利用静电纺丝技术构建双组份药物缓释纳米组织工程支架
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程是一门将材料科学和细胞生物学相结合的新兴交叉学科。通过将种子细胞种植在仿生支架后在体外培养增殖而形成新组织取代原受损组织,达到修复和重建原组织结构和功能的目的。而在其中,制备具有一定生物学相容性的组织工程支架是组织工程中一个重要的研究方向。
     静电纺丝是一种借助于静电场作用对聚合物溶液或熔体进行纺丝,是一种制备超细纤维的方法,成本低廉、简单易行。近十几年来,电纺丝技术在理论研究和实验参数研究等方面取得了不小的进展。尤其在生物医药领域,电纺丝超细纤维可广泛用作组织工程支架、药物传输与控制释放的载体等,这也是国际上的一个研究热点。
     本实验利用静电纺丝技术,将传统意义上的两种载体结合在一起,构建了能够同时负载两种药物并分别缓释的双组份复合载体。通过多种实验技术检测双组份载体的物理化学性质。并通过负载两种模式药物的双组份载体的缓释曲线,研究双组份载体放入药物缓释机理。最后利用双组份载体与细胞的粘附增殖实验检测载体的细胞亲和性和组织相容性,以探讨该类型放入药物释放体系在临床上的潜在应用。
     实验结果表明:制得的双组份缓释载体表面和内壁负载纳米粒,造成表面有突起和凹凸不平的结构。在内部化学结构上,没有观察到两种载体的化学键结合和特殊晶体结构的形成。亲水性良好,极大的增强了细胞的粘附效果和亲和性。缓释实验证明双组份载体系统中的两种载体各自释放,有效的促进了缓释效果。尤其对于纳米粒释放的效果改进最为明显,延长了释放时间,减小了突释效应。对于实验中用到的三种细胞,双组份载体系统都表现出优良的粘附效应和亲和性,甚至对于特定种类细胞有诱导细胞径向生长的效果,因此在临床上具有潜在应用前景。
     可以预见,随着研究的进一步深入,这样的双组份缓释载体系统凭借其能够同时缓释多种药物的优点和良好的细胞相容性,必然在今后的组织工程支架的研究和临床应用中具有巨大的价值。
Tissue engineering (TE) is one of the new interdisciplinary fields which combined biology and material science. The aim is to reestablish human tissue and its function by planting scaffolds with functional cells incorporated into the damaged position. Among which, fabricating tissue engineering scaffolds with great biocompatibility become an important research direction.
     Electrospinning is a process that produces polymer fibers under the action of an external electric field imposed on a polymer solution or melt. Electrospinning technology is a simple and cost-effective method to prepare ultrafine fibers. In the past decades, significant progresses were achieved on theoretical and experimental studies. Especially, in biomedical fields, ultrafine fibers prepared by elelctrospinning have been widely used in tissue engineering scaffolds, drug delivery system, which has attracted more and more attentions in the world.
     Two traditional drug carriers were combined by electrospinning to form a dual-drug composite carrier system which carries two different drugs at one time and release them separately. The physicochemical characteristics of the dual-drug system were assessed by using different methods, the release profiles were then studied and the release mechanism was analyzed after loading and releasing two modal drugs in each carrier of the system.In addition , the adhesion and proliferation of resulting releasing system on different cells were investigated by detecting the biocompatibility and cytocompatibility of the system. Their potential clinical applications were discussed.
     The results showed that the nanoparticles were distributed on the surface and internal wall of the nanofibers, which lead the rough fiber surface with sags and crests. No new chemical bond and special crystal structures were observed according to their chemical structures.These resulting releasing system exhibited improved cell adhesion and proliferation due to their good hydrophilcity. The releasing experiments demonstrated the drugs released from each control-release carrier in the dual-drug system separately, which tremendously improved the release efficiency of different drugs. Especially for nanopaticles releasing, release duration was enlarged in a wide range, and the burst releasing or another word-dumping was restrained effectively. Furthermore, three kinds of cells adhered and proliferated very well in the dual-drug releasing mats, the mats have also a capability to induce cells grow in a radial direction, which make it possible to develop thus dual-drug system for clinical application.
     Predictably, as the studies goes on, such dual-drug controlled releasing system will be playing a significant role in future scientific researches and clinical applications, thanks to its characteristic in releasing several drugs separately at one time and great biocompatibility.
引文
[1]Langer R,Vacanti JP.Tissue Engineering[J].Science,1993,260(5110):920-926.
    [2]阮建明,邹俭鹏,黄伯云.生物材料学[M].北京:科学出版社,2004,49-51.
    [3]俞耀庭,张兴栋.生物医用材料[M].天津:天津大学出版社,2000,75-76.
    [4]Zandonella C.Tissue engineering:The beat goes on[J].Nature,2003,421(6926):884-886.
    [5]Griffith LG,Naughton G.Tissue engineering-current challenges and expanding opportunities[J].Science,2002,295(5557):1009-1014.
    [6]Williams DF.Materials Science and Technology Vol 14:Medical and Dental Materials[M].Weinheim,New York,Basel,Cambridge:VCH,1992,179-208.
    [7]Lannutti J,Reneker D,Ma T,et al.Electrospinning for tissue engineering scaffolds[J].Materials Science and Engineering:C,2007,27(3):504-509.
    [8]Agrawal CM,Ray RB.Biodegradable polymeric scaffolds for musculoskeletal tissue engineering[J].Journal of Biomedical Materials Research,2001,55(2):141-150.
    [9]Reignier J,Huneault MA.Preparation of interconnected poly(ε-caprolactone)porous scaffolds by a combination of polymer and salt particulate leaching[J].Polymer,2006(47):4703-4717.
    [10]Yang F,Murugan R,Ramakrishna S,et al.Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering[J].Biomaterials,2004,25(10):1891-1900.
    [11]Walsh D,Furuzono T,Tanaka J.Preparation of porous composite implant materials by in situ polymerization of porous apatite containing ε-caprolactone or methyl methacrylate[J].Biomaterials,2001,22(11):1205-1212.
    [12]Wang T,Wang N,Li TFU,et al.Freeze drying of double emulsions to Prepare topotecan-entrapping liposomes featuring controlled release[J].Drug Development and Industrial Pharmacy,2008,34(4):427-433.
    [13]Kraitzer A,Ofek L,Schreiber R,et al.Long-tern invitro study of paclitaxel-eluting bioresorbable core/shell fiber structures[J].Journal of Controlled release,2008,126(2):139-148.
    [14]Harris LD,Kim BS,Mooney DJ.Open pore biodegradable matrices formed with gas foaming[J].Journal of Biomedical Materials Research,1998,42(3):396-402.
    [15]何创龙,夏烈文,罗彦凤等.快速成形技术在骨组织工程领域的应用进展[J].生物医学工程学杂志,2004,21(5):871-875.
    [16]Silva GA,Czeisler C,Niece KL,et al.Selective differentiation of neural progenitor cells by high-epitope density nanofibers[J].Science,2004,303(27):1352-1355.
    [17] Park JS,Han TH,Lee KY,et al. N-acetyl histidine-conjugated glycol chitosan self- assembled nanoparticles for intracytoplasmic delivery of drugs: Endocytosis, exocytosis and drug release[J]. Journal of Controlled release,2006,115(1):37-45.
    [18] Loscertales IG,Barrero A,Guerrero I,et al. Micro/Nano encapsulation via electrified coaxial liquid jets[J]. Science,2002,295(5560):1695-1698.
    [19] Huang ZM,Zhang YZ,Kotaki M,et al. A review on polymer nanofibers by electrospinning applications in nanocomposites[J]. Composites Science and Technology,2003,63(15):2223-2253.
    [20] Li D, Xia Y. Direct fabrication of composite and ceramaic hollow nanofibers by electrospinning[J]. Nano Letter,2004,4(5):933-938.
    [21] Zeng J,Yang L,Liang Q,et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation[J]. Journal of Controlled release,2005,105(1-2):43-51.
    [22] Formhals A. Process and apparatus for preparing artificial threads[P]. U.S.Patent, 1975504,1934.
    
    [23] Formhals A. Production of artificial fibers[P]. U.S. Patent, 2077373,1937.
    [24] Formhals A. Method and apparatus for the production of artificial fibers[P]. U.S.Patent,2158416,1939.
    
    [25] Formhals A. Method and apparatus for spinning[P]. U.S. Patent,2160962,1939.
    [26] Formhals A. Artificial thread and method of producing same[P]. U.S.Patent, 2187306,1940.
    
    [27] Formhals A.U.S. Patent,2349950,1944.
    [28] Vonnegut B,Neubauer RL. Production of Monodisperse Liquid Particles by Electrical Atomization[J]. Journal of Colloid Science,1952,7(6):616-622.
    [29] Simons HL. Process and apparatus for producing patterned non-woven fabrics[P]. U.S.Patent,3280229,1966.
    [30] Baumgarten PK. Electrostatic spinning of acrylic microfibers[J]. Journal of Colloid and Interface Science, 1971,36(1):71-79.
    [31] Larrondo L,Manley RST. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties[J]. Journal of Polymer Science Polymer Physics Edition, 1981,19(6):909-920.
    [32] Larrondo L,Manley RST. Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet[J]. Journal of Polymer Science Polymer Physics Edition, 1981,19(6):921 -932.
    [33] Larrondo L,Manley RST. Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt[J]. Journal of Polymer Science Polymer Physics Edition,1981,19(6):933-940.
    [34] Doshi J,Reneker DH. Electrospinning process and application of electrospun fibers[J]. Journal of Electrostatics,1995,35:1698-1703.
    [35]Teo WE,Ramakrishna S.A review on electrospinning design and nanofibre assembies[J].Nanotechnolgy,2006,17(14):89-106.
    [36]Reneker DH,Chun I.Nanometer diameter fibers of polymer produced by electrospinning[J].Nanotechnology,1996,7(3):216.
    [37]Talyor GI.Disintegration of water drops in an electric field[J].Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences,1964.280(1382):383-397.
    [38]Jarusuwannapoom T,Hongrojjanawiwat W,Jitjaicham S,et al.Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers[J].European Polymer Journal,2005,41(3):409-421.
    [39]Demir MM,Yilgor I,Yilgor E,et al.Electrospinning of polyurethane fibers[J].Polymer,2002,43(11):3303-3309.
    [40]张冬.靶向幻释聚丙交酯微球[D].黑龙江大学学位论文,2005.
    [41]Minotti G,Menna P,Salvatorelli E.Anthracyclines:mo-lecular advances and pharmacologic developments in antitumor activity and cardiotoxicity[J].Pharmacolgical Reviews,2004,56(2):185-229.
    [42]Schiraldi C,Dagostino A,Oliva A,et al.Development of composite materials based on hydroxyethylmethacrylae as supports for improving cell adhesion and proliferatin[J].Biomaterials,2004,25(17):3645-3653.
    [43]Meng FT,Ma GH,Qiu W,et al.W/O/W double emulsion technique using ethyl acetate as organic solvent:effects of its diffusion rate on the characteristics of microparticles[J].Journal of Controlled Rlease,2003,91(3):407-416.
    [44]2 ChP(中国药典)[M].1995,Vol Ⅱ(二部):580.
    [45]Cornelius CJ,Marand E.Hybrid silica-polyimide composite membranes:gas transport properties[J].Journal of Membrane Science,2002,202(2):97-118.
    [46]Bandyopadhyay A,Bhowmick AK,Sarka MDR.Synthesis and characterization of acrylic rubber/silica hybrid composites prepared by sol-gel technique[J].Journal of Applied Polymer Science,2004,93(6):2579-2589.
    [47]Bessa PC,Calsal M,Reis RL.Bone morphogenetic proteins in tissue engineering:the road from laboratory to clinic,part Ⅱ(BMP delivery)[J].Journal of Tissue Engineering Regenerative Medicine,2008,2(2-3):81-96.
    [48]Bhattarai N,Edmondson D,VeisehO,et al.Electrospun chitosan-based nanofibers and their cellular compatibility[J].Biomaterials,2005,26(31):6176-6184.
    [49]贾文娟.药物缓释微球的制备、表征及性能研究[D].四川大学硕士学位论文,2007.
    [50]Kenawy ER,Bowlin GL,Mansfield K,et al.Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate),poly(lactic acid),and a blend[J].Journal of Controlled Release,2002,81(1-2):57-64.
    [51]Luu YK,Kim K,Hsiao BS,et al.Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers[J].Journal of Controlled Release,2003,89(2):341-353.
    [52]Zong X,Kim K,Fang D,et al.Structure and process relationship of electrospun bioabsorbable nanofiber membranes[J].Polymer,2002,43(16):4403-4412.
    [53]Chen F,Li X,Mo X,et al.Electrospun Chitosan-(PLLA-CL) nanofibers for Biomimetic Extracellular Marix[J].Journal of Biomaterials Science:Polymer Edition,2008,19(5):677-691.
    [54]Pan J,Feng S.Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamine E TPGS nanoparticles[J].Biomaterials,2008,29(17):2663-2672.
    [55]Zussman E,Yarin AL,Weihs D.A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats[J].Experiments in Fluids,2002,33(2):315-320.
    [56]He C,Huang Z,Han X,et al.Coaxial electrospun Poly(L-lactic Acid) Ultrafine Fibers for Sustained Drug Delivery[J].Journal of macromolecular science:Physics,2006,45(4):515-524.
    [57]Torrance,C.J.,et al.,Combinatorial chemoprevention of intestinal neoplasia.Nature Medicine,2000.6(9):p.1024-1028.
    [58]Goss,P.E.et.al Efficacy of letrozole extended adjuvant therapy according to estrogen receptor and progesterone receptor status of the primary tumor:National Cancer Institute of Canada Clinical Trials Group MA.17[3].Journal of Clinical Ontology,2007,25(15):2006-2011。
    [59]李洪波,王常勇,江红,微囊技术在生物医学中应用的研究进展[J].
    [60]解放军医学杂志,2006,1(31):83-84
    何淑兰,尹玉姬,张敏,姚康德,组织工程用海藻酸盐水凝胶的研究进展[J].化工进展,2004,23(11):1174-1178
    [61]Clinton L.Deckert,Poway,Calif.Controller for a dual drug delivery system.US patent No.4,533,347。
    [62]Byrne,R.Lijima,R.Mehilli,J.Pache,J.Schulz,S.Schomig,A.Kastrati,A.Treatment of Paclitaxel-Eluting Stent Restenosis With Sirolimus-Eluting Stent Implantation - Angiographic and Clinical Outcomes[J].Revista Espanola De Cardiologia,2008,61(11):1134-1139
    [63]Sun-Jung Song,Kyoung Seok Kim,Yu Jeong Park,Myung Ho Jeong,Yeong-Mu Kod and Dong Lyun Cho.Preparation of a dual-drug-eluting stent by grafting of ALA with abciximab on a bare metal stent[J].Journal of Materials Chemistry 2009,19,8135-8141.
    [64]Wilcox,J.N.Melder,R.J.Udipi,K.Hezi-Yamit,A.Potential Role of Polymer Biocompatibility in Late Stent Thrombosis[J].American Journal of Cardiology. 2008,102(8A),166Ⅰ-166Ⅰ
    [65]Zou Y,Fu H,Ghosh S,et al.Antitumor activity of hydrophilic Paclitaxel copolymer prodrug using locoregional delivery in human orthotopic non-small cell lung cancer xenograft.models[J].Clinical cancer research:an official journal of the American Association for Cancer Research,2004,10(20):7382-7391.
    [66]Patit YB,Toti US,Khdair A,et al.Single-step surface functionalization of polymeric nanoparticles for targeted drag delivery[J].Biomaterials,2009,30(5):859-866.
    [67]Jiang H,Hu Y,LiY,et al.A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents[J].Journal of Controlled Release,2005,108(2-3):237-243.
    [68]Xie J,Wang C.Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 giloma in vitro[J].Pharmaceutical Research,2006,23(8):1817-1828.
    [69]Ranganath SH,Wang C.Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma[J].Biomaterials,2008,29(20):2996-3003.
    [70]Soppimath KS,Aminabhavi TM,Kulkarni AR,et al.Biodegradable polymeric nanoparticles as drug delivery devices[J].Journal of Controlled Release,2001,70(1-2):1-20.
    [71]Danhier F,Lecouturier N,Vroman B,et al.Paclitaxel-loaded PEGylated PLGA-based nanoparticles:in vitro and in vivo evaluation[J].Journal of Controlled Release,2009,133(1):11-17.
    [72]Castelli F,Giunchedi P,LaCamera O,et al.A calorimetric study on diflunisal release from poly(lactide-co-glycolide) microspheres by monitoring the drug effect on dipalmitoylphosphatidylcholine liposomes:Temperature and drug leading influence[J].Drug Delivery,2000,7(1):45-53.
    [73]秦川江.脂肪族聚酯降解性能的影响[D].黑龙江大学学位论文,2005.
    [74]丁颂东.脂肪族聚酯的降解与稳定研究[D].四川大学博士学位论文,2006.
    [75]Higuchi T.Mechanism of dustained-sction medication:Theoretical analysis of rate of release of solid drugs dispersed in solid matrices[J].Journal of Pharmaceutical Science,1963,52(12):1145-1149.
    [76]Kromeyer RW,Peppa NA,Gunny R,et al.Mechanisms of solute release from porous hydrophilic polymers[J].International Journal of Pharmaceutics,1983,15(1):25-35.
    [77]Ritger PL,Peppa NA.A simple equation for description of solute release.Ⅰ.Fickian and non-sellable device[J].Journal of Controlled Release,1987,5(1):23-26.
    [78]Shigeru A,Hidenobu A,Ryoichi M,et al.Sustained release matrix using hydroxyl propylcellulose-ethycellulose complex as a filler,and controlling factors of drug release[J].Chemical& Pharmacuetical Bulletin,1993,41(8):1438-1440.
    [79]Upadrashta SM,Katikaneni PR,Hileman GA,et al.Direct compression controlled release tablets using ethyl cellulose matrices[J].Drug Development and Industrial Pharmacy,1993,19(2):449-451.
    [80]Huang L,Apkarian RP,Chaikof EL.High-resolution analysis of engineered type Ⅰcollogen nanofibers by electron microscopy[J].Scanning,2001,23(6):372-375.
    [81]Li WJ,Laurencin CT,Caterson EJ,et al.Electrospun nanofibrous structure:A novel scaffold for tissue engineering[J].Journal of Biomedical Materials Research,2002,60(4):613-21
    [82]Matthews JA,Wnek GE,Simpson DG,et al.Electrospinning of collagen nanofibers[J].Biomacromolecules,2002,3(2):232-238.
    [83]朱琳,扫描电子显微镜及其在材料科学中的应用[J].吉林化工学院学报,2007,24(2):81-84
    [84]刘冰川,曲利娟,刘庆宏,透射电子显微镜成像方式[J].医疗设备信息综述,2007,22(9):43-46
    [85]梁志红,周长忍,原子力显微镜在组织工程学中的应用[J].生物医学工程学杂志,2009,26(1):199-201
    [86]夏笃祎,张肇熙.高聚物结构分析[M].北京:化学工业出版社,1990.
    [87]吴人杰.现代分析技术在高聚物中的应用[M].上海:上海科学技术出版社.1987.
    [88]Hasegwa M,Isogai A,Onabe F,et al.Dissolving States of Cellulose and Chitosan in Trifluoroacetic Acid[J].Journal of Applied Polymer Science,2003,45(10):1857-1863.
    [89]迪伊KC,普莱奥DA,比齐奥斯R.组织-生物材料相互作用导论[M].北京:化学工业出版社,2005.
    [90]Lee KH,Kim HY,Khil MS,et al.Characterization of nano-structured poly(ε-caprolactone)nonwoven mats via electrospinning[J].Polymer,2003,44(4):1287-1294.
    [91]Deitzel JM,Kleinmeyer J,Harris D,et al.The effect of processing variables on the morphology of electrospun nanofibers and textiles[J].Polymer,2001,42(1):261-272.
    [92]吉岩,常津,许晓秋等.诊疗用聚氨酯导管的抗凝血研究进展[J].化学工业与工程,2001,18(1):44-50.
    [93]Ikada Y.Surface modifiction of polymers for medical application[J]Biomaterials.1994,15:725-736
    [94]Davide Campoccia.Patrick Doherty Macro Radice.et al Semisyn thetic resorbable material fromhyaluronan esterification[J].Biomaterials.1998.1 9:2101-2127
    [95]顾汉卿,徐国风生物医学材料学[M]天律:天津科技翻译出版社,1998.11.(3):408-414
    [96]王身国,组织工程细胞支架及其相关技术研究[J].现代康复2001年8月第5卷第8期
    [97]Hongxu Qi,Ping Hu,Jun Xu,and Aijun Wang,Encapsulation of Drug Reservoirs in Fibers by Emulsion Electrospinning:Morphology Characterization and Preliminary Release Assessment[J].Biomacromolecules 2006,7,2327-2330
    [98]Huang ZM,He CL,Yang AZ,et al.Encapsulating drug in biodegradable ultrafine fibers through coaxial electrospining[J].Journal of Biomedical Materials Research Part A,2005,77(1):159-179.
    [99]Sun Z,Zussman E,Yarin AL,et al.Compound core-shell polymer nanofibers by co-electrospinning[J].Advanced Materials,2003,15(22):1929-1932.
    [100]Han XJ,Huang ZM,He CL,et al.Coaxial electrospinning of PC(Shell)/PU(Core)composite nanofibers for textile application[J].Polymer composites,2006,27(4):381-387.
    [101]王津,李柱来,陈莉敏,许秀枝,壳聚糖-海藻酸钠布洛芬缓释微球的制备工艺及性能[J].福建医科大学学报,2008,42(1):56-59
    [102]俞怡晨,姚炎庆,张亚琼,陆轶业,郭圣荣,范华骅,壳聚糖-海藻酸盐纳米粒子的制备及其对BSA的载药与释放特性[J].功能高分子学报,2005,18(4):598-601

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700