桩基埋管对桩承载特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展以及人们环保意识的提高,具有环保、节能等特点的地源热泵系统逐渐受到人们的重视。地源热泵系统已经广泛应用于国内外建筑中,学者们也对这项技术展开了深入研究和探讨。目前制约地源热泵发展的一个重要障碍就是初投资高。传统的地热换热器采用钻孔竖直埋管的形式,但对于工程问题来说,钻孔的费用相当昂贵,占初投资的比例较大,致使初投资过高。考虑到传统换热器的成本、精度和复杂工艺,出现了“桩埋管换热器”。目前已有的桩埋管研究是把U型管换热器埋于建筑物混凝土桩基中,但这种方式传热面积小、易形成“热短路”,而螺旋盘管避免了这些缺点,因此提出桩埋螺旋盘管式换热器。同时,采用桩埋管地热换热器可承担一定量的空调负荷,不足的部分再由钻孔埋管来承担,这样可较大的降低初始投资的费用,减少地热换热器的占地面积。
     在桩中埋管是一种新技术,其研究应用和工程实践较少,目前主要存在以下一些问题:对于设置埋管的桩的承载力特性研究还不成熟,很多问题还不深入;国内外对其全面的、系统的研究尚不多见,仅仅照搬无埋管桩的研究方法或者稍加修改,不能真实体现出埋管对桩的承载特性的影响。埋管对桩基承载特性的影响制约着桩埋管技术的发展,因此研究埋管对桩基承载特性的影响将有利于桩埋管技术继续完善和发展。
     为了研究埋管对桩承载特性的影响,首先采用室内模型试验分别对无埋管和埋管的桩构件在压力、弯矩和拉力作用下的受力和变形情况进行分析,得到了埋管对桩构件承载特性的影响。然后采用有限元数值模拟软件ANSYS建立桩构件数值模型,分别分析其在压力、弯矩和拉力作用下的受力和变形情况,能较好符合物理试验。结合具体的工程实例,通过与有限元数值模拟分析结果的比较,得到合适的计算参数,并建立桩土数值模型,分析了埋管对桩基承载特性的影响。最后通过数值模拟分析了桩长、桩径、螺旋管径、螺旋管距等影响因素对桩基承载特性的影响。
With the development of economy and the increasing concern over the environmental problems, more and more attention is being paid to the Ground-source heat pump (GSHP) system, which is environment-friendly and energy-saving. Many scholars have done further research in the Ground-source heat pump system, which has been used in many domestic and foreign constructions. At present, the vast initial investment becomes a major obstacle to the development of the Ground-source heat pump system. The traditional ground heat exchanger takes the form of vertical U-tube in bore holes. However, the high cost of drilling bore holes, which accounts for a large percentage of the initial investment, leads to a vast initial investment. Taking into account the cost, accuracy and technical complexity of the traditional ground heat exchanger, people begin to use the "pile ground heat exchanger". In current studies, the U-tube heat exchangers are buried in the foundation of buildings, but their small transfer area may cause a "thermal short circuit", so the pile heat exchangers with spiral coils are proposed, which have no such drawbacks. Ground heat exchangers inside foundation piles can also bear a certain amount of air conditioning load and the remaining part can be borne by ground heat exchangers in vertical-bore holes. In this way, the initial investment can be reduced greatly and the area of heat exchangers can also be reduced.
     It is a new technology to bury tubes in the pile,on which few studies, applications and engineering practices have been done. Currently the major problems are as follows:further research needs to be done on the loading capacity features of the pile with buried tubes and many problems of it are to be solved; a comprehensive and systematic research is rarely seen both home and abroad. It can't show the effects of the tubes on the loading capacity features to copy or slightly modify the research of the pile without buried tubes. Besides, the effects of the buried tubes on the loading capacity features of the pile have restricted the development of ground heat exchanger technology. As a result, the study of the effects of buried tubes on the loading capacity features of the pile will be beneficial for further development of the technology of buried tubes.
     In order to study the effect of the loading capacity of the pile with buried tubes,firstly, based on the comparison tests on piles with buried tubes and piles without buried tubes, a study has been done on the load-carrying and deformation states of the pile over compression, bending and tension respectively, and the effects of buried tubes on the loading capacity features have been analyzed. The FEM software ANSYS has been employed to make numerical simulations of the compressed piles, the bending piles and the tensiled piles. The theoretical analysis corresponds to the test results. Secondly, combined with specific examples of pile engineering, through comparison between the results of static loading test and the results of ANSYS analysis, the effects of buried tubes on the loading capacity features of the pile have been decided on through ANSYS analysis, which has been conducted by selecting appropriate calculating parameter; Afterwards, a lot of numerical analysis has been done to decide on the effects of changes in the length of the pile, the diameter of the pile, the diameter of spiral coil and the distance of spiral coil on the loading capacity features of the pile.
引文
[1]刘宪英,丁勇.地源热泵地下埋管换热器系统形式及设计计算[J].特约专稿,2004:26-32
    [2]仲智,唐志伟.桩埋管地源热泵系统及其应用[J].可再生能源,2007,25(2):94-96
    [3]柳晓雷,王德林,方肇洪.竖直埋管地热换热器的传热模型与计算[J].建筑热能通风空调,2001,21(2):1-3
    [4]余乐渊,赵军,李新国,朱强,周军.竖埋螺旋管地热换热器理论模型及试验研究[J].太阳能学报,2004,25(15):690-694
    [5]曾和义,刁乃仁,方肇洪.竖直埋管地热换热器钻孔内的传热分析[J].太阳能学报,2004,25(3):399-405
    [6]Morino K.Oka T, Study on heat exchanged in soil by circulating water in a steel pile[J]. Energy and Buildings,1994,V21(1):65-78
    [7],方肇洪,刁乃仁,地热换热器的传热分析[J].建筑热能通风空调,2004,23(1):11-20
    [8]朱照华,付祥钊,长江三角洲住宅采暖降温节能系统—桩埋管地源热泵系统[J].住宅科技,1995:41-42
    [9]L.Ozgener,A-Hepbasli, and I.Dincer.A key review on performance improvement aspects of geothermal district heating systems and applications, Renew Sustainable Energy Rev[J].2007, V33(11):1675-1697
    [10]Kentaro Sekine, Ryozo Ooka, Mutsumi Yokoi,Yoshiro Shiba, SuckHo Hwang.development of a ground-source heat pump system with ground heat exchanger utilizing the cast-in-place concrete pile foumdations of buildings[J]. ASHRAE Transactions,2007,Vol.113
    [11]涂爱民,董华,杨卫波,佟少臣.基于圆柱源理论模型的U型埋管换热器的模拟研究[J].太阳能学报,2006,27(3):259-264
    [12]毕月虹,陈林根.土壤热泵用立式双螺旋盘管地下温度场数值分析于试验验证[J].应用科学学报,2000,18(2):167-170
    [13]李新国,赵军,朱强,安申法,张毅.垂直螺旋盘管地源热泵供暖制冷试验研究[J].太阳能学报,2002,23(6):684-685
    [14]刘金波.干作业复合灌注桩的试验研究[D].北京:中国建筑科学研究院,2000
    [15]Raes, PE.Theory of Lateral Bearing Capacity of Piles[J].Proe.1st,1996,CSMFE.29(12A):1923-1927
    [16]仲智,唐志伟.桩埋管地源热泵系统及其应用[J].可再生能源,2007,25(2)94:96
    [17]Li Peng, Qiu Zhong-Zhu. Studies on refrigerating performance of the Ground Heat Pump with U-shaped vertical loop of pipe [A].Proceedings of International Symposium on ACHR[C].2000, 38(12):28-34
    [18]贺嘉.大直径桩竖向荷载作用下承载特性理论分析[D].南京:南京工业大学,2006
    [19]贾志杰.新型预制螺旋桩受力特性数值分析研究[D].东北:东北大学,2005
    [20]程晔.超长大直径钻孔灌注桩承载性能研究[D].南京:东南大学,2006
    [21]张公略,钻孔灌注桩单桩竖向承载特性数值模拟研究[D].南京:河海大学,2006
    [22]顾培英,王德平,吕惠明.大直径灌注桩桩侧摩阻力试验研究[J].公路交通科技,2004,21(1):62-66
    [23]赵顺波,耿六成,刘爱军,孙尔超.大直径钻孔灌注摩擦桩的静承载特性[J].中国港湾建设,2001,第6期:30-34
    [24]张忠苗,辛公锋,夏唐代.深厚软土非嵌岩超长桩受力性状试验研究[J].土木工程学报,2004,37(4):64-69
    [25]李连虎,刘京平,孙进忠,郑作栋.用载荷试验及钢筋计测试联合确定一定深度上的桩基承载力[J].现代地质,2003,17(1):64-69
    [26]刘杰,张可能.层状地基中单桩荷载传递规律[J].中南工业大学学报(自然科学版)2003,34(5):571-575
    [27]曾友金,章为民.超长单桩的荷载传递分析,水利水运工程学报[J].2002,17(1):25-30
    [28]Poulos H G.Analysis of piles in soil undergoing laterl movement [J].JSMFD,ASCE,1973,99(5):39-46
    [29]Cooke R W,Price G,Tarr K Jacked piles in London clay:A study of load transfer and settlement under working conditions [J]. Geotechnique,1979,29(2):113-147
    [30]Seed HB and Reese LC.The action of soft clay along frictional piles[J].Trans.ASCE,1955,22:731-746
    [31]Colyle H M and Reese L C.Load transfer for axially loaded piles in clay[J].SMFD,ASCE, 1960,92(2):1-26
    [32]魏先勋,李元旦,林玉鹏,曾光明.土壤源地泵的研究[J].湖南大学学报,2004,27(2):62-64
    [33]曾友金,章为民.用有限单元法分析超长单桩的荷载传递[J].岩土力学,2002,Vol.23 No.6
    [34]张崇文,何广民,王牲.三维空间桩与土作用的有限层一有限元混合法[J].天津大学学报,1994,27(5):630-637
    [35]王玉杰,严宗达,刘作春,王跃华.有限棱柱法在群桩与土相互作用分析中的应用[J].天津大学学报,1997,30(2):170-174
    [36]黄昌礼,谢肖礼.桩与土相互作用非线性有限元分析[J].广西大学学报,2002,27(2):175-174
    [37]娄奕红,刘喜元.桩土相互作用的有限元一无界元分析[J].城市道桥与防洪,2004,2:33-38
    [38]GB50010-2002混凝土结构设计规范[S].北京:中国建筑资讯网,2002
    [39]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999:13-18
    [40]Hajime Okamura, Masahiro Ouchil. Self-compacting concrete [J]. Journal of Advanced Concrete Technology,2003,1(1):5-151
    [41]J.G.Teng,T.Yu,Y.L.Wong.Behaviour of Hybrid FRP-concrete-steel Double-skin Tubular Columns [C]. The Second International Conference on FRP Composites in Civil Engineering.2004:8-10
    [42]韩林海.现代钢管混凝土结构技术[M].北京:中国建筑工业出版社,2006:15-23
    [43]M.Shams,M.A.Saadeghvaziri.Nonlinear Response of Concrete- Filled Steel Tubular Columns under Axial Loading [J].ACI Strct.2005,V 96(6):1009-1017
    [44]李元旦,张旭.土壤源热泵的国内外研究和应用现状及展望[J].制冷空调与电力机 械,2002,85(23):4-7
    [45]RAWLINGS R.H.D, SYKULSKI J.R.Ground source heat pumps:A technology review[J]. Building Services Engineering Research and Technology.1999,20(3):119-129
    [46]高祖锟.用于供暖的土壤—水热泵系统[J].暖通空调,1995,(4):9-12
    [47]张昆峰.土壤热源与热泵联结运行冬季工况的试验研究[J].华中理工大学学报,1996,24(1):23-26
    [48]刘宪英,王勇,胡鸣明.地源热泵地下垂直埋管换热器的试验研究[J].重庆建筑大学学报,1999,21(5):22-26
    [49]刘冬生,孙友宏.浅层地能利用新技术—地源热泵技术[J].岩土工程技术,2003,17(5):57-59
    [50]殷平.地源热泵在中国[J].现代空调,2001(8):1-10
    [51]李世君,刘文臣,辛宝东.北京地区地下水源热泵利用现状及存在问题[J].城市地质,2006,1(1),1007-1903
    [52]刁乃仁,方肇洪.地埋管地源热泵技术[M].北京:高等教育出版社,2006
    [53]吕悦,杨立平.国内地源热泵应用情况调查报告[J]:工程建设与设计,2005(6):6-10
    [54]丁良士,张长春.从深层到浅层地热供热/制冷看北京2008奥运场馆能源法案[J].工程建设与设计,2004,V21(4):3-7
    [55]Burkhard Sanner,Constantine Karytsas,DimitriosMendrinos,Ladislaus Rybach.Current status of ground source heat pumps and underground thermal energy storage in Europe[J]. Geothermics,2003, V32(3):579-588.
    [56]仲智,唐志伟.桩埋管地源热泵系统及其应用[J].可再生能源,2007,25(2):94-96
    [57]JGJ94-2008建筑桩基技术规范[S].北京:中国建筑工业出版社,2008
    [58]洪鑫.壁板桩承载特性的理论分析与模型试验研究[D].南京:河海大学,2003
    [59]程晔.超长大直径钻孔灌注桩承载性能研究[D].南京:东南大学,2005
    [60]郝文化,叶裕明,刘春山,沈火明,肖新标.ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005:2
    [61]王新敏.ANSYS工程结构数值分析[M].北京:北京人民交通出版社,2007:480
    [62]过镇海、时晓东.钢筋混凝土原理与分析[M].北京:清华大学出版社,2003
    [63]徐秉业.塑性力学简明教程[M].北京:清华大学出版社,1981:360
    [64]周健,夏洪伟,软土地区钻孔灌注桩长期静载荷试验研究,同济大学地下建筑与工程系,上海,中国土木工程学会第九届土力学及岩石工程学术会议论文集,2003-10-25-28
    [65]郝文化.ANSYS土木工程应用实例[M].中国水利水电出版社,2005:341
    [66]罗园.地源热泵地下换热系统温度场分析[D].武汉:武汉理工大学,2006
    [67]Qiang zhang.Heat transefer analysis of vertical U-tube heat exechange in a multiple borehole field of ground source heat pump systems. The Univesrity of Kentucky,1999
    [68]卢玖辉.预埋管管材选择及接头连接对基桩声测结果的影响[J],铁道建筑,2005,11(17):42-43
    [69]张文克.桩埋管地热换热器的传热模型研究[D].山东:山东建筑大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700