玄武岩连续纤维增强树脂及增强结构用胶合板的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用玄武岩连续纤维增强塑料(BFRP:Basalt Fiber Reinforced Polymer)增强木制材料,可以克服木制材料固有的缺陷,提高木材的使用价值,实现劣质木材的优化利用,大大拓宽木制材料在建筑领域,包括建筑以及桥梁等基础设施上的应用。本论文主要进行了三个方面的研究:(1)采用正交试验设计,考察了成型工艺参数(温度、压力、时间)对玄武岩连续纤维增强酚醛树脂复合材料(PF-BFRP)主要力学性能的影响;(2)考察了环氧树脂含量对玄武岩连续纤维增强环氧树脂复合材料拉伸性能的影响;(3)进行了玄武岩连续纤维增强结构用胶合板的研制。得出如下结论:
     (1)成型工艺参数(温度、压力、时间)对于PF-BFRP复合材料的弯曲性能的影响大小次序为压力>时间>温度,其中压力对弯曲性能的影响最为明显;各项工艺参数对于PF-BFRP复合材料的拉伸性能的影响均不明显。PF-BFRP复合材料的最佳工艺参数温度为180℃、热压压力为7MPa、热压时间为40min。采用此工艺条件所制得的PF-BFRP复合材料的弯曲强度为465MPa,弯曲模量为13.5GPa,拉伸强度为196.4MPa,拉伸模量为9.4GPa。
     (2)玄武岩连续纤维增强环氧树脂复合材料的拉伸强度随树脂含量的增加,先上升后下降,拉伸模量随树脂含量的增加而逐渐降低。当树脂含量为40%-45%时,玄武岩连续纤维增强环氧树脂复合材料的拉伸性能较佳,对应的拉伸强度为250MPa左右,拉伸模量为12GPa左右。
     (3)采用玄武岩连续纤维增强结构用胶合板是可行的,在不同组坯方式下,增强后的复合板与普通结构用胶合板相比,弯曲强度提高了1~2倍。其中二次成型的三层玄武岩连续纤维增强酚醛树脂/HMR处理结构用胶合板的弯曲强度由未增强前的50MPa增加到130MPa.
     (4)木材表面经偶联剂HMR处理,可以大大提高了BFRP/木材复合材料的胶接性能。
Using BFRP(Basalt Fiber Reinforced Polymer) to reinforce wood composites can overcome the intrinsic faults of wood, and increase the value of wood. This technology has realized the utilization of inferior timber, which greatly developed the applications in constructions, including civil residential houses, business buildings and pavements, bridges and so on. This thesis is mainly about three aspects:(1) adopting orthogonal test to research PF-BFRP composites manufacturing factors, including temperature, pressure and time;(2) study the relationship between resin content and tension properties of epoxy BFRP composites; (3)study the bonding properties of PF-BFRP/structural plywood composite. Following conclusions are drawn:
     (1) For the bending properties of PF-BFRP composites, influence size of three factors is pressure>time>temperature, particularly, pressure influence the bending strength extremely obviously .For the tension properties of PF-BFRP composites, three factors do not influence the tension properties obviously. Influence size is also very close. The optimum technics are A3B2C3, which are molding temperature 180℃, heat pressure 7MPa, gluing time 40min. In this case, bending strength of PF-BFRP composite is 465MPa, modules of bending is 13.5GPa,tension strength is 196.4MPa and MOE is 9.4GPa。
     (2) Tension strength of epoxy BFRP increases first and then decreases with the increment of resin content. However, MOE increases with the increment of resin content. When the resin content is 40%-45%, the tension properties of epoxy BFRP are best. Correspondingly, tension strength is about 250 MPa and MOE is about 12 GPa.
     (3) It is available that using continuous basalt fiber to reinforce structural plywood. Bending strength of reinforced structural plywood composite increases 100~200%. Bending strength of second molding-3 layer basalt fiber BFRP/HMR treated structural plywood increases from 50MPa to130MPa.
     (4) HMR can improve bonding properties of BFRP/wood composites dramatically.
引文
[1] 鲍甫成,张双保等.木材与玻璃纤维复合材料性能改善的研究[J] 林业科学 2004,5(3):16-21.
    [2] 陈仲仁,张育川,张默君.可熔性酚醛树脂的合成及其在热交联 CTP 版材中的应用[J].2004.6(6):61-65.
    [3] 曹剑钊,蒋湘闽.FRP 加固修复木结构研究现状与展望[J].山西建筑,2006,2(4)99-101.
    [4] 郑云,叶列平.FRP 加固钢结构的研究进展[J].工业建筑,2005,8(8):20-27.
    [5] 程庆正.不同增强材料对刨花板性能影响的初步研究[J].木材工业,1997,11(3):15-17.
    [6] 酚醛 FRP 概论,1991 年 9 月,第 3 期,4-11 纤维复合材料,26-40.
    [7] 高宏,张继文.土木工程用 FRP 材料的疲劳性能研究.江苏建筑,2006,1(1):39.
    [8] 高文超 袁越.利用玻璃纤维增强刨花板强度.木材工业,2001,5(5):20-24.
    [9] 郝金城. 集成材制造技术[M].中国林业出版社. 2001,1.
    [10] 郝元恺,肖加余.高性能复合材料学[M],化学工业出版社,2004,140.
    [11] 胡琳娜,尚库德等, 玄武岩纤维复合材料研究, 河北工业大学学报,Vol.32,NO.2, Apr.2003:71.
    [12] 胡平,刘锦霞等.酚醛树脂及其复合材料成型工艺的研究进展.热固性树脂 2006,1(1):36-42.
    [13] 胡显奇等, 玄武岩连续纤维及其复合材料, 高科技纤维与应用, Vol.27,NO.2, Apr.2002:1-4.
    [14] 贺福,杨永岗.碳纤维增强木材复合材料(CFRW)[J]. 中国科学院山西煤炭化学研究所.2003 ,10(31):9-12.
    [15] 黄发荣,焦杨声.酚醛树脂及其应用[M],北京化学工业出版社,2003,158-159.
    [16] 贾丽霞,蒋喜志,等.玄武岩纤维及其复合材料性能研究[J].纤维复合材料,2005,12(4):13-15.
    [17] 聂昌颉.硅烷偶联剂的应用[J].热固性树脂,1992,4:43.
    [18] 欧阳兆辉,伍林,曹淑超.用作耐热性材料的酚醛树脂研究动态[J].化学与黏合,2005,4(4):229-335.
    [19] 宋焕成,赵时熙.聚合物及其复合材料[M].北京国防工业出版社,1986.200-273.
    [20] 石钱华.国外连续玄武岩纤维的发展及其应用[J].玻璃纤维,2003,4(4):27-32.
    [21] 孙秀红,徐向东,徐茂波.影响 FRP 基本力学性能的因素[J]. 山东建筑工程学院学报.2005,6(2):18-24.
    [22] 孙建.关于林业产业发展若干问题的宏观思考[J].中国木材工业,2005,(3)3:15-19.
    [23] 王广健等,改性玄武岩纤维及纤维复合过滤材料德微孔结构表征的研究,河北工业大学学报,Vol.32,NO.5,Oct.2003:7.
    [24] 王惠民.S-玻璃纤维/环氧树脂复合材料压缩破坏机理[J].2003,4(4):9-14.
    [25] 王恺,管宁.我国木材资源战略转移的技术支撑[J].木材工业,2002,6(1):1-2.
    [26] 王岚,陈阳,李振伟.连续玄武岩纤维及其复合材料的研究[J].玻璃钢/复合材料, 2000,6(6):22-24.
    [27] 王增春、何艳丽、王溥等.FRP 加固木结构的应用和研究[J].建筑技术开发 2004,3(3)3-8.
    [28] 卫东,王志强等,金属网增强型杨木单板层积材的研究[J].南京林业大学学报,2003,11(6):16-20.
    [29] 魏化震,王成国,王海庆. 高交联密度酚醛树脂的合成塑料工业 2003,2(2):16-19.
    [30] 易长海,周奇龙,许家瑞第. 硅烷偶联剂处理玻璃纤维表面的形态及活化机理[J].荆州师范学院学报(自然科学版)2001,4(2):16-26.
    [31] 玄武岩纤维的特性及其在中国的应用前景[J],纤维复合材料,2005,12(4)57-62.
    [32] 闫全英.玄武岩纤维制备的热工机理和材料研究[M].博士学位论文.2000.10.1.
    [33] 杨会峰,刘伟庆, FRP 增强胶合木梁的受弯性能研究, 建筑结构学报, Vol.28,NO.1,2007:65-71
    [34] 杨文斌,刘一星,李坚.再生木塑复合材料的研究进展[J].世界林业研究.2001,14(5):26-30.
    [35] 余钢,向中华,江昌政.农林副产物/塑料复合材料的开发.木材工业,2002,16(3):22-25.
    [36] 周生贤.当前林业的形势与任务[J].国土与绿化 2005,2(2):4-11.
    [37] 张双保,周宇,赵立, 木质复合材料研究,北京木材工业,1998,(3):28-33.
    [38] 张双保,赵立等.璃纤维增强三倍体毛白杨木制(纤维)复合材料的研究[J].北京林业大学学报 2001,7(4)20-26.
    [39] 张洋,华毓坤.木纤维与麦秸刨花制造纤维刨花板的下艺研究[J].木材工业,2001,5 (5):6-9.
    [40] 张耀明.玻璃纤维与矿物棉全书[M].化学工业出版社.2001,581.
    [41] 邹祖讳.复合材料的结构与性能材料科学技术丛书[M].科学技术出版社.1999,78.
    [42] American Plywood Association(APA), Basic Panel Properties Plywood Overlaid with Fiberglass-Reinforced Plastic[R], Reach Report 119, Part1, APA, Tacoma, WA,1972.
    [43] APA Engineered Wood Handbook. Fiber-Reinforced Polymer(FRP)-Wood Hubrid Composites. Chapter Eleven.page:1-2.
    [44] Brent Stephen Trimble. Durability and Mode-I Fracture of Fiber-Reinforced Plastic(FRP)/Wood Interface Bond[M]. Thesis submitted to the College of Engineering and Mineral Resources at West Virginia University; Morgantown, West Virginia 1999.
    [45] Benjamin Herzog, Barry Goodell, Roberto Lopez-Anido. The effect of creosote and copper naphthenate preservative systems on the adhesive bondlines of FRP/glulam composite beams[J]. October 2004,5(7)26-34.
    [46] Benjamin Herzog, Barry Goodell, Roberto Lopez-Anido. Effect of Creosote and Copper Naphthenate Preservative Treatments on Properties of FRP Composite Materials Used for Wood Reinforcement.[J]2004,8(8)17-23.
    [47] Cihat Tascioglu1, Roberto Lopez-Anido and Barry Goode. Characterization of Wood Preservative Treatments on E-Glass/Phenolic Pultruded Composite for Wood Reinforcement.34th International ASMPE Technical Conference.
    [48] Dabalos. J. F., Mababhusi Raman, P. Qiao, P, (1997), “Characterization of Mode-I Fracture of Hybrid Material Interface Bonds By Contoured DCB Specimens”, Engineering Fracture Mechanics[J],1999,3(3),173-192.
    [49] Dagher, H.J., J. Breton, and S. Shaler, Creep Behavior of FRP-Reinforced Glulam Beams[C],Proceedings ICE January 19-22,1998.
    [50] Dagher, H.J., S.M.Shaler, and C.Lowry, FRP Reinforced Particleboard[J], Forest Products Journal.1985,vol.35, NO.5, 61-68.
    [51] Dagher, H. J., and Lindyberg, R. FRP reinforced wood in bridge applications. 1st RILEM Symp. on Timber Engineering,Cachan Cedex, France, 1999,11(11) 591–598.
    [52] FAVIS B D. The interface of cationic silane coupling agent With mice [J].J.Appl.Polym. Sci.,1983,28(3): 1235-1244.
    [53] Gardner. D. J. Dabalos. J. F. Munipalle. U. M. (1994). “ Adhesive Bonding of Pultruded Fiber-reinforced Plastic to Wood[J]”. Forest Products Journals. 44(5).62-55.
    [54] Helm - Clark, CatherineM Rodgers, DavidW et al. Borehole geo2 physical techniques to define stratigraphy, alteration and aquifers inbasalt[ J ]. App lied Geophysics, 2004, 55 (1) ∶3238.
    [55] H. Ogawa, 2000. Architectural Application of Carbon Fibers Development of New Carbon Fiber Reinforced Glulam. Carbon 38(2000) 211-226.
    [56] Lawrence A Soltis,Robert J Ross,Danel F Windorski. Glass fiber -reinforced bolted wood connections[J]. Forest Products Journal Sep 1998,48,9.
    [57] Lopez-Anido, R. Gardner, D. J.and Hensley, J. L. 2000, Adhesive bonding of eastern hemlock glulam panels with E-glass/vinyl ester reinforcement[J]. Forest Products. J. 50 11/12 43–47.
    [58] Joshua Keith Botting . Development of an FRP reinforced hardwood glulam guardrail[J]. B. S. University of Maine, 2001,6(8),100-132.
    [59] Juliano Fiorelli, Antonio Alves Dias . Analysis of the Strength and Stiffness of Timber Beams Reinforced with Carbon Fiber and Glass Fiber. Materials Research, Vol. 2003.6, No. 2, 193-202.
    [60] Juliano Fiorellia, Antonio Alves Diasb. Analysis of the Strength and Stiffness of Timber Beams Reinforced with Carbon Fiber and Glass Fiber[J]. Materials Research, 2003, 6 (2)193-202.
    [61] Jirl Militky, Vladimlr Kovacic, J itka Rubnerov. Influence of thermal treatment on tensile failure of basalt fibers [ J ]. EngineeringFracture Mechanics, 2002, 6(9):102-133.
    [62] Junhui Jia. Mode-I Fatigue of Interface for Fiber-Reinforced Polymer Composite Bonded to Wood.Doctor of philosophy in Civil Engineering ;Morgantown, West Virginia 2002,8(10)56-68.
    [63] H. J. Dagher. Current State of Reinforced Wood Technology: New Products, Codes andSpecifications. Advanced Engineering Wood Composites Center,the University of Maine 2005.1(2)89-103.
    [64] Lindyberg, Robert F. Computer Model for FRP-Glulam Members. 3rd International Conference on Advanced Engineered Wood Composites 20057(7),10-14.
    [65] Juliano Fiorelli, Antonio Alves Dias . Analysis of the Strength and Stiffness of Timber Beams Reinforced with Carbon Fiber and Glass Fiber. Materials Research, No. 2003,2(2) 193-202.
    [66] Joshua Keith Botting . Development of an FRP reinforced hardwood glulam guardrail. B. S[J]. University of Maine, 2001.
    [67] Lawrence A Soltis,Robert J Ross,Danel F Windorski. Glass fiber -reinforced bolted wood connections[J]. Forest Products Journal 1998,9(9)48-53.
    [68] Lindyberg, Robert F. Computer Model for FRP-Glulam Members[C]. 3rd International Conference on Advanced Engineered Wood Composites July 10 – 14, 2005 Bar Harbor, ME, USA.
    [69] Plevris N. Triantafillou. FRP-reinforced wood as structural material. J. Mater. Civ. Eng, T. C. 1992. 4-3, 300–317.
    [70] Plevris, N., and T. Triantafillou, FRP-Reinforced Wood as Structural Material, Journal of Materials[J], in Civil Engineering, ASCE.1993,vol.4, NO.3, 300-317.
    [71] Plevris, N., and T. Triantafillou, Creep Behavior of FRP-Reinforced Wood Member[J], Journal of Structural Engineering, ASCE.1995,vol.12, NO.2, 174-186.
    [72] Sonti, S. GangaRao, H. V. S. Strength and stiffness evaluations of wood laminates with composite wraps. 50th Annual Conf, Composites Institute, Cincinnati[J]. 1995,9[7]56-78.
    [73] Sliker A. Reinforced wood laminated beams. Forest Products [J]. 1962,12(1): 91-96.
    [74] Sonti,S., GangaRao, H. V. S. Strength and stiffness evaluations of wood laminates with composite wraps[C]. 50th Annual Conf, Composites Institute, Cincinnati. 1995,1(212)121-134.
    [75] Sanchez. Construction, Evaluation, and Monitoring FRP-Glulam Bridges[C]. 3rd International Conference on Advanced Engineered Wood Composites, 2005,7(7)10-14.
    [76] Tascioglu, C., Goodell, B., and Lopez-Anido, R., 2002. Effects of Wood Preservative Treatments on Mechanical Properties of E-glass/Phenolic Pultruded Reinforcement for Wood, Forest Products Journal, Vol.52, No.11-12, pp53-61.
    [77] Tascioglu, C., Goodell, B., Lopez-Anido, R., and Gardner, D.J., 2004. Surface Energy Characterization of Preservative Treated Wood and E-glass/Phenolic composite, Forest Products Journal, Vol.54, No.12, pp262-268.
    [78] Van Elten G. J. Production, properties, applications of various wood cement products. Panel World 2000,9(9),22 -25.
    [79] Vick. C. B (1996). “Hydroxymethylated Resorcinol Coupling Agent for Enhanced Adhesion ofEpoxy and Other Thermosetting Adhesives to Wood”, Forest Products Laboratory and the Forest Products Society. Porland. OR. June 29-30. 1995, 47-55.
    [80] William G. Davids, Habib J. Dagher. FRP-Reinforced Shear Walls and Diaphragms[J]. University of Maine Advanced Engineered Wood Composites Center.2003,6(8)56-60.
    [81] William G. Davids, Habib J. Dagher. Full-Scale Beam Fatigue Testing[C]. 3rd International Conference on Advanced Engineered Wood Composites,2005,7.
    [82] William G. Davids, Habib J. Dagher. FRP-Reinforced Shear Walls and Diaphragms[C]. University of Maine Advanced Engineered Wood Composites Center.2005,7.
    [83] William G. Davids, Habib J. Dagher. Full-Scale Beam Fatigue Testing[C]. 3rd International Conference on Advanced Engineered Wood Composites.2005,7.106-128.
    [84] Roberto Lopez-Anido, M.ASCE, Han Xu. Structural Characterization of Hybrid Fiber-Reinforced Polymer-Glulam Panels for Bridge Decks[J]. / JOURNAL OF COMPOSITES FOR CONSTRUCTION / 2002,8(10)194.
    [85] Dagher, H. J., and Lindyberg, R. FRP reinforced wood in bridge applications.[J] 1st RILEM Symp. on Timber Engineering,Cachan Cedex, France, 1999,8(2)591–598.
    [86] Jonathan Philip Alexander.Evaluating the Durability of Wood/ FRP Bonds Through Chemical Kinetics Using a Range of Mechanical Test Methods. B.Sc. University of Wales, Bangor, 1998,10:123-145.
    [87] Yong Hong. Fatigue and Fracture of the FRP-Wood Interface: Experimental Characterization and Performance Limits. University of Maine May, 2003,10.201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700