Endothelin-1和Prostacyclin在慢性阻塞性肺疾病发病机制中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章慢性阻塞性肺疾病患者内皮素-1的表达及意义
     目的
     观察吸烟者和慢性阻塞性肺疾病(COPD)患者支气管肺泡灌洗液(BALF)、诱导痰和血浆中内皮素-1(endothelin-1,ET-1)的浓度变化,探讨ET-1在COPD发病机制中的临床意义。
     方法
     本研究选择健康吸烟者14例,COPD患者13例,同时选择14例健康人为正常对照组,用支气管肺泡灌洗术(BAL)收集BALF对其细胞成分进行计数和分类,用高渗盐水诱痰法取痰标本并进行细胞计数和分类,用放射免疫法测定BALF、诱导痰和血浆中ET-1浓度。
     结果
     1.COPD组一秒钟用力呼气量占预计值%(FEV1%pre)、一秒率(FEV1/FVC%)及呼气峰值流速占预计值%(PEF%pre)较正常对照组和吸烟组明显降低(p均<0.01),而正常对照组与吸烟组之间差异无显著性(p>0.05)。
     2.吸烟组、COPD组BALF和诱导痰中细胞总数、肺泡巨噬细胞(AM)数及中性粒细胞(PMN)数均明显高于正常对照组(p均<0.05)。
     3.正常对照组、吸烟组和COPD组BALF中ET-1浓度无显著性差异,吸烟组及COPD组诱导痰中ET-1浓度较正常对照组明显增高,差异有统计学意义(p均<0.05),COPD组血浆中ET-1浓度较正常对照组和吸烟组明显增高(p<0.05)。
     4.诱导痰中AM数与肺功能气流阻塞指标FEV1%pre、FEV1/FVC%呈负相关(r=-0.480,r=-0.545,p均<0.01)。PMN数与FEV1%pre、FEV1/FVC%呈负相关(r=-0.677,r=-0.773,p均<0.01)。诱导痰和血浆中ET-1浓度与FEV1%pre值呈负相关(r=-0.723,r=-0.801,p均<0.01),诱导痰中ET-1浓度与AM数和血浆中的ET-1浓度呈正相关(r=0.543,r=0.864,p均<0.01)。
     结论
     1.吸烟者和COPD存在以AM和PMN浸润为主的慢性气道炎症,AM、PMN可能参与了COPD气流阻塞的形成。
     2.ET-1可能通过参与气道炎症和气流阻塞在COPD发生发展中起着重要作用。
     第二章慢性阻塞性肺疾病患者肺组织中前列环素的表达及意义
     目的
     观察COPD患者肺组织前列环素合酶(prostacyclin synthase,PGI_2S)表达及组织上清液中前列环素(prostacyclin,PGI_2)稳定的代谢产物6-酮前列腺素F1α(6-keto-PGF1α)浓度变化,探讨COPD患者PGI_2的表达及意义。
     方法
     本研究选择中南大学湘雅二医院胸外科2008年6月至2008年10月因肺癌和肺大疱行肺叶切除术的患者22例,根据COPD的诊断标准,分为COPD组和对照组。免疫组织化学染色检测PGI_2S的表达,酶联免疫吸附试验(ELISA)测定肺组织上清液中6-keto-PGF1α含量。
     结果
     1.对照组和COPD组吸烟指数分别为(341.2±80.8)年支和(570.2±172.6)年支,COPD组与对照组有显著性差异(p<0.05)。COPD组FEV1%pre和FEV1/FVC%与对照组有显著性差异(p均<0.05)。
     2.COPD组肺组织中型血管、微小型血管内皮细胞和气道上皮细胞PGI_2S表达较对照组明显降低(p均<0.05)。
     3.COPD组肺组织上清液中6-keto-PGF1α较对照组下降,差异有统计学意义(p<0.05)。
     结论
     COPD肺组织PGI_2表达下调,PGI_2在COPD发病机制中可能起着重要作用。
     第三章ET受体拮抗剂在香烟提取物所致肺气肿模型中的保护作用及其机制研究
     目的
     探讨ETA受体拮抗剂BQ123和非选择性(ETA/B)受体拮抗剂Bostentan(Bos)对香烟提取物(CSE)所致肺气肿模型肺气肿程度、肺泡间隔细胞凋亡、caspase-3表达、基质金属蛋白酶-2,9(MMP-2,9)活性、炎症因子肿瘤坏死因子-α(TNF-α)、白介素-1β(IL-1β)表达及血清抗氧化能力的影响。
     方法
     将24只Sprague-Dawley大鼠按随机数字表法分为对照组、CSE组及BQ123干预组和Bos干预组,每组各6只。CSE组、BQ123和Bos干预组连续三周每周一次腹腔内注射CSE,此外BQ123干预组连续三周每天腹腔内注射BQ123 1mg/kg/day,Bos干预组每天胃管内给药Bos 100mg/kg/day。病理切片苏木素-伊红(HE)染色后测定平均内衬间隔(MLI)和肺泡破坏指数(DI)评估肺气肿程度。采用脱氧核糖核苷酸末端转移酶介导的缺口末端标记法(TUNEL)检测凋亡并计算凋亡指数(apoptotic index,AI);用免疫组织化学测定促凋亡基因caspase-3在肺组织的表达,Western blotting测定肺组织匀浆中caspase-3的蛋白表达;采用明胶酶谱法测定肺组织匀浆中MMP-2和MMP-9活性;采用ELISA测定肺组织匀浆中TNF-α和IL-1β的浓度;采用Bioantioxidant Power(BAP)试验检测血清抗氧化能力。
     结果
     1.3周后CSE组大鼠肺组织呈现肺气肿病理改变,BQ123和Bos干预组病理变化相对减轻。CSE组MLI和DI较对照组显著增高(p均<0.01)。BQ123和Bos干预组MLI和DI较CSE组显著降低(p均<0.01),但BQ123组和Bos组两组间无统计学差异。
     2.各组大鼠肺内均可见凋亡细胞,CSE组AI较对照组明显增高(p<0.01)并且BQ123组和Bos组AI较CSE组明显减低(p均<0.01)但仍较对照组增高(p<0.01)。
     3.免疫组化及Western Blotting均提示caspase-3在CSE组的肺组织中表达明显增高,BQ123组和Bos组caspase-3的表达较CSE组明显降低,差异均有统计学意义(p均<0.05)。
     4.CSE组肺组织中MMP-2和MMP-9活性较对照组明显增高,ET受体拮抗剂干预能抑制增高的MMP-2和MMP-9活性(p均<0.05),而在BQ123组和Bos组之间无统计学意义。
     5.CSE组肺组织中TNF-α和IL-1β水平较对照组明显增高,ET-1拮抗剂干预组TNF-α和IL-1β水平较CSE组明显减低(p均<0.05)。所有大鼠肺组织中TNF-α和IL-1β浓度与肺泡间隔细胞AI呈正相关(r=0.693,r=0.555,p均<0.01)。
     6.CSE组大鼠血清抗氧化能力较对照组明显降低,ET-1拮抗剂干预后大鼠血清抗氧化能力较CSE组明显提高(p均<0.05)。
     结论
     1.腹腔内注射CSE能成功建立大鼠肺气肿模型。
     2.腹腔内注射CSE所致大鼠肺气肿模型存在肺泡间隔细胞凋亡、基质金属蛋白酶活性增高、气道炎症及氧化/抗氧化失衡。
     3.ET受体拮抗剂可部分抑制腹腔内注射CSE所致大鼠肺气肿模型肺内凋亡、增高的MMPs活性、气道炎症及氧化应激,最终改善腹腔内注射CSE所致大鼠肺气肿程度。
     4.ETA受体通过参与凋亡、蛋白酶失衡、慢性炎症及氧化应激在肺气肿病理机制中可能起着重要作用。
     第四章PGI_2衍生物Beraprost在香烟提取物所致肺气肿模型中的保护作用及其机制研究
     目的
     观察PGI_2衍生物贝拉司特(Beraprost,BPS)对CSE所致肺气肿的保护作用及其机制。
     方法
     将24只Sprague-Dawley大鼠按随机数字表法分为对照组、CSE组及低剂量BPS干预组(BPS-1组)和高剂量组(BPS-2组),每组各6只。CSE组和BPS组连续三周每周一次腹腔内注射CSE,此外BPS干预组连续三周每天胃管内给药BPS 100μg或200μg/kg/day。HE染色测定MLI和DI评估肺气肿程度。采用TUNEL检测凋亡并计算AI;采用免疫组织化学测定和Western blotting测定caspase-3在肺组织的表达;采用明胶酶谱法测定肺组织中MMP-2和MMP-9活性;采用ELISA测定肺组织中的6-keto-PGF1α、TNF-α、IL-1β和环磷酸腺苷(cAMP)的浓度;采用BAP试验检测大鼠血清抗氧化能力。
     结果
     1.3周后CSE组大鼠肺组织呈现肺气肿病理改变,不同剂量BPS干预组病理变化相对减轻。CSE组MLI和DI较对照组显著增高(p均<0.01)。BPS干预组MLI和DI较CSE组显著降低(p均<0.01),但两组间(BPS-1和BPS-2)无统计学差异。
     2.CSE组大鼠肺组织匀浆中6-keto-PGF1α水平较对照组明显降低,BPS干预组较CSE组明显增高(p均<0.05),BPS-2组较正常对照组和BPS-1组明显增高(p均<0.05)。
     3.各组大鼠肺内均可见凋亡细胞,CSE组AI较对照组明显增高(p<0.01),并且BPS-1组和BPS-2组AI较CSE组明显减低(p均<0.01)但仍较对照组增高(p<0.01)。
     4.免疫组化及Western Blotting均提示caspase-3在CSE组肺组织中表达明显增高,BPS干预组caspase-3的表达较CSE组明显降低,差异均有统计学意义(p<0.05)。
     5.CSE组肺组织中MMP-2和MMP-9活性较对照组明显增高(p均<0.05),不同剂量BPS均能抑制增高的MMP-2,差异有统计学意义(p均<0.05),不同剂量BPS能抑制增高的MMP-9活性,仅高剂量组有统计学意义(p<0.05)。而在BPS-1组和BPS-2组之间无统计学意义。
     6.CSE组肺组织中TNF-α和IL-1β水平较对照组明显增高(p均<0.05),BPS干预组TNF-α和IL-1β水平较CSE组明显减低,仅BPS-2组与CSE组比较有统计学意义(p均<0.05)。所有大鼠肺组织中TNF-α和IL-1β浓度与肺泡间隔细胞AI呈正相关(r=0.657,r=0.530,p均<0.01)。
     7.CSE组大鼠血清抗氧化能力较对照组明显降低,不同剂量BPS干预后大鼠抗氧化能力较CSE组明显提高(p均<0.05)。
     8.BPS-1组大鼠肺组织cAMP浓度为2.31±1.04μg/mg,BPS-2组cAMP浓度为3.83±2.83μg/mg,而正常对照组和CSE组检测不到cAMP浓度(<1.05μg/mg)。
     结论
     1.腹腔内注射CSE所致大鼠肺气肿模型存在肺泡间隔细胞凋亡、基质金属蛋白酶活性增高、气道炎症及氧化/抗氧化失衡。
     2.前列环素衍生物BPS在CSE诱导所致肺气肿模型中起着部分保护作用,其可能的机制是减轻凋亡,降低MMPs活性,减少炎症因子释放和增强血清抗氧化能力。
     3.BPS对肺气肿的保护作用无量效关系,高剂量BPS对肺气肿程度的改善并不优于低剂量组。
Chapter 1 Evaluation of Endothelin-1 in patients with stable chronic obstuctive pulmonary disease
     Objective
     The purpose of this study was to examine the levels of endothelin-1 (ET-1) in the bronchoalveolar lavage fluid(BALF),induced sputum and plasma in patients with stable chronic obstructive pulmonary disease (COPD) and to elucidate whether ET-1 is implicated in the pathological process of COPD.
     Methods
     Thirteen patients with COPD,14 healthy smokers and 14 normal controls were enrolled in the study.BALF and induced sputum were collected.Cells in BALF and sputum suspension were counted and classified with Wright's stain.The ET-1 levels were measured by radioimmunoassay in all of samples.
     Results
     1.The differences of FEV1%pre,FEV1/FVC%and PEF between healthy smokers and normal controls weren't significant(p>0.05). FEV1%pre,FEV1/FVC%and PEF in COPD patients were significantly lower than those in healthy smokers and normal controls(p<0.01).
     2.The total BALF and sputum cells in healthy smokers and patients with COPD were significantly higher than those in control group(p<0.01).In addition,the numbers of alvelor macrophages(AM) and neukocytes(PMN) in both healthy smokers and patients with COPD were significantly higher than those in control group(p<0.01).
     3.There wasn't significant difference in the ET-1 levels in BALF of three groups(p>0.05).The sputum ET-1 levels in healthy smokers and patients with COPD were significantly higher than those in control group (p<0.05).The ET-1 levels in plasma in COPD patient were significantly higher than those in healthy smokers and control group(p<0.05).
     4.The numbers of AM were inversely correlated with FEV1%pre and FEV_1%FVC(r=-0.480,p<0.01;r=-0.545,p<0.01) while the numbers of PMN were inversely correlated with FEV1%pre and FEV_1%FVC(r=-0.677,p<0.01;r=-0.773,p<0.01) in patients with stable COPD.ET-1 levels in sputum and plasma were inversely correlated with FEV1%pre in stable COPD patients(r=-0.723,p<0.01;r=-0.801, p<0.01).In addition,the increase in sputum ET-1 levels was correlated with the increase of the AM numbers and plasma ET-1 levels(r=0.543,p<0.01;r=0.864,p<0.01).
     Conclusion
     1.There are chronic inflammatory process in airway of stable COPD and both PMN and AM contribute to the process.
     2.ET-1 may have a role in contributing to airway inflammation and airway remodeling in the pathological process of COPD.
     Chapter 2 The expression of prostacyclin is decreased in patients with stable chronic obstuctive pulmonary disease
     Objective
     To investigate the expression of prostacyclin(PGI_2) synthase (PGI_2S) and 6-keto-PGF 1αthat is a production of endogenous PGI_2 by non-enzymatic hydration in the supematants of lung homogenates in patients with stable COPD.
     Methods
     The lung tissues were obtained from 12 patients with stable COPD and 10 controls.The expression of PGI_2S protein was assessed by immunohistochemistry using paraffin-embedded sections.Concentration of 6-keto-PGF1αwas measured by ELISA in the supernatants of lung homogenates.Sections were scored by a pathologist in blinded fashion for PGI_2S staining and expressed as a ratio in small/medium blood vessels and airway epithelia.
     Results
     1.FEV1%pre and FEV1/FVC%in COPD patients were significantly lower than those in controls(p<0.01).
     2.The differences in PGI_2S staining were statistically significant in pulmonary small/medium-sized vessels and airway epithelia(p<0.05) between COPD patients and controls.
     3.The concentration of 6-keto-PGF1αin the supernatants of lung homogenates in COPD group was significantly lower than that of the control group[(2.6±0.4) vs(16.2±2.8) ng/ml,p<0.05].
     Conclusions
     The expression of PGI_2 is decreased in COPD patients and PGI_2 may be involved in the pathogenesis of COPD
     Chapter3 Treatment with Endothelin-1 receptor antagonists prevents pulmonary emphysema in rats
     Objective
     Endothelin(ET) is involved with physiologic functions related to respiratory system and seems to implicate the pathogenesis of pulmonary emphysema.We hypothesized that ET-1 plays an important role in the pathogenesis of emphysema and,thus the ET receptor antagonists may have protective role in the development of emphysema.
     Methods
     Sprague-Dawley rats(n=24) were divided into four groups:(1) control group,(2) cigarette smoke extract(CSE) group,(3) CSE+ BQ-123 group(a selective ETA receptor antagonist),and(4) CSE+ bosentan group(a mixed ETA/ETB receptor antagonist).CSE was injected intraperitoneally once a week for three weeks and BQ-123 and bosentan were administered daily for the same duration.Apoptosis index, caspase-3 activity,MMP-2 and MMP-9 activities and TNF-αand IL-1βconcentrations were measured in the lung tissues.Antioxidant activity were measured in the serums.
     Results
     1.We firstly confirmed the emphysematous destruction in the lungs of experimental rats induced by the intraperitoneal injection of CSE within 3 weeks.The MLI and DI were significantly increased in the CSE group(108.7±6.8μm and 62.2±7.0%,respectively) compared with control group(69.8±6.6μm,p<0.01 and 13.9±2.7%,p<0.01, respectively).However,the MLI and DI were significantly decreased in the BQ-123(89.0±7.4μm and 41.5%±4.5%,respectively) and bosentan groups(81.9±6.1μm and 44.0%μ8.5%,respectively) compared with CSE rats(p<0.01,respectively).
     2.The TUNEL-positive cells were markedly distributed in the peribronchioles,intra-alveoli,and septal areas of the emphysematous lungs in CSE rats comparing with the lungs of control rats.The AI was significantly higher in CSE group(20.3±0.9%) than control group(2.9±0.9%,p<0.01).And the AI was significantly reduced in BQ-123 group(9.9±2.3%,p<0.01) and bosentan group(8.8±0.6%,p<0.01) compared with that in CSE group.
     3.The caspase-3 positive cells were markedly distributed in the emphysematous lungs of CSE group comparing with the stained cells in the lungs of control rats.These positive cells were apparently reduced in the BQ-123 and bosentan groups compared with the stained cells in CSE group.Comparing with the control group,expression of caspase-3 was prominently enhanced in CSE groups,but almost no changes in both the BQ-123 and bosentan groups.The relative density of the caspase-3 toβ-actin by the densitometry analysis showed that the protein level of the cleaved caspase-3 was increased in the CSE rats(218.2±64.7%) compared with that in control rats(98.2±34.3%,p<0.05).Expectedly, both BQ-123 and bosentan treatments markedly inhabited the increases of the cleaved caspase-3 protein levels in rats injected with CSE (BQ-123:90.4±32.9%,Bosentan:84.9±30.8%,p<0.05 in comparison to CSE).
     4.Rats injected with CSE showed increased MMP-2 and MMP-9 activities in their lung tissue homogenates(MMP-2:172.1±43.5%; MMP-9:168.9±38.6%) compared with the activities in the control rats (MMP-2:105.5±27.1%,p<0.05;MMP-9:94.5±27.1%,p<0.05). Expectedly,MMP-2 and MMP-9 activities were reduced significantly in both BQ-123(MMP-2:109.6±32.8%,p<0.05;MMP-9:99.9±50.0%, p<0.05) and bosentan groups(MMP-2:95.1±14.1%,p<0.01; MMP-9:68.4±19.9%,p<0.01) compared with the activities in the CSE group.
     5.The levels of TNF-αand IL-1βwere significantly increased in the CSE group in comparison to those in controls(p<0.05, respectively).BQ-123 and bosentan significantly prevented the increases of the levels of TNF-αand IL-1βin lungs of rats with injection of CES (p<0.05).In addition,the levels of TNF-αand IL-1βin the lungs were positively correlated with the AI in the lungs of rats(r=0.693,p<0.01; r=0.555,p<0.01,respectively).
     6.The serum antioxidant activity was significantly decreased in the CSE group(1653.4±504.7μmol/L) in comparison to that of controls (2438.9±235.6μmol/L,p<0.01).The BQ-123 and bosentan significantly prevented the decrease of the serum antioxidant activity in the rats injected with CSE(BQ123:2551.1±144.8μmol/L,p<0.01; Bosentan:2597.0±409.8μmol/L,p<0.01).
     Conclusion
     ET-1 receptor antagonists protect against the development of emphysema probably by decelerating apoptosis,inhibiting proteolytic enzyme activity,reducing inflammatory cytokine levels and improving antioxidant activity.ET-1 antagonists may represent a new therapeutic option in the treatment of emphysema in humans.
     Chapter 4 A novel protective effect of a prostacyclin analogue in the development of cigarette smoke extract-induced emphysema
     Objective
     The aim of this study was to determine whether the administration of PGI_2 analogue,beraprost(BPS) would attenuate the development of CSE-induced emphysema in a rat model and,further,to elucidate the molecular mechanisms involved with its effect.
     Methods
     Sprague-Dawley rats(n=24) were randomly divided into 4 groups:normal group,CSE group,low dose BPS group(BPS-1) and high dose BPS group(BPS-2).The CSE-PBS solution was injected intraperitoneally with 1 ml once a week.BPS was administered daily via a gastric gavage for 21 days.BPS was started at the day of the first CSE injection.TUNEL was performed to observe the DNA damaged cells and the expression of caspase-3 was determined by immunohistochemistry and Western Blotting.MMP-2 and MMP-9 activities were investigated by gelatin zymography and TNF-αand IL-1βconcentrations were measured by ELISA.We also analyze the serum antioxidant activity by bioantioxidant power(BAP) test.
     Results
     1.We confirmed that intraperitoneal injection of CSE in rats caused emphysematous destruction of the lung within 3 weeks.The MLI and DI were significantly increased in the CSE group compared with the values in the control group(MLI:108.7±6.8μm vs.69.8±6.6μm,p<0.01 and DI:62.2±7.0%vs.13.9±2.7%,p<0.01,respectively).The MLI and DI were significantly reduced in the lungs in the BPS-1 group(MLI: 83.9±10.5μm,p<0.01;DI:49.3±7.5%,p<0.01) and BPS-2 group (MLI:77.0±7.1μm,p<0.01;DI:47.1±6.9%,p<0.01) compared with those in the CSE group.
     2.The concentration of 6-keto-PGF1αwas significantly reduced in the lung tissues of the rats with CSE-induced emphysema(40.6±29.3μg/mg) compared with those of control rats(173.2±49.3μg/mg,p<0.01).BPS treatment markedly increased the level of 6-keto-PGF1αcompared with that in CSE injected rats(BPS-1:134.4±52.1μg/mg,p<0.05;BPS-2:432.9±71.5μg/mg,p<0.01).It is curious that the 6-keto-PGF1αlevel in high-dose BPS group was three-folds higher than that in groups of control and low-dose BPS rats(p<0.01).
     3.The TUNEL-positive(TUNEL~+) cells were frequently localized in the peribronchiolar,intra-alveolar,and septal structures in the CSE-injected rats.The DNA damaged cells were very rare in the normal rats(AI:2.9±0.9%),while the TUNEL~+ cells in CSE group were much more frequent(AI:20.3±0.9%,p<0.01).BPS greatly reduced the number of TUNEL~+ cells in the lungs of CSE treated emphysematous rats(AI:8.9±2.5%in BPS-1 group and 7.8±1.3%in BPS-2 group,p<0.01 vs.controls for each).
     4.Rats injected with CSE showed a large number of caspase-3~+ alveolar septal cells compared with the cells in the control and BPS treated rats.The protein levels of the cleaved form of caspase-3 were increased in the rats with CSE-induced emphysema(270.1±34.7%) compared with those of control rats(146.3±20.4%,p<0.05).BPS treatment markedly reduced the protein level of cleaved caspase-3 compared with that in CSE injected rats(BPS-1:162.7±53.3%,p<0.05;BPS-2:154.0±32.8%,p<0.05).
     5.Rats injected with CSE showed increased MMP-2 and MMP-9 activities in their lung tissue homogenates(MMP-2:215.2±33.5%,p<0.01;MMP-9:190.5±60.0%,p<0.05) compared with the activity in the control rats(MMP-2:98.2±38.4%,MMP-9:84.1±29%).MMP-2 and MMP-9 activities were reduced in the two BPS treatment groups, but statistical significance occurred in MMP-2 activity of both low- and high-dose BPS treatment rats(BPS-1:148.1±45.3%,p<0.05;BPS-2: 116.8<53.3%,p<0.01,respectively) while in MMP-9 activity in only high dose BPS treatment rats(97.3±40.6%,p<0.05).
     6.The levels of TNF-αand IL-1βwere significantly increased in the CSE group compared with those in controls(p<0.01).And high-dose BPS was significantly reduced the levels of TNF-αand IL-1βin the lungs of CSE treated emphysematous rats(p<0.01).The levels of TNF-αand IL-1βwere positively correlated with the AI in the lungs of all rats including the control rats and emphysema rats induced by CSE injection(r=0.657,p<0.01 and r=0.530,p<0.01,respectively).
     7.The serum antioxidant activity was significantly decreased in the CSE treated rats(1653.4±504.7μmol/L,p<0.05) compared with the control rats(2438.9±235.6μmol/L).BPS treatment significantly prevented the reduction of antioxidant activity in rats injected with CSE (BPS-1:2420±434.4μmol/L,p<0.05,BPS-2:2344.8±664.6μmol/L, p<0.05,in comparison to CSE group).
     8.The cAMP levels were 2.31±1.04μg/mg in the lung tissues of BPS-1 group and 3.83±2.83μg/mg in BPS-2 group,in contrast to the undetectable cAMP levels in both the control rats and CSE-injected rats (less than 1.05μg/mg).
     Conclusion
     BPS protects against the development of CSE-induced emphysema by attenuating apoptosis,inhibiting proteolytic enzyme activity, reducing inflammatory cytokine levels and augmenting antioxidant activity.BPS may potentially represent a new therapeutic option in the prevention of emphysema in humans in prospect.
引文
[1]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007年修订版).中华结核和呼吸杂志,2007;30:8-17.
    [2]Tuerd RM,ChaconM,Alger L,et al.Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension:evidence for a process of disordered angiogenesis.J Pathol,2001;195(3):367-74.
    [3]Bacako(?)lu F,Atasever A,Ozhan MH,et al.Plasma and bronchoalveolar lavage fluid levels of endothelin-1 in patients with chronic obstructive pulmonary disease and pulmonary hypertension.Respiration,2003;70(6):594-9.
    [4]Roland M,Bhowmik A,Sapsford RJ,et al.Sputum and plasma endothelin-1levels in exacerbations of chronic obstructive pulmonary disease.Thorax,2001;56(1):30-5.
    [5]陈燕,陈平.慢性阻塞性肺疾病患者环氧酶2和基质金属蛋白酶2的表达及其与气流阻塞的关系.中华结核与呼吸杂志,2005;28(5):324-7.
    [6]Barnes PJ,Shapiro SD,Pauwels RA.Chronic obstructive pulmonary disease:molecular and cellular mechanisms.Eur Respir J,2003;22:672-88.
    [7]蔡珊,陈平,朱应群,等.慢性阻塞性肺疾病气道炎症与肺泡巨噬细胞炎症蛋白1α、明胶酶B活性的研究.中华结核和呼吸杂志,2001;24(7):429-32.
    [8]刘杰波,陈平.慢性支气管炎气道巨噬细胞计数及淋巴细胞功能相关抗原1的研究.中华结核和呼吸杂志,2001;24(5):280-2.
    [9]陈平,蔡珊,朱应群,等.肺泡巨噬细胞在慢性阻塞性肺疾病气道炎症中的作用.中华内科杂志,2001;40(4):232-5.
    [10]Yanagisawa M,Kudhara H,Kimura S,et al.A novel potent vasoconstrictor peptide with produced by vascular endothelial cells.Nature,1988;332:411-5.
    [11]Mattoli S,Mezzetti M,Riva G.Specific binding of endothelin on human bronchial smooth muscle cells in culture and section of endothelin-like material from bronchial.Am J Respir Cell Mol Biol,1990;3(1):145-51.
    [12]Kourembanas S,Marsden PA,Mcquillan LP,et al.Hypoxia induces endothelin gene expression and secretion in cultured human endothelium.J Clin Invest,1991;88(21):1054-7.
    [13]J(?)zsef L,Khreiss T,Foumier A,et al.Extracellular signal regulated kinase plays an essential role in endothelin-1 induced homotypic adhesion of human neutrophil granulocytes.Br J Pharmacol,2002;135(5):1167-74.
    [14]Fagan KA,McMurtry IF,Rodman DM.Role of endothelin-1 in lung disease.Respir Res,2001;2(2):90-101.
    [15]Li H,Elton TS,Chen YF,et al.Increased endothelin recepter gene expression in hypoxic rat lung.Am J Physiol,1994;266(5Pt1):L553-560.
    [16]Nikolaou E,Trakada G,Prodromakis E,et al.Evaluation of arterial endothelin-1levels,before and during a sleep study,in patients with bronchial asthma and chronic obstructive pulmonary disease.Respiration,2003;70(6):606-10.
    [17]何智辉,陈平.慢性阻塞性肺疾患者体内白细胞介素-6和C-反应蛋白质量浓度的变化及意义.中国实用内科杂志,2006;26(13):989-91.
    [18]Hay DW.Putative mediator role of endothelin-1 in asthma and other lung diseases.Clin Exp Pharmacol Physiol,1999;26(2):168-71.
    [19]Tsoumakidou M,Tzanakis N,Siafakas NM.Induced sputum in the investigation of airway inflammation of COPD.Respir Med,2003;97(8):863-71.
    [20]Gershman NH,Liu H,Wong HH,et al.Fractional analysis of sequential induced sputum samples during sputum induction:evidence that different lung compartments are sampled at different time points.J Allergy Lcin Immunol,1999;104(2pt1):322-8.
    [21]Silkoff PE,Trudeau JB,Gibbs R,et al.The relationship of induced-sputum inflammatory cells to BAL and biopsy.Chest,2003;123(3 Suppl):371S-2S.
    [1]中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南(2007年修订版).中华结核和呼吸杂志,2007;30:8-17.
    [2]Peinado VI,Barbera JA,Ramirez J,et al.Endothelial dysfunction in pulmonary arteries of patients with mild COPD.Am J Physiol,1998;274:L908-13.
    [3]Barbera JA,Peinado VI,Santos S.Pulmonary hypertension in chronic obstructive pulmonary disease.Eur Respir J,2003;21:892-905.
    [4]Kasahara Y,Tuder RM,Cool CD,et al.Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema.Am J Respir Crit Care Med,2001;163:737-44.
    [5]Zhang Chen,Cai Shan,Chen Ping,et al.Inhibition of TNF-α reduces alveolar septal cell apoptosis in passive smoking rats.Chinese Medical Journal,2008;121(7):597-601.
    [6]Cai Shan,Zhang Chen,Chen Ping,et al.Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats.Respirology,2009;14(3):354-9.
    [7]刘绍坤,陈平,陈剑波,等.慢性阻塞性肺疾病肺血管内皮细胞和肺泡上皮细胞凋亡的实验研究.中华结核和呼吸杂志,2008;31(8):581-5.
    [8]谢丽华,陈平,陈芳,等.香烟提取物对人内皮细胞基质金属酶9和组织金属蛋白酶抑制剂1分泌的影响.中华结核和呼吸杂志,2006;29(10):715-6.
    [9]Chen Y,Chen P,Hanaoka M,et al.Enhanced Levels of Prostaglandin E_2 and Matrix Metalloproteinase-2 Correlate with the Severity of Airflow Limitation in Stable COPD.Respirology,2008;13(7):1014-21.
    [10]裴艳芳,陈平,李军利,等.环氧合酶2在香烟提取物诱导内皮细胞凋亡中的作用.中华结核和呼吸杂志,2009;32(2):128-32.
    [11]Reinders JH,Brinkman HJ,van Mourik JA,et al.Cigarette smoke impairs endothelial cell prostaeyelin production.Arteriosclerosis,1986;6:15-23.
    [12]Jeremy JY,Mikhailidis DP,Dandona P.Cigarette smoke extracts,but not nicotine,inhibit prostaeyclin(PGI_2) synthesis in human,rabbit and rat vascular tissue.Prostaglandins Leukot Med,1985;19:261-70.
    [13]Nana-Sinkam SP,Lee JD,Stearman R,et al.Prostaeyclin synthase in smoking-related lung disease.Proc Am Thorac Soe,2006;3(6):517.
    [14]刘韵蝉,唐筑灵,何燕.慢性阻塞性肺疾病和肺心病患者血浆TXB_2、6-keto-PGF1α的测定.贵阳医学院学报,2002;27(4):314-5.
    [15]Peinado VI,Barbera JA,Abate P,et al.Inflammatory reaction in pulmonary muscular arteries of patient s with mild chronic obstructive pulmonary disease.Am J Respir Crit Care Med,1999;159(5 Pt1):1605-11.
    [16]HacheM,Denault AY,Belisle S,et al.Inhaled prostacyclin(PGI2) is an effective addition to the treatment of pulmonary hypertension and hypoxia in the operating room and intensive care unit.Can J Anaesth,2001;48(9):924-9.
    [17]Schutte H,Schell A,Schafer C,et al.Subthreshold doses of nebulized prostacyclin and rolip ram synergistaically protect against lung ischemia-reperfusion.Transplantation,2003;75(6):814-21.
    [18]Barst RJ,Rubin LJ,Long WA,et al.A comparison of continuous intravenous epoprostenol(prostacyclin) with conventional therapy for primary pulmonary hypertension.The Primary Pulmonary Hypertension Study Group.N Engl J Med,1996;334:296-302.
    [19]徐正阶,王良兴,王群姬,等.慢性低O_2高CO_2肺动脉高压大鼠血浆NO和肺动脉NOS及其基因表达的变化.中国病理生理杂志,2001:17(12):1212-4.
    [20]Nagao K,Tanaka H,KomaiM,et al.Role of prostaglandin I_2 in airway remodeling induced by repeated allergen challenge in mice.Am J Respir Cell Mol Biol,2003;29(3 Pt1):314-20.
    [21]Kemming G,HablerO,KleenM,et al.Searching the ideal inhaled vasodilator:from nitric oxide to prostacyclin.Eur Surg Res,2002;34(1-2):196-202.
    [22]Tuder RM,Cool CD,Geraci MW,et al.Prostacyclin synthase expression is decreasedin lungs from patients with severe pulmonary hypertension.Am J Respir Crit Care Med,1999;159:1925-32.
    [23]Geraci MW,Gao B,Shepherd DC,et al.Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension.J Clin Invest,1999;103:1509-15.
    [24]Nana-Sinkam SP,Lee JD,Sotto-Santiago S,et al.Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke.Am J Respir Crit Care Med,2007;175:676-85.
    [1]World Health Organization,October 2002.Update 2008:The world health report 2002-Reducing risks,promoting healthy life.http://www.who.int/whr/2002/en/Accessed:15 July 2008.
    [2]Yoshida T,Tuder RM.Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease.Physiol Rev,2007;87:1047-82.
    [3]Aoshiba K,Yokohori N,Nagai A.Alveolar wall apoptosis causes lung destruction and emphysematous changes.Am J Respir Cell Mol Biol,2003;28:555-62.
    [4]Demedts IK,Demoor T,Bracke KR,et al.Role of apoptosis in the pathogenesis of copd and pulmonary emphysema.Respir Res,2006;7:53-63.
    [5]Pardo A,Selman M.Proteinase-antiproteinase imbalance in the pathogenesis of emphysema:The role of metalloproteinases in lung damage.Histol Histopathol,1999;14:227-33.
    [6]Chung KF,Adcock IM.Multifaceted mechanisms in COPD:Inflammation,immunity,and tissue repair and destruction.Eur Respir J,2008;31:1334-56.
    [7]Tuder RM, Zhen L, Cho CY, et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol, 2003;29:88-97.
    [8]Galie N, Manes A, Branzi A. The endothelin system in pulmonary arterial hypertension. Cardiovasc Res, 2004;61:227-37.
    [9]Wu-Wong JR, Chiou WJ, Magnuson SR, et al. Endothelin receptor agonists and antagonists exhibit different dissociation characteristics. Biochim Biophys Acta, 1994;1224:288-94.
    [10]Wu-Wong JR, Chiou WJ, Huang ZJ, et al. Endothelin receptors in human smooth muscle cells: Antagonist potency differs on agonist-evoked responses. Am J Physiol, 1994;267:C1185-95.
    [11]Piacentini L, Gray M, Honbo NY, et al. Endothelin-1 stimulates cardiac fibroblast proliferation through activation of protein kinase C. J Mol Cell Cardiol, 2000;32:565-76.
    [12]Finsnes F, Skjonsberg OH, Tonnessen T, et al. Endothelin production and effects of endothelin antagonism during experimental airway inflammation. Am J Respir Crit Care Med, 1997;155:1404-12.
    [13]Filippatos GS, Gangopadhyay N, Lalude O, et al. Regulation of apoptosis by vasoactive peptides. Am J Physiol Lung Cell Mol Physiol, 2001;281 :L749-61.
    [14]Hay DW, Henry PJ, Goldie RG. Endothelin and the respiratory system. Trends Pharmacol Sci, 1993;14:29-32.
    [15]Hay DW. Putative mediator role of endothelin-1 in asthma and other lung diseases. Clin Exp Pharmacol Physiol, 1999;26:168-71.
    [16]Spiropoulos K, Trakada G, Nikolaou E, et al. Endothelin-1 levels in the pathophysiology of chronic obstructive pulmonary disease and bronchial asthma. Respir Med, 2003;97:983-9.
    [17]Wright JL, Tai H, Churg A. Vasoactive mediators and pulmonary hypertension after cigarette smoke exposure in the guinea pig. J Appl Physiol, 2006;100:672-8.
    [18]Nana-Sinkam SP, Lee JD, Sotto-Santiago S, et al. Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke. Am J Respir Crit Care Med, 2007; 175:676-85.
    [19] Lee KM, Renne RA, Harbo SJ, et al. 3-week inhalation exposure to cigarette smoke and/or lipopolysaccharide in AKR/J mice. Inhal Toxicol, 2007;19(1):23-35.
    [20]庞宝森,李远红,张洪玉.慢性阻塞性肺疾病动物模型的研究进展.心肺血管病杂志,2005;24(1):45-6.
    [21]Agusti AG.Systemic effects of chronic obstructive pulmonary disease.Proc Am Thorac Soc,2005;2:367-70.
    [22]Taraseviciene-Stewart L,Scerbavicius R,Choe KH,et al.An animal model of autoimmune emphysema.Am J Respir Crit Care Med,2005;171:734-42.
    [23]Taraseviciene-Stewart L,Douglas IS,Nana-Sinkam PS,et al.Is alveolar destruction and emphysema in chronic obstructive pulmonary disease an immune disease? Proc Am Thorac Soc,2006;3(8):687-90.
    [24]Taraseviciene-Stewart L,Nicolls,Burns N,et al.Intraperitoneal injection of cigarette smoke extract causes lung cell death and emphysema in rats[abstract].Am J Respir Crit Care Med,2006;173:A626.
    [25]Demedts IK,Demoor T,Bracke KR,et al.Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema.Respir Res,2006;7:53-63.
    [26]Zhang Chen,Cai Shan,Chen Ping,et al.Inhibition of TNF-α reduces alveolar septal cell apoptosis in passive smoking rats.Chinese Medical Journal,2008;121(7):597-601.
    [27]Cai Shan,Zhang Chen,Chen Ping,et al.Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats.Respirology,2009;14(3):354-9.
    [28]刘绍坤,陈平,陈剑波,等.慢性阻塞性肺疾病肺血管内皮细胞和肺泡上皮细胞凋亡的实验研究.中华结核和呼吸杂志,2008;31(8):581-5.
    [29]Bacakoglu F,Atasever A,Ozhan MH,et al.Plasma and bronchoalveolar lavage fluid levels of endothelin-1 in patients with chronic obstructive pulmonary disease and pulmonary hypertension.Respiration,2003;70:594-9.
    [30]Cataldo D,Munaut C,Noel A,et al.Mmp-2-and mmp-9-1inked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease.Int Arch Allergy Immunol,2000;123:259-67.
    [31]Chakrabarti S,Patel KD.Matrix metalloproteinase-2(mmp-2) and mmp-9 in pulmonary pathology.Exp Lung Res,2005;31:599-621.
    [32]陈燕,陈平.慢性阻塞性肺疾病患者环氧酶2和基质金属蛋白酶2的表达及其与气流阻塞的关系.中华结核与呼吸杂志,2005;28(5):324-7.
    [33]Belvisi MG,Bottomley KM.The role of matrix metalloproteinases(mmps) in the pathophysiology of chronic obstructive pulmonary disease(copd):A therapeutic role for inhibitors of mmps? Inflamm Res, 2003;52:95-100.
    [34] Roth M.Pathogenesis of COPD. Part Ⅲ. Inflammation in COPD.Int J Tuberc Lung Dis, 2008;12(4):375-80.
    [35]Tsoumakidou M, Tzanakis N, Siafakas NM.Induced sputum in the investigation of airway inflammation of COPD.Respir Med, 2003;97(8):863-71.
    [36]Klainguti M, Aigner S, Kilo J, et al. Lack of nuclear apoptosis in cardiomyocytes and increased endothelin-1 levels in a rat model of myocardial stunning.Basic Res Cardiol,2000;95:308-15.
    [37]Shaw MJ, Shennib H, Tayara L, et al. Endothelin receptor antagonist sb209670 decreases lung allograft apoptosis and improves lung graft function after prolonged ischemia. J Cardiovasc Pharmacol, 2000;36:S209-11.
    [38]Bagnato A, Natali PG. Targeting endothelin axis in cancer. Cancer Treat Res, 2004; 119:293-314.
    [39]Dub(?) J, Chakir J, Dub(?) C, et al. Synergistic action of endothelin (ET)-1 on the activation of bronchial fibroblast isolated from normal and asthmatic subjects. Int J Exp Pathol, 2000;81(6):429-37.
    [40]Gomez-Garre D, Ruiz-Ortega M, Ortego M, et al. Effects and interactions of endothelin-1 and angiotensinⅡ on matrix protein expression and synthesis and mesangial cell growth. Hypertension, 1996;27:885-92.
    [41]He S, Prasanna G, Yorio T.Endothelin-1-mediated signaling in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in astrocytes. Invest Ophthalmol Vis Sci, 2007;48(8):3737-45.
    [42]Tang XY, Liu Q, Dai DZ, et al. CPU0213, a novel endothelin receptor antagonist, suppresses the upregulation of matrix metalloproteinases and connexin 43 in hyperthyroid myocardium. Pharmacol Rep, 2008;60(4):524-31.
    [43]Langleben D, DeMarchie M, Laporta D, et al. Endothelin-1 in acute lung injury and the adult respiratory distress syndrome.Am Rev Respir Dis, 1993;148:1646-50.
    [44]Mullol J, Baraniuk JN, Logun C, et al. Endothelin-1 induces GM-CSF, IL-6 and IL-8 but not G-CSF release from a human bronchial epithelial cell line. Neuropeptides, 1996;30:551-6.
    [45]Gamze K, Mehmet HM, Deveci F, et al. Effect of bosentan on the production of proinflammatory cytokines in a rat model of emphysema. Exp Mol Med, 2007;39(5):614-20.
    [46] Pollock DM, Pollock JS. Endothelin and oxidative stress in the vascular system. Curr Vasc Pharmacol, 2005;3:365-7.
    [47]Duda M, Konior A, Klemenska E, et al. Preconditioning protects endothelium by preventing ET-1 -induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart. J Mol Cell Cardiol, 2007;42:400-10.
    [48]Syeda F, Tullis E, Slutsky AS, et al. Human neutrophil peptides upregulate expression of COX-2 and endothelin-1 by inducing oxidative stress. Am J Physiol Heart Circ Physiol, 2008;294(6):H2769-74.
    [49]Kiris I, Narin C, Giilmen S, et al. Endothelin Receptor Antagonism by Tezosentan Attenuates Lung Injury Induced by Aortic Ischemia-Reperfusion. Ann Vasc Surg, 2009 Jan 8. [Epub ahead of print]
    [1] Pauwels RA, Rabe KF. Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet, 2004;364:613-20.
    [2] Lopez AD, Mathers CD. Measuring the global burden of disease and epidemiological transitions: 2002-2030. Ann Trop Med Parasitol, 2006; 100: 481-99.
    [3] Betsuyaku T, Nishimura M, Takeyabu K, et al. Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med , 1999;159:1985-91.
    [4] Chung KF. Cytokines in chronic obstructive pulmonary disease. Eur Respir J, 2001;Suppl34: 50s-9s.
    [5] Atkinson JJ, Senior RM. Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol, 2003;28:12-24.
    [6] Cataldo DD, Gueders MM, Rocks N, et al. Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases inhibitors. Cell Mol Biol (Noisy-le-grand) , 2003;49:875-84.
    [7] Cataldo D, Munaut C, Noel A, et al. MMP-2- and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol, 2000;123:259-67.
    [8] Tuder RM, Zhen L, Cho CY, et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol,2003;29:88-97.
    [9]Agusti A,MacNee W,Donaldson K,et al.Hypothesis:does COPD have an autoimmune component? Thorax,2003;58:832-4.
    [10]Taraseviciene-Stewart L,Burns N,Kraskauskas D,et al.Mechanisms of autoimmune emphysema.Proc Am Thorac Soc,2006;3:486-7.
    [11]Hodge S,Hodge G,Scicchitano R,et al.Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells.Immunol Cell Biol,2003;81:289-96.
    [12]Majo J,Ghezzo H,Cosio MG.Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema.Eur Respir J,2001;17:946-53.
    [13]Yokohori N,Aoshiba K,Nagai A.Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema.Chest,2004;125:626-32.
    [14]Aoshiba K,Yokohori N,Nagai A.Alveolar wall apoptosis causes lung destruction and emphysematous changes.Am J Respir Cell Mol Biol,2003;28:555-62.
    [15]Petrache I,Fijalkowska I,Zhen L,et al.A novel antiapoptotic role for alphal-antitrypsin in the prevention of pulmonary emphysema.Am J Respir Crit Care Med,2006;173:1222-8.
    [16]Zhang Chen,Cai Shan,Chen Ping,et al.Inhibition of TNF-α reduces alveolar septal cell apoptosis in passive smoking rats.Chinese Medical Journal,2008;121(7):597-601.
    [17]Cai Shan,Zhang Chen,Chen Ping,et al.Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats.Respirology,2009;14(3):354-9.
    [18]刘绍坤,陈平,陈剑波,等.慢性阻塞性肺疾病肺血管内皮细胞和肺泡上皮细胞凋亡的实验研究.中华结核和呼吸杂志,2008;31(8):581-5.
    [19]Spisni E,Bartolini G,Orlandi M,et al.Prostacyclin(PGI_2) synthase is a constitutively expressed enzyme in human endothelial cells.Exp Cell Res,1995;219:507-13.
    [20]Chen CH,Lin H,Hsu YH,et al.The protective effect of prostacyclin on addamycin-induced apoptosis in rat renal tubular cells.Eur J Pharmacol,2006;529:8-15.
    [21]Cutler NS,Graves-Deal R,LaFleur BJ,et al.Stromal production of prostacyclin confers an antiapoptotic effect to colonic epithelial cells.Cancer Res,2003;63:1748-51.
    [22]Liou JY,Lee S,Ghelani D,et al.Protection of endothelial survival by peroxisome proliferator-activated receptor-delta mediated 14-3-3 upregulation.Arterioscler Thromb Vasc Biol,2006;26:1481-7.
    [23]Miyata M,Ueno Y,Sekine H,et al.Protective effect ofberaprost sodium,a stable prostacyclin analogue,in development of monocrotaline-induced pulmonary hypertension.J Cardiovasc Phannacol,1996;27:20-6.
    [24]Nana-Sinkam SP,Lee JD,Sotto-Santiago S,et al.Prostacyclin prevents pulmonary endothelial cell apoptosis induced by cigarette smoke.Am J Respir Crit Care Med,2007;175:676-85.
    [25]Wright JL,Churg A.Animal models of cigarette smoke-induced COPD.Chest,2002;122:301S-6S.
    [26]L.Taraseviciene-Stewart,Nicolls,N.Burns,et al.Intraperitoneal injection of cigarette smoke extract causes lung cell death and emphysema in rats.Am J Respir Crit Care Med,2006;173:A626.
    [27]L.Taraseviciene-Stewart,D.Kxaskauskas,J.H.Lee,et al.Cigarette smoke extract(CSE)-induced emphysema in mice.Am J Respir Crit Care Med,2007;175:A529.
    [28]谢丽华,陈平,陈芳,等.香烟提取物对人内皮细胞基质金属酶9和组织金属蛋白酶抑制剂1分泌的影响.中华结核和呼吸杂志,2006;29(10):715-6.
    [29]Pang G,OrtegaM,Zighang R,et al.Autocrine modulation of 1L-8 production by sputum neutrophils in chronic bronchial sepsis.Am J Respir Crit Care Med,1997,155(2):726-31.
    [30]Crooks SW,Bayley DL,Hill SL,et al.Bronchial inflammation in acute bacterial exacerbations of chronic bronchitis:the role of leukotrieneB4.Eur Respir J,2000;15(2):274-80.
    [31]Aaron SD,Angel JB,Lunau M,et al.Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease.Am J Respir Crit CareMed,2001;163(2):349-55.
    [32]Dourado VZ,Tanni SE,Vale SA,et al.Systemic manifestations in chronic obstructive pulmonary disease.J Bras Pneumol,2006;32(2):161-71.
    [33]Itoh T,Nagaya N,Fujii T,et al.A combination of oral sildenafll and beraprost ameliorates pulmonary hypertension in rats. Am J Respir Crit Care Med, 2004;169:34-8.
    [34]Ueno M, Miyauchi T, Sakai S, et al. A Combination of oral endothelin-A receptor antagonist and oral prostacyclin analogue is superior to each drug alone in ameliorating pulmonary hypertension in rats. J Am Coll Cardiol, 2002;40:175-81.
    [35]Kamio K, Liu X, Sugiura H, et al. Prostacyclin analogs inhibit fibroblast contraction of collagen gels through the cAMP-PKA pathway. Am J Respir Cell Mol Biol, 2007;37:113-20.
    [36]Kitahara M, Ichikawa M, Kinoshita T, et al. Prostacyclin inhibits the production of MMP-9 induced by phorbol ester through protein kinase A activation, but does not affect the production of MMP-2 in Human cultured mesangial cells. Kidney Blood Press Res, 2001;24:18-26.
    [37]Ohmori M, Kitoh Y, Kawaguchi A, et al. Enhanced neutrophil superoxide anion production and its modification by beraprost sodium in spontaneously hypertensive rats. Am J Hypertens, 2001;14:722-8.
    [38]Adderley SR, Fitzgerald DJ. Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem, 1999;274:5038-46.
    [39]Shinmura K, Tamaki K, Sato T, et al. Prostacyclin attenuates oxidative damage of myocytes by opening mitochondrial ATP-sensitive K+ channels via the EP3 receptor. Am J Physiol Heart Circ Physiol, 2005;288:H2093-101.
    [40]Tanaka Y, Yamaki F, Koike K, et al. New insights into the intracellular mechanisms by which PGI2 analogues elicit vascular relaxation: Cyclic AMP-independent, Gs-protein mediated-activation of maxik channel. Curr Med Chem Cardiovasc Hematol Agents, 2004;2:257-65.
    [41]Murata T, Murai T, Kanai T, et al. General pharmacology of beraprost sodium. 2nd communication: effect on the autonomic, cardiovascular and gastrointestinal systems, and other effects. Arzneimittelforschung, 1989;39:867-76.
    [42] Jiang XW, Kambara K, Gotoh N, et al. Effects of low-dose Beraprost sodium, a stable prostaglandin I2 analogue, on reperfusion injury to rabbit lungs. Am J Respir Crit Care Med, 1998;158:1669-75.
    [1]程显声,李景周,张珍祥,等.慢性阻塞性肺疾病、肺心病人群防治的研究基线资料分析.中华结核和呼吸杂志,1998;21(12):749-52.
    [2]中华医学会呼吸学分会.慢性阻塞性肺疾病诊治指南(2007年修订版).中华结核和呼吸杂志,2007;30(1):8-17.
    [3]Regional COPD Working Group.COPD prevalence in 12 Asia-Pacific countries and regions:projections based on the COPD prevalence estimation model.Respiratory,2003;8(2):192-8.
    [4]Betsuyaku T,Nishimura M,Takeyabu K,et al.Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema.Am J Respir Crit Care Med,1999;159:1985-91.
    [5]Chung KF.Cytokines in chronic obstructive pulmonary disease.Eur Respir J,2001;Supp134:50s-59s.
    [6]Atkinson J J,Senior RM.Matrix metalloproteinase-9 in lung remodeling.Am J Respir Cell Mol Biol,2003;28:12-24.
    [7]Cataldo DD,Gueders MM,Rocks N,et al.Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases inhibitors.Cell Mol Biol(Noisy-le-grand),2003;49:875-84.
    [8]Cataldo D,Munaut C,Noel A,et al.MMP-2-and MMP-9-1inked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease.Int Arch Allergy Immunol,2000;123:259-67.
    [9]Tuder RM,Zhen L,Cho CY,et al.Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade.Am J Respir Cell Mol Biol,2003;29:88-97.
    [10]Agusti A,MacNee W,Donaldson K,et al.Hypothesis:does COPD have an autoimmune component? Thorax,2003;58:832-4.
    [11]Demedts IK,Demoor T,Bracke KR,et al.Role of apoptosis in the pathogenesis of copd and pulmonary emphysema.Respir Res,2006;7:53-63.
    [12]Churg A,Cosio M,Wright JL.Mechanisms of cigarette smoke-induced COPD:insights from animal models.Am J Physiol Lung Cell Mol Physiol,2008;294(4):L612-31.
    [13]Wright JL,Churg A.Cigarette smoke causes physiologic and morphologic changes of emphysema in the guinea pig.Am Rev Respir Dis,1990;142(6 Pt1):1422-8.
    [14]Escolar JD,Martinez MN,Escolar MA,et al.Tobacco smoke and age as risk factors in emphysema,Morphometdcal study on the rat.Histol Histopathol,1996;11(1):7-16
    [15]Zhang Chen,Cai Shan,Chen Ping,et al.Inhibition of TNF-α reduces alveolar septal cell apoptosis in passive smoking rats.Chinese Medical Journal,2008;121(7):597-601.
    [16]Cai Shan,Zhang Chen,Chen Ping,et al.Oral N-acetylcysteine attenuates pulmonary emphysema and alveolar septal cell apoptosis in smoking-induced COPD in rats.Respirology2009;14(3):354-9.
    [17]陈剑波,陈平,蔡珊,等.烟雾暴露慢性阻塞性肺疾病大鼠肺内细胞凋亡和增殖的变化.中华结核和呼吸杂志,2007;30(9):709-10.
    [18]Tavares JL,Wangoo A,Dilworth P,et al.Thalidomide reduces tumour necrosis factor-alpha production by human alveolar macrophages.Respir Meal,1997;91(1):31-9.
    [19]Blackwood RA,Moret J,Mandl I,et al.Emphysema induced by intravenously administered endotoxin in an alpha 1-antitrypsin-defificient rat model.Am Rev Respir Dis,1984;130(2):231-6.
    [20]Stolk J,Rudolphus A,Davies P,et al.Induction of emphysema and bronchial mucus cell hyperplasia by intratracheal instillation of lipopolysaccharide in the hamster.J Pathol,1992;167(3):349-56.
    [21]Wegmann M,Fehrenbach A,Heimann S,et al.NO2-induced airway inflammation is associated with progressive airflow limitation and development of emphysema-like lesions in C57b1/6 mice.Exp Toxicol Pathol,2005;56(6):341-50.
    [22]Gross P,Pfitzer EA,Tolker E,et al.Experimental emphysema:Its production with papain in normal and silicotic rats.Arch Environ Health,1965,11:50-8.
    [23]曾勉,郭禹标,谢灿茂,等.猪胰弹性蛋白酶肺气肿模型复制的实验研究.现代康复,2001;5(3):59-60.
    [24]Kasahara Y,Tuder RM,Taraseviciene-Stewart L,et al.Inhibition of VEGF receptors causes lung cell apoptosis and emphysema.J Clin Invest,2000;106(11):1311-9.
    [25]Aoshiba K,Yokohori N,Nagai A.Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol, 2003;28(5): 555-62.
    [26]Taraseviciene-Stewart L, Scerbavicius R, Choe KH, et al. An animal model of autoimmune emphysema. Am J Respir Crit Care Med, 2005;171(7):734-42.
    [27]L. Taraseviciene-Stewart, Nicolls, N,. Burns, et al. Intraperitoneal injection of cigarette smoke extract causes lung cell death and emphysema in rats. Am J Respir Crit Care Med, 2006;173:A626.
    [28]L. Taraseviciene-Stewart, D. Kraskauskas, J. H. Lee, et al. Cigarette smoke extract (CSE)-induced emphysema in mice. Am J Respir Crit Care Med, 2007;175:A529.
    [29] Tang K, Rossiter HB, Wagner PD, et al. Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol, 2004;97(4): 1559-66.
    [30]Hautamaki RD, Kobayashi DK, Senior RM, et al. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science, 1997;277:2002-4.
    [31]Brusselle GG, Bracke KR, Maes T, et al. Murine models of COPD. Pulm Pharmacol Ther, 2006; 19(3): 155-65.
    [32]Parameswaran H , Majumdar A , Ito S , et al. Quantitativecharacterization of airspace enlargement in emphysema. J Appl Physiol, 2006;100(1):186-93.
    [33]Suki B. Fluctuations and power laws in pulmonary physiology. Am J Respir Crit Care Med, 2002;166(2):133-7.
    [34] Sato A , Hirai T, Imura A , et al. Morphological mechanism of the development of pulmonary emphysema in klotho mice. Proc Natl Acad Sci USA, 2007;104(7):2361-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700