了一定数量的脂质体囊泡。
     4.为深入探讨选择性改性对缓释性能的影响,制备了CaCO3/SiO2核壳微球,分别采用硬脂酸和无机磷酸盐对其内核CaCO3进行了选择性改性,考察了三种体系对脂溶性药物布洛芬和水溶性药物心得安的释放机理。对于布洛芬:由于电荷排斥,无机磷酸改性体系释放速率最快;由于COO与CaCO3存在化学吸附,未改性体系释放速率最慢。对于心得安:由于无机磷酸改性后对药物的碱性基团具有较强化学吸附,该体系释放速率最慢;未改性体系释放速率最快,其释放主要受扩散控制。由于硬脂酸改性的体系对有机药物存在萃取、浓缩作用,但疏水作用较化学吸附弱,该体系对两种药物的释放速率居中。
     因此,制备双层结构的中空和核壳微球,并进行选择性改性,可以使载体既具有和环境相容的外表面,又具有适合药物储存的内部微环境,同时还可以实现对载药量及药物释放速率的有效调控。
Inorganic hollow spheres are promising for controlled and sustained drug release applications due to their characteristics such as high structure stability, controlled morphologies, adjustable pore size, facile surface modification. Recently, more and more research groups have reported drug delivery vehicles based on hollow spheres with single shell material. However, the desirable loading, storage and release environment of various drugs is widely divergent from each other. Obviously, single shell spheres, even if a modification is processed, could hardly meet the complicated demands, since it has only one shell and as a result every modification takes place on the whole shell. Therefore, hollow and core-shell spheres with composite structure, which have advantages in selective modification due to their distinctive properties of inner and outer materials, are synthesized in this paper. Herein, their drug loading amounts and release behaviors, for both unmodified and modified systems have been investigated.
     1. Using spherical P(St-co-AA) particles as templates, TiO2/SiO2 composite hollow spheres(CHSs) have been successfully synthesized via sol-gel method. Their hollow and porous structures were confirmed by transmission electron microscope (TEM) and N2 sorption analysis. Furthermore, they are highly intact and have suitable pore size distribution.
     2. The inner layers of the CHSs were selectively modified with stearic acid and phosphate. Using water-insoluble ibuprofen (IBU) as a model drug, the investigation of drug loading amounts and release rates of the CHSs shows that they can be regulated by suitable modification. Compare with the unmodified system, the stearic acid modified CHSs exhibit higher drug loading amount(189.8 mg/g) and lower release rate due to the hydrophobic effect. However, the phosphate modified CHSs exhibit relatively low drug loading amount (153.5 mg/g) and increased release rate, probably associated to the hydrophilic shell and charge repulsion.
     3. TiO2 can facilely form stable hydrophobic layers by Lewis acid-base interaction with phosphatidylcholine(PC). The CHSs were selectively modified with PC. Studies demonstrate that, due to the introduction of the hydrophobic chains, the system shows higher drug loading amount and lower release rate than that of the unmodified system. More importantly, when modified with high concentration of PC in the existence of cholesterol, the release rate of the system decreased further, it could attribute to the formation of liposome vesicles in the cavities and pore channels.
     4. For further study the effect of the selective modification on drug release, CaCO3/SiO2 core-shell spheres have been synthesized. Using water-insoluble ibuprofen and water-soluble propranolol hydrochloride as two kinds of model drugs, the investigation of drug release rates for the CaCO3/SiO2 core-shell spheres shows that they can be regulated by suitable modification. For ibuprofen, the phosphate modified spheres (NaP-CaCO3/SiO2) exhibit the fastest release rate due to the charge repulsion, whereas the unmodified spheres(CaCO3/SiO2) exhibit the slowest release rate due to the chemical adsorption between COO- and CaCO3. For propranolol hydrochloride, NaP-CaCO3/SiO2 system shows the best sustained release behavior, attributed to the chemical adsorption between-NH and PO43-, whereas the unmodified system underwent the fastest release stage. In addition, the stearic acid modified interior can serve as smart nanophase extractor to capture and concentrate organic drug molecules from the aqueous release medium. Since hydrophobic effect is weaker than chemical adsorption, the stearic acid modified system shows sustained release behavior between CaCO3/SiO2 and NaP-CaCO3/SiO2.
     Composite hollow and core-shell spheres have distinct inner and outer surface that can be modified differently depending on their roles to obtain adjustable drug loading amounts and release rates, drug-friendly interiors and environment-friendly exteriors. Therefore, they are potential for drug delivery applications.
引文
[1]Allen T M, Cullis P R. Drug Delivery Systems:Entering the Mainstream[J]. Science,2004, 303(5665):1818-1822.
    [2]王建华,陈慧云,杨永.口服缓/控释药物制剂技术研究进展[J].药学专论,2005,14(8):14-15.
    [3]Muschert S, Siepmann F, Siepmann J, et al. Drug Release Mechanisms from Ethylcellulose: PVA-PEG Graft Copolymer-Coated Pellets[J]. European Journal of Pharmaceutics and Biopharmaceutics,2009,72(1):130-137.
    [4]曲凤玉.药物分子在介孔分子筛中的组装、自组装及缓/控释研究[D].吉林大学博士学位论文.2006.
    [5]Aerts C A, Verraedt E, Mellaerts R, et al. Tunability of Pore Diameter and Particle Size of Amorphous Microporous Silica for Diffusive Controlled Release of Drug Compounds[J]. J. Phys. Chem. C,2007,111(36):13404-13409.
    [6]张灵芝,常英姿,李夏,等.脂质体制备及其在生物医学中的应用[J].北京:北京医科大学出版社,1998:18-32.
    [7]平其能.现代药剂学[J].北京:中国医药科技出版社,1998:818-819.
    [8]郭艳玲,冯玉梅.作为抗癌药物载体的高分子研究进展[J].2004,19(3):11-15.
    [9]Yokoyama M, Kataoka K, Inoue S, et al. Polymer Micelles as Novel Drug Carrier: Adriamycin-Conjugated Poly(ethylene glycol)-Poly(aspartic acid) Block Copolymer[J]. Journal of Controlled Release,1990,11(1-3):269-178.
    [10]Zhou R X, Du B, Lu Z R. In Vitro Release of 5-Fluorouracil with Cyclic Core Dendritic Polymer[J]. Journal of Controlled Release,1999,57 (3):249-257.
    [11]Zhu Y F, Shi J L, Chen H R, et al. A facile Method to Synthesize Novel Hollow Mesoporous Silica Spheres and Advanced Storage Property [J]. Microporous and Mesoporous Materials, 2005,84(1-3):218-222.
    [12]Song S W, Hidajak K, Kawi S. Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery:Influence of Surface Properties on Matrix-Drug Interactions[J]. Langmuir, 2005,21(21):9568-9575.
    [13]Li X, Zhang L X, Dong X P, et al. Preparation of Mesoporous Calcium Doped Silica Spheres with Narrow Size Dispersion and Their Drug Loading and Degradation Behavior[J]. Microporous and Mesoporous Materials,2007,102 (1-3):151-158.
    [14]Izquierdo B I, Marit N A, Doadrio A L, et al. Release Evaluation of Drugs from Ordered Tridimensional Silica Structures[J]. Eur. J. Pharm. Sci.,2005,26:365-373.
    [15]Anderson J, Rosenholm J, Areva S, et al. Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro-and Mesoporous Silica Matrices[J].
    Chem. Mater.,2004,16(21):4160-4167.
    [16]Heikkila T, Salonen J, Tuura J, et al. Mesoporous Silica Material TUD-1 as a Drug Delivery System[J]. Int. J. Pharm.,2007,331(1):133-138.
    [17]Juan L, Vivero E, Lin V S, et al. Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere[J]. J. Am. Chem. Soc.,2009,131(10):3462-3463.
    [18]Lai C Y, Trewyn B G, Lin V S, et al. A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules[J]. J. Am. Chem. Soc.,2003,125(15): 4451-4459.
    [19]Mal N K, Fujiwara M, Tanaka Y. Photocontrolled Reversible Release of Guest Molecules from Coumarin-Modified Mesoporous Silica[J]. Nature[J],2003,421(23):350-353.
    [20]Nguyen T D, Ken C F, Liong M, et al. Construction of a pH-Driven Supramolecular Nanovalve[J]. Org. Lett[J],2006,8(15):3363-3366.
    [21]Nguyen T D, Liu Y, Saha S, et al. Design and Optimization of Molecular Nanovalves Based on Redox-Switchable Bistable Rotaxanes[J]. J. Am. Chem. Soc.,2007,129(3):626-634.
    [22]Ken C F, Nguyen T D, Stoddart J F, et al. Supramolecular Nanovalves Controlled by Proton Abstraction and Competitive Binding[J]. Chem. Mater.[J],2006,15(25):5919-5928.
    [23]王玉丽,高春生.无机中空纳米粒子与纳米管在药物/基因递送中的应用[J].国际药学研究杂志,2008,35(2):142-144.
    [24]Son J S, Xia B, Sang B L. Inorganic Hollow Nanoparticles and Nanotubes in Nanomedicine[J]. Drug Discovery Today,2007,12, (15-16):650-656.
    [25]Wu W, Benincasa M, Bianco A, et al. Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes[J]. Angew. Chem. Int. Ed.,2005,44(39): 6358-6362.
    [26]Chen C C, Liu Y C, Wu Y C, et al. Preparation of Fluorescent Silica Nanotubes and Their Application in Gene Delivery[J]. Adv. Mater.,2005,17(4):404-407.
    [27]Song Y Y, Stein F S, Bauer S, et al. Amphiphilic TiO2 Nanotube Arrays:An Actively Controllable Drug Delivery System[J]. J. Am. Chem. Soc.,2009,131(12):4230-4232.
    [28]Schartl W. Crosslinked Spherical Nanoparticles with Core-Shell Topology[J]. Adv Mater, 2001,12(24):1899-1908.
    [29]张艳萍.以聚苯乙烯微球为模板合成功能性核壳材料[D].东北师范大学硕士学位论文.2007.
    [30]Zhu Y F, Shi J L. A Mesoporous Core-Shell Structure for pH-Controlled Storage and Release of Water-Soluble Drug[J]. Microporous and Mesoporous Materials,2007,103(1-3):243-249.
    [31]Deng Y H, Yang W L, Fu S K, et al. A Novel Approach for Preparation of Thermoresponsive Polymer Magnetic Microspheres with Core-Shell Structrue[J]. Adv. Mater.,2003,15(20):
    1729-1732.
    [32]Zhao W R, Gu J L, Shi J L, et al. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure[J]. J. Am. Chem. Soc.,2005, 127(25):8916-8917.
    [33]Yang PP, Quan Z, Lin J, et al. A Magnetic, luminescent and Mesopbrous Core-Shell Structured Composite Material as Drug Carrier[J]. Biomaterials,2009,30(27):4786-4795.
    [34]Cai Y, Pan H H, Xu X, et al. Ultrasonic Controlled Morphology Transformation of Hollow Calcium Phosphate Nanospheres:A Smart and Biocompatible Drug Release System[J]. Chem. Mater.,2007,19 (13):3081-3083.
    [35]李亮,朱英杰,马明燕,等.碳酸钙纳米结构多孔空心微球的制备及其药物缓释性能研究[J].无机材料学报,2009,24(1):166-170.
    [36]Wei W, Ma G H, Shen Z Y, et al. Preparation of Hierarchical Hollow CaCO3 Particles and the Application as Anticancer Drug Carrier[J]. J. Am. Chem. Soc.,2008,130(47):15808-15810.
    [37]Zhu Y F, Shi J L, Li Y S, et al. Stimuli-Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core-Shell Structure[J]. Angew. Chem., 2005,117(32):5213-5217.
    [38]Li Z Z, Wen L X, Chen J F, et al. Fabrication of Porous Hollow Silica Nanoparticles and Their Applications in Drug Release Control[J]. Journal of Controlled Release,2004,98(2): 245-254.
    [39]毕野.介孔中空材料的制备与缓释性能研究[D].吉林大学硕士学位论文.2007.
    [40]Li Z Z, Xu S A, Chen J F, et al. Controlled Release of Avermectin from Porous Hollow Silica Nanoparticles:Influence of Shell Thickness on Loading Efficiency, UV-Shielding Property and Release[J]. Journal of Controlled Release,2006,111(1-2):81-88.
    [41]Pei A H, Shen Z W, Yang G S. Preparation of TiO2 Nanocapsules for Loading and Release of Antimicrobial Triclosan Molecules[J]. Materials Letters,2007,61(13):2757-2760.
    [42]Cheng K, Peng S, Sun S H, et al. Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin[J]. J. Am. Chem. Soc.,2009,131(30):10637-10644.
    [43]Cao S W, Zhu Y J, Ma M Y, et al. Hierarchically Nanostructured Magnetic Hollow Spheres of Fe3O4 and γ-Fe2O3:Preparation and Potential Application in Drug Delivery[J]. J. Phys. Chem. C,2008,112(6):1851-1856.
    [44]Liu Y, Miyoshi H, Nakamurac M. Novel Drug Delivery System of Hollow Mesoporous Silica Nanocapsules with Thin Shells:Preparation and Fluorescein Isothiocyanate (FITC) Release Kinetics[J]. Colloids Surf., B,2007,58(2):180-187.
    [45]Du L, Liao S J, Zink J I, et al. Controlled-Access Hollow Mechanized Silica Nanocontainers[J]. J. Am. Chem. Soc.,2009,131(42):15136-15142.
    [46]Wu X D, Wang D, Yang S R. Preparation and Characterization of Stearate-Capped Titanium Dioxide Nanoparticles[J]. J. Colloid Interface Sci.,2000,222(1):37-40.
    [47]Gawalt E S, Avaltroni M J, Koch N, et al. Self-Assembly and Bonding of Alkanephosphonic Acids on the Native Oxide Surface ofTitanium[J]. Langmuir,2001,17(19):5736-5738.
    [48]姚礼峰,石燕,张联盟,等.TiO2/SiO2复合中空微球的选择性改性与药物缓释性能研究[J].无机材料学报,2010,25(2):201-205.
    [49]Schafer W A, Carr P W. Chromatographic Characterization of a Phosphate-Modified Zirconia Support for Bio-Chromatographic Applications[J]. J. Chromatogr.1991,587(22): 149-160.
    [50]高濂,陈锦元,黄军华等.醇盐水解法制备纳米二氧化钛粉体[J].无机材料学报,1995,10(4):423-427.
    [51]Chen S L, Dong P, Yang G H, et al. Kinetics of Formation of Monodisperse Colloidal Silica Particles through the Hydrolysis and Condensation of Tetraethylorthosilicate[J]. Ind. Eng. Chem. Res.1996,35(12):4487-4493.
    [52]程新建.PMMA/SiO2有机-无机复合粒子及无机空心球的制备与表征[D].复旦大学博士学位论文.2007.
    [53]Yuan J J, Zhou S X, Wu L M, et al. Organic Pigment Particles Coated with Colloidal Nano-Silica Particles via Layer-by-Layer Assembly [J]. Chem. Mater.2005,17(14): 3587-3594.
    [54]符远翔,孙艳辉,葛杏心.单分散纳米二氧化硅的制备与表征[J].硅酸盐通报,2008,27(1): 154-159.
    [55]Aerts C A, Verraedt E, Mellaerts R, et al. Tunability of Pore Diameter and Particle Size of Amorphous Microporous Silica for Diffusive Controlled Release of Drug Compounds[J]. J. Phys. Chem. C 2007,111(36):13404-13409.
    [56]Regi M V, Ramila A, Pariente J P, et al. A New Property of MCM-41:Drug Delivery System[J]. Chem. Mater.2001,13(2):308-311.
    [57]Zhu Y F, Shi J L, Li Y S, et al. Storage and Release of Ibuprofen Drug Molecules in Hollow Mesoporous Silica Spheres with Modified Pore Surface[J]. Microporous Mesoporous Mater. 2005,85(1-2):75-81.
    [58]Krsi L, Papp S, Bertti I, et al. Surface and Bulk Composition, Structure, and Photocatalytic Activity of Phosphate-Modified TiO2[J]. Chem. Mater.,2007,19 (19):4811-4819.
    [59]Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds[J]. New York:Wiley,1978:85.
    [60]张蕤,胡源,宋磊,等.层状化合物α-磷酸钛的水热合成与表征[J].稀有金属材料与工程,2001,30(5):384-387.
    [61]Mitchell D T, Lee S B, Martin C R. Smart Nanotubes for Bioseparations and Biocatalysis[J], J. Am. Chem. Soc.2002,124 (40):11864-11865.
    [62]Son S J, Reichel J, Lee S B, et al. Magnetic Nanotubes for Magnetic-field-assisted Bioseparation, Biointeraction, and Drug Delivery[J]. J. Am. Chem. Soc.2005,
    127(20):7316-7317.
    [63]Jeong J M, Chung Y C, Hwang J H. Enhanced Adjuvantic Property of Polymerized Liposome as Compared to a Phospholipid Liposome[J]. Journal of Biotechnology,2002,94: 255-263.
    [64]Wu G H, Mikhailovsky A, Khant H A, et al. Remotely Triggered Liposome Release by Near-Infrared Light Absorption via Hollow Gold Nanoshells[J]. J. Am. Chem. Soc,2008, 130:8175-8177.
    [65]Munoz B, Ramila A, Pariente J P, et al. MCM-41 Organic Modification as Drug Delivery Rate Regulator[J]. Chem. Mater,2003,15:500-503.
    [66]Severac F B, Guerrero G, Maquet J, et al. High-Field O MAS NMR Investigation of Phosphonic Acid Monolayers on Titania[J]. Chem. Mater.,2008,20 (16):5191-5196.
    [67]Jiang C, Gamarnik A, Tripp C P. Identification of Lipid Aggregate Structures on TiO2 Surface Using Headgroup IR Bands[J]. J Phys Chem B.2005,109(10):4539-4544.
    [68]Rossetti F F, Bally M, Michel R, et al. Interactions between Titanium Dioxide and Phosphatidyl Serine-Containing Liposomes:Formation and Patterning of Supported Phospholipid Bilayers on the Surface of a Medically Relevant Material[J]. Langmuir,2005, 21 (14):6443-6450.
    [69]Fortunelli A, Monti S. Simulations of Lipid Adsorption on TiO2 Surfaces in Solution[J]. Langmuir,2008,24 (18),10145-10154.
    [70]舒均杰.纳米碳酸钙表面改性及其机理的研究[D].湘潭大学硕士学位论文.2007.
    [71]Zhao Q, Zhang S, Tong W, et al. Polyelectrolyte Microcapsules Templated on Poly(styrene sulfonate)-Doped CaCO3 Particles for Loading and Sustained Release of Daunorubicin and Doxorubicin[J]. Eur. Polym. J 2006,42(12):3341-3351.
    [72]王勇,赵风云,胡永琪,等.晶型控制剂对沉淀碳酸钙晶型、形态的影响[J].无机盐工业,2006,38(3):5-8.
    [73]Sukhorukov G B, Volodkin D V, Mohwald H, et al. Porous Calcium Carbonate Microparticles as Templates for Encapsulation of Bioactive Compounds[J]. J. Mater. Chem., 2004,14(14):2073-2081.
    [74]Han Y S, Jeong G Y, Lee S Y, et al. Synthesis of Cubic Type Hollow Silica Particles [J]. Materials Letters,2009,63(15):1278-1280.
    [75]王德平,王璐,黄文旵.pH值对化学沉淀法制备纳米羟基磷灰石的影响[J].同济大学学报,2005,33(1):93-98.
    [76]张文龙,刘燕燕,李永绣,等.碳酸钙磷酸化工艺制备多孔球形羟基磷灰石[J].过程工程学报,2006,6(1):37-41.
    [77]刘莹,赵旭,潘琰,等.简单方法制备羟基磷灰石中空微球[J].物理化学学报,2009,25(7):1467-1471.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700