水稻、棉花类受体蛋白基因表达特性、克隆及遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RLP是一类类受体蛋白,在介导植物衰老信号和逆境信号转导中具有重要作用。迄今,有关水稻RLP的研究尚缺乏系统报道。鉴于此,本项研究通过对水稻基因组搜索,获得了41个水稻RLP基因。通过现代分子生物学和生物信息学技术,研究了上述水稻RLP基因的结构特征、部分基因在正常生长的自然衰老、6-BA和ABA处理下的表达特性,以及启动子及基因功能。通过保守序列克隆了棉花中的RLP同源基因。主要研究结果如下:
     1、水稻RLP基因在基因结构特征上存在明显差异。如不同成员之间在基因的DNA序列长度、cDNA的全长序列、开放阅读框(Open reading frame, ORF)和翻译的氨基酸序列等变幅较大。聚类分析发现水稻RLP基因在起源和进化上具有较高一致性,但个别基因在进化中变异较大。
     2、在正常生长的自然衰老及6-BA和ABA处理下,表达沉默的基因为OsRLP34;OsRLP06的表达受到自然衰老及6-BA和ABA的诱导,呈现明显的上调特异表达特征;OsRLP03、OsRLP37、OsRLP58、OsRLP59和OsRLP65在水稻叶片自然衰老的过程中均呈明显的上调表达特征,在6-BA处理下随处理进程上述基因表达呈单峰曲线特征,以处理10 d表达水平最高,ABA处理使上述基因(OsRLP03、OsRLP37、OsRLP58、OsRLP59和OsRLP65)表达明显增强。但OsRLP03和OsRLP37在10d后呈下调表达趋势,与其在水稻叶片6-BA处理下的表达特征相同。
     3、对融合OsRLP65启动子驱动报告基因表达的转基因烟草研究发现,OsRLP65启动子能驱动报告基因高水平表达。在该基因的启动子中,共鉴定出34个顺式调控元件,其中多与逆境胁迫有关。
     4、对OsRLP65启动子不同缺失长度片段的转基因烟草植株研究发现,全长及不同缺失片段长度启动子的转基因植株均能进行Gus组织化学染色,且染色程度随着启动子片段长度的增加而加深。启动子片段长度最短的D1(246 bp),驱动报告基因的表达能力很弱,D5(1427bp)驱动Gus的表达特征与OsRLP65全长启动子相似。
     5、在自然生长条件下,遗传转化反义GhRLP6基因和OsRLP65基因的转基因植株,与对照相比抗衰老能力明显改善。表现为转基因系植株叶片的丙二醛(MDA)含量降低;叶绿素a、b含量、类胡萝卜素含量和可溶蛋白含量明显增加。表明植株细胞保护代谢途径响应了RLP介导的衰老逆境信号过程。反义GhRLP6基因和OsRLP65基因在增强植株抵御衰老胁迫的能力中具有较重要的作用。
Receptor-like proteins (RLPs) belong to one kind of receptor-like protein in plants. RLPs play an important role in mediating the signal transductions of senescence and the abiotic stresses. Update, it is still in lack of a thoroughly elucidation for the RLPs in rice. In this study, in total 41 RLP genes of rice were identified by searching the rice genome sequences which were released in the GenBank. Based on the approaches of modern molecular biology and bioinformatics, the gene structures of the rice RLP genes, the expression patterns of the rice RLP genes under normal growth (CK) and treatment of 6-BA, and ABA has been analyzed. The functions of several tested rice RLP genes were also studied. In the meantime, several RLP genes in cotton which are homologous to the corresponding ones in rice have been cloned. The main results were as follows:
     1. There were huge differences on the structure properties among the rice RLP genes. The DNA length, cDNA full length, open reading frame length, and the translated amino acid numbers among the rice RLP genes were dramatically diverse. The rice 41 RLP genes have high consistency in the origin and evolution based on phylogenetic tree analysis. However, part genes of them are variable on the gene structure characteristics.
     2. Under normal growth (CK) and 6-BA, ABA treatment, no transcripts of OsRLP34 gene were detected. The expression of OsRLP06 was specifically up-regulated in leaves under natural aging and 6-BA, ABA treatment. The expressions of OsRLP03, OsRLP37, OsRLP58, OsRLP59 and OsRLP65 were specifically up-regulated in leaves with the leaf natural aging progression. Meanwhile, the time-course changes of the transcripts of OsRLP03, OsRLP37, OsRLP58, OsRLP59 and OsRLP65 were shown to be a curve with a one peak, at the time point of 10 d after 6-BA treatment. OsRLP03, OsRLP37, OsRLP58, OsRLP59 and OsRLP65 were specifically up-regulated in leaves under ABA treatment, but OsRLP03 and OsRLP37 were specifically down-regulated in leaves after 10d treatment. The expressions of OsRLP03, OsRLP37, OsRLP58, OsRLP59 and OsRLP65 under 6-BA treatment were same as that of ABA treatment.
     3. It is found that the OsRLP65 promoter could drive the Gus to be transcribed at a high level. Totally 34 cis-regulatory elements were identified in the full promoter. Among them, some of cis-regulatory elements play an important role in mediating the abiotic stresses signallings.
     4. Based on the transgenic tobacco plants of genetic transformation OsRLP65 promoter, the functions of this promoter on driving the target gene expression, has been evuluated. It is found that the promoter of OsRLP65 and its deleted fragments could drive the Gus to be transcribed, with an increase pattern with the prolong of the promoter segments. D1 (246 bp) promoter could drive the Gus gene to be transcribed at a little level, D5 (1427bp) promoter could drive the Gus gene to be transcribed at high level same as that of the full length of OsRLP65 promoter.
     5. Under natural growth condition, the senescence tolerance in the transgenic lines with high expression of antisense GhRLP6 and OsRLP65 was obviously improved compared with the control (CK). Meanwhile, the malonaldehyde (MDA) contents were lower in the transgenic lines, and the contents of chlorophyll a, chlorophyll b, carotenoid, and soluble protein were all higher. Taken together, the cellular protection metabolic pathway was response to the senescence signal transduction mediated by antisense GhRLP6 and OsRLP65.
引文
[1] Mittler R, Shulaev V, Lam E. Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump[J]. Plant Cell, 1995, 7(1): 29-42
    [2] Nooden LD. The phenomenon of senescence and aging[A]. San diego: Academic press, 1988, 1-50
    [3]汤日圣,刘晓忠,陈以峰,等. 4PU-30延缓水稻叶片衰老的效果与作用[J].作物学报, 1998, 24(2): 231-236
    [4]段俊,梁承邺,黄毓文.杂交水稻开花结实期间叶片衰老[J].植物生理学报, 1997, 23(2): 139-144
    [5]张存信.棉花早衰及其预防技术[J].天津农学院学报, 2003, 10(2): 41-44
    [6] Grierson D. Silent genes and everlasting fruits and vegetables[J]. Nature Biotechnology, 1996, 14: 828-829
    [7] John I, Drake R, Farrell A, et al. Delayed leaf senescence in ethylene-deficient ACC-oxidase antisense tomato plants: molecular and physiological analysis[J]. Plant Journal, 1995, 7: 483- 490
    [8] Bemard W, Matile P. Differential expression of glutamine synthetase genes during the senescence of Arabidopsis thaliana rosette leaves[J]. Plant Science, 1994, 98: 7-14
    [9]魏道智,戴新宾,许晓明,等.植物叶片衰老机理的几种假说[J].广西植物, 1998, 18(1): 89-96
    [10]沈成国.植物衰老生理与分子生物学[M].中国农业出版社, 2001, 8-15
    [11]刘连涛,李存东,孙红春,等.棉花叶片衰老生理研究进展[J].中国农学通报, 2006, 7: 316-321
    [12]董合忠,李维江,唐薇,等.棉花生理性早衰研究进展[J].棉花学报, 2005, 17(1): 56-60
    [13]肖凯,张荣铣.小麦叶片老化过程中光合功能衰退的可能机制[J].作物学报, 1998, 24(6): 805-810
    [14]肖凯,张荣铣,方敏,等.杂种小麦化优8号和华优5号光合特性的研究[J].江苏农业学报, 1996, (4): 12-18
    [15]沈文飚,叶茂炳,徐朗莱,等.小麦旗叶自然衰老过程中清除活性氧能力的变化[J].植物学报, 1997, 39(7): 634-640
    [16]沈文飚,徐朗莱,叶茂炳,等.外源抗坏血酸和过氧化氢对小麦离体叶片衰老的调节[J].植物生理学通讯, 1997, 33(5): 338-340
    [17]肖凯,张荣铣.不同染色体组小麦种叶片光合功能衰退的生理原因研究[J].河北农业大学学报, 1997, 20(3): 38-43
    [18]田晓莉,杨培珠,段留生,等.转Bt基因抗虫棉库源关系的初步研究[J].棉花学报, 1999, 11: 151-156
    [19] Fridovich I. Superoxide dismutases[J]. Annual Review of Biochemistry, 1975, 44: 147-159
    [20]沈法富,喻树迅,范术丽,等.棉花叶片衰老过程中激素和膜脂过氧化的关系[J].植物生理与分子生物学学报, 2003, 29: 589-592
    [21]李晴,朱玉贤.植物衰老的研究进展及其在分子育种中的应用[J].分子植物育种, 2003, 1(3): 289-296
    [22]华春,王仁雷.杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化[J].西北植物学报, 2003, 23(3): 406-409
    [23]王旭军,徐庆国,杨知建.水稻叶片衰老生理的研究进展[J].中国农学通报, 2005, 21(3): 187-190
    [24]梁秋霞,曹刚强,苏明杰,等.植物叶片衰老研究进展[J].中国农学通报, 2006, 22(8): 282-285
    [25]马林.植物衰老期间生理生化变化的研究进展[J].生物学杂志, 2007, 24(3): 12-15
    [26] Nooden LD, Guiamet JJ, John I. Senescence mechanisms[J]. Physiol Plant, 1997, 101: 746-753
    [27] Gan SS, Amasino RM. Making sense of senescence[J]. Plant Physiol, 1997, 113: 313-319
    [28] Pennel RI, Lamb C. Programmed cell death in plants[J]. Plant Cell, 1997, 9: 1157-1168
    [29] Delorme VGR, McCabe PD, Kim D J, et al. A matrix metaloproteinases gene is expressed at the boundary of senescence and programmed cell death in cucumber[J]. Plant Physiol, 2000, 123(3): 917-927
    [30] Wollaston VB, Earl S, Harrison E, et al. The molecular analysis of leaf senescenceagenomics approach[J]. Plant Biotechnology Journal, 2003, 1: 3-22
    [31] Smart CM, Hosken SE, Thomas H, et al. The timing of maize leaf senescence and characterisation of senescence-related cDNAs[J]. Physiol Plant, 1995, 93: 673-682
    [32] Lohoman KN, Gan SS, John MC, et al. Molecular analysis of natural leaf senescence in Arabidopsis thaliana[J]. Physiol Plant, 1994, 92: 322-328
    [33]宋松泉,苏卫珍,彭晓南.杂交水稻离体叶片衰老与蛋白质代谢的关系[J].中山大学学报, 1995, 1: 20-23
    [34] Buchanan WV, Aninsworth C. Leaf senescence in Brassica napus:cloning of senescence related genes by subtractive hybridization[J]. Plant Molecular Biology, 1997, 32: 231-240
    [35] Smart CM. Gene expression during leaf senescence[J]. New Phytol, 1994, 126: 419-448
    [36] Dominique L, Jean CB. High levels of antioxidant enzymes correlate with delayed senescence in nonnetted muskmelon fruits[J]. Planta, 1998, 204(3): 377-382
    [37] Quirino BF, Noh YS, et al. Molecular aspect of leaf senescence[J]. Trends Plant Sci, 2000, 5: 278-282
    [38] Gut H, Matile P. Apparent induction of key enzymes of the glyoxylic acid cycle in senescent barely leaves[J]. Planta, 1988, 176: 548-550
    [39] Koiwai A, Matsuzaki T, Suzuki F, et al. Changes in total and polar lipids and their fatty acid composition in tobacco leaves during growth and senescence[J]. Plant and Cell Physiology, 1981, 22: 1059-1065
    [40] Wanner L, Keller F, Matile P. Metabolism of radiolablled galactolipids in senescence barelyleaves [J]. Plant Science, 1991, 78: 199-206
    [41] Gut H, Matile P. Apparent induction of key enzymes of the glyoxylic acid cycle in senescent barely leaves[J]. Planta, 1988, 176: 548-550
    [42] Vicentini F, Hortensteiner S, Schellenberg M, et al. Chlorophyll breakdown in senescence leaves: identification of the biochemical lesion in a stay-green genotype of festuca pratensis huds[J]. New Phytologist, 1995, 129: 247-252
    [43] Tsuchiya T, Ohta H, Okawa K, et al. Cloning of chlorophyllase,the key enzyme in chlorophyll degradation:finding of a lipase motif and the induction by methyl jasmonate[J]. Proceeding of the National Academy of Sciences of the United States of American, 1999, 96 (26): 15352- 15367
    [44]赵春江.植物内源激素对小麦叶片衰老的调控机理研究[J].华北农学报, 2000, 15(2): 53-56
    [45] Robson PRH, Donnison IS, Wang K, et al. Leaf senescence is delayed in maize expressing the agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter [J]. Plant Biotechnol Journal, 2004, 2: 101-112
    [46] Gribic V, Bleecker AB. Ethylene regulates the timing of leaf senescence in Arabidopsis[J]. The Plant Journal, 1995, 8(4): 595-602
    [47] Nathalie P, Magali M, Sarah P. Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence[J]. Planta, 2004, 219
    [48] Bittner-Eddy PD, Crut IR, Holub E, et al. RPP13 is a simple locus in Arabidopsis thaliana for alleles thats pecify downymildew resistance to different avirulence determinants in peronospora parasitica [J]. Plant J, 2000, 21: 177-188
    [49] Barbara Jabl onska, Ammiraju J, Bhattarai K, et al. The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1[J]. Plant Physiol, 2007, 143: 1044-1054
    [50] Radwan O, Mouzeyar S, Nicolas P, et al. Induction of a sun-flower CC-NBS- LRR resistance gene analogue during incompatible interaction with plasmopara halstedii [J]. J. Exp. Bot, 2005, 56: 567-575
    [51] Qu SH, Liu GF, Zhou B, et al. The broad-spectrum blast resistance gene Pi9 encodes an NBS-LRR protein and is a member of the multigene family in rice [J]. Genetics, 2006, 172(3): 1901-1914
    [52] Zhou B, Qu SH, Liu GF, et al. The eight amino acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistances pecificity to Magnaporthe grisea[J]. Mol Plant-Microbe Interac, 2006, 19: 1216-1228
    [53] Lagudah ES, Moullet O, Appels R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leueine-rich region at the Cre3 nematode resistance locus of wheat[J]. Genome, 1997, 40(5): 659-665
    [54] Martin GB, Bogdanove AJ, Sessa G. Understanding the functions of plant disease resistance proteins[J]. Annu Rev Plant Biol, 2003, 54: 23-61
    [55]赵丽坤,苏维.植物抗病基因的几个结构域[J].科技信息, 2008, 15: 371
    [56] Lillian K. Fritz-Laylin, Nandini Krishnamurthy, Mahmut To¨r, et al . Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis[J]. Plant Physiol, 2005, 138: 611- 623
    [57]路梅,徐传雨,郭卫东.植物LRR类受体蛋白激酶的研究进展[J].浙江师范大学学报2006, 29(3): 322-325
    [58] Dievart A, Clark SE. LRR-containing receptors regulating plant development and defense[J]. Development, 2004, 131: 251-261
    [59] Toubart P, Desiderio A, Salvi G, et al. Cloning and characterization of the gene encoding the endopolygalactur onase-inhib-iting protein ( PGIP) of phaseolus vulgaris L[J]. Plant J, 1992, 2: 367-373
    [60]张丽霞.水稻叶片衰老相关基因的分离[D].硕士学位论文,福建农业大学, 2000, 44-46
    [61] Sakamoto A, Ogawa M, Masumura T, et al. Three cDNA sequences coding for glutamine synthetase polypeptides in Oryza sativa [J]. Plant Mol Biol, 1989, 13(5): 611-614
    [62] Mayumi T, Kenjiro S, Keiki Is, et al. Severe reduction in growth rate and grainfilling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1[J]. The Plant Journal, 2005, 42(5): 641-651
    [63] Lee RH, Wang GH, Huang LT, et al. Leaf senescence in rice plants:cloning and characterizaton of senesecence up-regulated genes[J].Journal of Experimental Botany, 2001, 52(358): 1117-1121
    [64] Lee RH, Lin MC, Chen SC. A novel alkalineα-galactosidase gene is involved in rice leaf senescence[J]. Plant Mol Biol, 2004, 55: 281-295
    [65] Yan H, Saika H, Maekawa M, et al. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death[J]. Genes&Genetic Systems, 2007, 82(4): 361-366
    [66] Kong ZS, Li MN, Yang WQ, et al. A novel nuclear-localized CCCH-Type zinc finger proten, OsDOS, is involved in delaying leaf senescence in rice[J]. Plant Physiol, 2006, 141(4): 1376-1388
    [67] Jiang HW, Li MR, Liang NT, et al. Molecular cloning and function analysis of the stay green gene in rice[J]. Plant J, 2007, 52(2): 197-209
    [68] Wu Z, Zhang X, He B, et al. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis[J]. Plant Physiol, 2007, 145: 29-40
    [69] Cheng M, Fry JE , Pang S , et al. G enetic transformation of wheat mediated by agrobacterium tumefaciens [J]. Plant Physiol, 1997, 115(3): 971-980
    [70] Hiei Y, Ohta S, Komari T, et al. E fficient trans formation of rice ( Oryza sativa L. ) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. Plant J, 1994, 6(2): 271-282
    [71] Ishida Y, Saito H, Ohta S, et al. High efficiency trans formation of maize(Zea mays L.) mediated by agrobacterium tumefaciens[J] . Nat Biotechnol, 1996, 14(6): 745-750
    [72]张保龙,倪万潮,张天真,等.花粉管通道法转基因抗虫棉外源基因的整合方式.江苏农业学报[J]. 2004, 20(3): 144-148
    [73]张盈玉,马荣才.参与植物防御反应的LRR型蛋白结构与功能[J].中国农业科技导报[J]. 2009, 11(3): 12-18
    [74] Wang MB, Waterhouse PM. Application of gene silencing in plants[J]. Current Opinion in Plant Biology, 2002, 5(2): 146-150
    [75]白斌. rd29A低温诱导型启动子驱动的AcInV基因反义植物表达载体的构建及其对马铃薯的遗传转化[D].兰州:甘肃农业大学硕士论文, 2004, 15
    [76] Vander KAR, Mur LA, Delange LP, et al. Antisense chancone synthase genetics genes in petunia: Visualization of variable transgene expression[J]. Mol Gen Gene, 1990, 220:204-212
    [77] Bird CR, Ray JA, Fletcher JD, et al. Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes[J]. Bio Technology, 1991, 9: 635-639
    [78]张毅,尹辉,李丹,等.植物环境响应启动子的诱导元件及转录因子[J].中国生物工程杂志, 2007, 27 (7) : 122-128
    [79]赵世杰.叶绿体色素的定量测定[M].北京:中国农业出版社, 2000, 72-75
    [80] Read MS. Minimization of variation in the response to different protein of the coomassic blue G dyedinding: assay for protein[J]. Analytica Biochemistry, 1981, 116: 53-64
    [81]邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000, 173-174
    [82]胡廷章,罗凯,甘丽萍,等.植物基因启动子的类型及其应用[J].湖北农业科学, 2007, 46(1): 149-151
    [83]李宁,樊守金,张增艳.植物抗病相关启动子及其研究进展.植物遗传资源学报[J]. 2007, 8(2): 234-239
    [84] Benfy PN, Chua NH. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants[J]. Science, 1990, 250: 959-966
    [85] Mcelroy D, Zhang W, Cao J, et al. Isolation of an efficient actin promoter for use in rice transformation[J]. PlantCell, 1990, 2(2): 163-171
    [86] Christensen AH, Sharrock RA, Quail PH. Maize polyubiquitin genes-structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation[J]. Plant Mol Biol, 1992, 18(4): 675-689
    [87] Dickinson CD, Evans RP, Nielsen NC. RY repeats are conserved in the 5'- flanking regions of legume seed- protein genes [J]. Nucleic Acids Res, 1988, 16(1): 37
    [88] Fujiwara T, Beachy R N. Tissue-specific and temporal regulation of a beta-conglycinin gene: roles of the RY repeat and other cis-acting elements [J]. Plant Mol Biol, 1994, 24(2): 261-272
    [89] Schernthaner JP, Matzke MA, Matzke AJM. Endorsperm-specific activity of a zein gene promoter in trans-genic tobacco plants [J]. EMBO J, 1988, 7: 1249-1256
    [90] Keller B, Lamb CJ. Specific expression of a novel cell wall hydroxyproline- rich glycoprotein gene in lateral root initiation [J]. Genes Dev, 1989, 3(10): 1639-1646
    [91] Padidam M. Chemically regulated gene expression in plants [J]. Curt Opin Plant Biol, 2003, 6: 169-177
    [92] Zuo J, Chua NH. Chemical-inducible systems for regulated expression of plant genes [J]. Curr Opin Biotechnol, 2000, 11: 146-151
    [93] Gatz C, Lenk I. Promoters that respond to chemical inducers [J]. Trends Plant Sci, 1998, 3: 352-358
    [94] Gatz C. Chemically inducible promoters in transgenic plants[J]. Curr Opin Biotechnol, 1996, 7: 168-172
    [95]夏江东,夏平.高等植物启动子功能和研究进展[J].楚雄师范学院报, 2005, 20(3): 41-48
    [96] Agius F, Amaya I, Botella MA, et al. Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression[J]. Journal of ExperimentalBotany, 2005, 56(409): 37-46
    [97] Reyes JC, Muro-Pastor MI, Florencio FJ. The GATA family of transcription factors in Arabidopsis and rice [J]. Plant Physiology, 2004, 134: 1718-1732
    [98] Degenhardt J, Tobin EM. A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants[J]. Plant Cell, 1996, 8: 31-41
    [99] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J]. Plant Cell , 2003, 15: 63-78
    [100] Kim SY, Chung HJ, Thomas TL. Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system[J]. Plant J, 1997, 11: 1237-1251
    [101] Ogawa M, Hanada A, Yamauchi Y, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination[J]. Plant Cell, 2003, 15: 1591- 1604
    [102] Sakai H, Aoyama T, Oka A. Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators[J]. Plant J. 2000, 24: 703-711
    [103] Sutoh K, Yamauchi D. Two cis-acting elements necessary and sufficient for gibberellin- upregulated proteinase expression in rice seeds[J]. Plant J. 2003, 34: 635-645
    [104] Morikami A, Matsunaga R, Tanaka Y, et al. Two cis-acting regulatory elements are involved in the sucrose-inducible expression of the sporamin gene promoter from sweet potato in transgenic tobacco[J]. Mol Genet Genomics, 2005, 272: 690- 699
    [105] Ishiguro S, Nakamura K. The nuclear factor SP8BF binds to the 5'-upstream regions of three different genes coding for major proteins of sweet potato tuberous roots[J]. Plant Mol Biol, 1992, 18: 97-108
    [106] Le GJ, Li YF, Zhou D X. Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFI-IA-TBP-TATA complex[J]. Plant Journal, 1999, 18: 663-668
    [107] Gowik U, Burscheidt J, Akyildiz M, et al. cis- Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpy- ruvate carboxylase gene[J]. Plant Cell, 2004, 16: 1077- 1090
    [108]郭晓芳,严海燕.植物中的Dof蛋白和Dof转录因子家族[J].植物生理学通讯, 2005, 41: 419-423
    [109] Filichkin SA, Leonard JM, Monteros A, et al. A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development[J]. Plant Physiol, 2004, 134: 1080-1087
    [110] Stougaard J, Jorgensen JE, Christensen T, et al. Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc3 and N23 gen promoters[J]. Mol Gen Genet, 1990, 220: 353-360
    [111] Vieweg MF, Fruhling M, Quandt HJ, et al. The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants[J]. Mol Plant Microbe Interact, 2004, 17: 62-69
    [112] Fehlberg V, Vieweg MF, Dohmann EM, et al. The promoter of the leghaemoglobin gene VfLb29: functional analysis and identification of modules necessary for its activation in the infected cells of root nodules and in the arbuscule- containing cells of mycorrhizal roots[J]. J Exp Bot, 2005, 56: 799-806
    [113] Rogers HJ, Bate N, Combe J, et al. Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10[J]. Plant Mol Biol, 2004, 5: 577-585
    [114] Elmayan T, Tepfer M. Evaluation in tobacco of the organ specificity and strength of the rol D promoter, domain A of the 35S promoter and the 35S^2 promoter[J]. Transgenic Res, 1995, 4: 388-396
    [115] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Mol Gen Genet, 1994, 244: 563-571
    [116] Sun C, Palmqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter[J]. Plant Cell, 2003, 15: 2076-2092
    [117] Nishiuchi T, Shinshi H, Suzuki K. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: Possible involvement of NtWRKYs and autorepression[J]. J Biol Chem, 2004, 279: 55355-55361
    [118] Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression [J]. Plant Cell, 2001, 13: 1527-1540
    [119] Zhang ZL, Xie Z, Zou X, et al. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells[J]. Plant Physiol, 2004, 134: 1500-1513
    [120] Haralampidis K, Milioni D, Rigas S, et al. Combinatorial interaction of Cis elements specifies the expression of the Arabidopsis AtHsp90-1 gene[J]. Plant Physiology, 2002, 129: 1138-1149
    [121]张毅,尹辉,李丹,等.植物启动子的化学因素诱导元件[J].植物生理学通讯, 2007, 43(4): 787-794

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700