空间胶体晶体生长实验装置关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶体晶体(colloidal crystal)是指由亚微米级(submicro)或纳米级(nano)胶体颗粒经过特定排列方式构成的类似于晶体结构的有序体系。胶体晶体结构具有类似于原子晶体的有序结构,且其空间尺度和相变时间尺度都较原子晶体大几个数量级,是研究晶体相变规律的理想模拟体系之一;另一方面由胶体晶体制备的光子晶体也促进了光子器件的发展,在微波通讯、滤波技术、隐身技术等方面有极强的应用潜力。因此近30年来,胶体晶体研究成为凝聚态物理和应用研究中的热点。
     由于胶体颗粒尺寸上比原子晶体大几个数量级,其颗粒间的作用力与原子比相对较弱,其结晶过程与结晶结构产生容易受到重力的影响。减小重力对结晶过程的影响,探索其结晶过程的本质特征成为胶体晶体研究中的重要研究方向。空间微重力环境为胶体晶体研究提供了独一无二的条件。
     本论文是国内空间微重力胶体晶体生长实验课题的一部分,该课题拟在国际上首次使用Kossel线衍射方法在空间微重力环境研究三种不同分散体系的带电胶体晶体的相变动力学过程,进行长达180天的空间实验,获得完整的结晶动力学变化过程中图像结果,研究胶体晶体随温度与电场变化的“结晶”与“弥散”过程。通过对空间胶体晶体生长实验装置研制中的关键技术进行深入研究,取得以下主要研究成果:
     1、通过遥控操作拍摄三种体系样品衍射图像、形态图像
     本实验研究的是微重力环境下胶体晶体结晶动力学过程中的图像变化过程,如何获得高分辨率衍射图像、形态图像成为一项关键技术。本研究首次构筑具有遥控功能的Kossel线成像系统,该系统在胶体晶体生长实验过程中能够全程记录胶体晶体Kossel线的相变过程;使用的高分辨率1394总线CCD满足分辨Kossel线衍射角0.5度变化的精度要求;为了增加空间实验的可靠性,对激光器进行了主备份冗余设计处理,利用光的偏振态设计了协调两个激光器设备的光路;通过转位机构,能够切换观察三种不同体系胶体晶体的衍射图像和形态图像。
     2、提出胶体晶体Kossel线衍射图像增强算法
     本研究需要通过Kossel线图像精确分析胶体晶体对称性结构,而本研究胶体晶体Kossel线衍射图像属于暗场像,其对比度较差,原始图像中有效信息的Kossel线不够明显,若直接使用原始图像,依赖于研究人员的分析胶体晶体Kossel衍射图像的主观经验,人为因素较多,需要实现图像增强。实验表明,典型的传统算法运用在本研究衍射图像的增强效果都不够明显。本文根据Kossel线图像的特点,针对性地提出了胶体晶体Kossel衍射图像的增强算法,使原始图像的Kossel线有效信息得到加强,使得对图像结果的分析更加客观,为空间胶体晶体生长实验图像科学数据分析提供了必要的技术保障。
     3、胶体晶体多体系样品高精度温度控制
     带电胶体晶体形成主要原因是胶体颗粒表面带有负电荷,颗粒之间的静电排斥力与颗粒的布朗运动达到一种平衡状态,形成长程有序结构。温度的微小波动便会引起布朗运动的强弱变化,从而影响胶体晶体的结晶状态与结晶过程,研究胶体晶体随温度变化的相变过程是空间科学实验的一项重要内容,实验过程中必须对胶体晶体溶液进行全程高精度低波动温度控制。本文针对胶体晶体样品溶液池的特点,研发出可协调控制三种不同体系胶体晶体样品的高精度温度控制方式,温度控制范围覆盖35℃至60℃的科学实验温度范围,控制精度达到0.1℃,满足空间胶体晶体生长实验的需要。
     4、具备灵活的遥控调整功能
     本论文工作是为进行二元组合带电胶体晶体生长的空间微重力实验提供直接的技术实现,而科学实验的流程存在依据空间实验结果进行调整的可能性。为最大化利用空间实验的资源,获取更丰富的实验结果,本研究通过设置六条总线加载指令,使实验装置能在多种工作模式间灵活切换,另外通过设置九条数据注入指令,使实验装置可以灵活进行实验参数的修改,包括样品温度、样品电场、搅拌开关、拍照参数和转位位置等,最大程度的适应空间实验需求的变化以及可能存在的实验装置超期服役需求。这也是国内空间科学实验装置首次拥有如此灵活的实验设置修改功能。
The colloidal crystal (CC) is an ordered array of sub micro or nano particles, analogous to a atomic crystal. In the past three decades, there are two reasons that CC is one of the hotspots in the condense matter. Firstly, the observable space and time in the disorder phase transition of CC are several orders in magnitude greater than that of atomic crystals. Secondly, CC can be made of photon crystal, which has the particular optical property. Furthermore, the photon crystals can promote the development of photonic devices related to many fields, such as microwave communication, filter technique and invisible technology.
     Because the elastic modulus of CC is weak, gravity has important influence in the crystal growth. The study of the effects of gravity on the colloidal crystallization can be preceded in a long-term micro gravity environment. Kossel diffraction image faithfully reflects three-dimensional information on the symmetry of CC. We will be the first in the world to study CC by Kossel diffraction method in the space environment of micro gravity. In this dissertation, we focus on the key technology of manufacture space for the apparatus of colloidal crystal experimental. The main contributions are as follows:
     1. We obtain high resolution diffraction and form images of three specimens by remote control. All Kossel line image systems require manual operation at present. We set up high resolution diffraction Kossel line image systems by remote control for the first time. High resolution CCD is capable of distinguishing the 0.5 degree variation with angle of diffraction. In order to strengthen reliability of the space experiments, we use two laser devices in our systems and devise the light path to coordinate them. In addition, we can switch observation diffraction and morphological images of three specimens by a transposition mechanism in the apparatus.
     2. We propose and realize an algorithm of diffraction image enhancement with Kossel line for CC. The diffraction images of CC have the low contrast ratio, and the efficient information of Kossel line is not distinct enough due to transmission imaging approach. We propose the algorithm, firstly, which emphasizes and doesn’t change proficient information of Kossel line. The algorithm provides competent support for the structural analysis of CC.
     3. A high precision control method for experimental temperature of the multiple specimen of CC is proposed. The method in accordance with three kinds of specimen cells is studied. The control error is less than±0.1℃,which achieves the most accurate system. This temperature control method satisfies the requirement of space experiments. The transformation of diffraction and images with different temperatures are obtained on the ground.
     4. The apparatus is provided with flexible functions of remote control. Its operating modes are easy to switch by six bus load instructions, and the experiment parameters can be modulated easily by nine data input. The experiment apparatus can satisfy the requirement of space experiments’assignments. The flexible operation of the apparatus is better than the previous devices of the space experiment.
引文
[1] Hiemenz P C, Rajagopalan R. Principles of Colloid and Surface Chemistry, 1997[J]..
    [2] Weitz D A. Binary Colloid Alloy Test–3 (BCAT-3)[J]. 2010.
    [3] Parker A R, Welch V L, Driver D, et al. Structural colour: opal analogue discovered in a weevil[J]. Nature, 2003, 426(6968): 786~787.
    [4] Cheng Z, Russel W B, Chaikin P M. Controlled growth of hard-sphere colloidal crystals[J]. Nature, 1999, 401(6756): 893~895.
    [5] Zhu J, Li M, Rogers R, et al. Crystallization of hard-sphere colloids in microgravity[J]. Nature, 1997, 387(6636): 883~884.
    [6] Nikolaides M G, Bausch A R, Hsu M F, et al. Electric-field-induced capillary attraction between like-charged particles at liquid interfaces[J]. Nature, 2002, 420(6913): 299~301.
    [7] Hayward R C, Saville D A, Aksay I A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns[J]. Nature, 2000, 404(6773): 56~59.
    [8] Campbell M, Sharp D N, Harrison M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404(6773): 53~56.
    [9] Lu P J, Zaccarelli E, Ciulla F, et al. Gelation of particles with short-range attraction[J]. Nature, 2008, 453(7194): 499~503.
    [10] Zhang K Q, Liu X Y. In situ observation of colloidal monolayer nucleation driven by an alternating electric field[J]. Nature, 2004, 429(6993): 739~743.
    [11] Vlasov Y A, Bo X Z, Sturm J C, et al. On-chip natural assembly of silicon photonic bandgap crystals[J]. Nature, 2001, 414(6861): 289~293.
    [12] Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals: putting a new twist on light[J]. Nature, 1997, 386(6621): 143~149.
    [13] Joannopoulos J D. Self-assembly lights up[J]. Nature, 2001, 414(6861): 257~258.
    [14] Clark N A, Hurd A J, Ackerson B J. Single colloidal crystals[J]. Nature, 1979, 281: 57.
    [15] Crandall R S, Williams R. Gravitational compression of crystallized suspensions of polystyrene spheres[J]. Science, 1977, 198(4314): 293.
    [16] Weitz D A. Packing in the spheres[J]. Science, 2004, 303(5660): 968.
    [17] Ahmadi T S, Wang Z L, Green T C, et al. Shape-controlled synthesis of colloidal platinum nanoparticles[J]. Science, 1996, 272(5270): 1924.
    [18] Yethiraj A, Van Blaaderen A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar[J]. Nature, 2003, 421(6922): 513~517.
    [19] Pusey P N, Van Megen W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres[J]. Nature, 1986, 320(6060): 340~342.
    [20] Sanders J V. Colour of Precious Opal[J]. Nature, 1964, 204: 1151~1153.
    [21] Asher S. Mesoscopically periodic photonic-crystal materials for linear and nonlinear optics and chemical sensing[J]. Mrs Bulletin, 1998, 23(10): 44~50.
    [22] Tarhan, Watson G H. Photonic band structure of fcc colloidal crystals[J]. Physical review letters, 1996, 76(2): 315~318.
    [23] Megens M, Wijnhoven J E G J, Lagendijk A, et al. Fluorescence lifetimes and linewidths of dye in photonic crystals[J]. Physical Review A, 1999, 59(6): 4727.
    [24] Escuti M J, Qi J, Crawford G P. Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals[J]. Optics letters, 2003, 28(7): 522~524.
    [25] Pradhan R D, Bloodgood J A, Watson G H. Photonic band structure of bcc colloidal crystals[J]. Physical Review B, 1997, 55(15): 9503.
    [26] Megens M, Wijnhoven J, Lagendijk A, et al. Light sources inside photonic crystals[J]. JOURNAL-OPTICAL SOCIETY OF AMERICA B, 1999, 16: 1403~1408.
    [27] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58: 2059.
    [28] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58: 2486.
    [29] Kossel W, Vogues H. X-Rav Interferences in a Monocrystal Cathode[J]. Ann. Physik, 1935, 23: 677~704.
    [30] Ackerson B J, Clark N A. Shear-induced melting[J]. Physical Review Letters, 1981, 46(2): 123~126.
    [31] Mei D, Liu H, Cheng B, et al. Visible and near-infrared silica colloidal crystals and photonic gaps[J]. Physical Review B, 1998, 58(1): 35.
    [32] Yoshiyama T, Sogami I, Ise N. Kossel line analysis on colloidal crystals in semidilute aqueous solutions[J]. Physical Review Letters, 1984, 53(22): 2153~2156.
    [33] Sogami I S, Yoshiyama T. Kossel line analysis on crystallization in colloidal suspensions[J]. Phase Transitions in Colloidal Suspensions: A Special Issue of the Journal Phase Transitions, 1990: 171.
    [34] Xu W, Nikolov A, Wasan D T, et al. Particle Structure and Stability of Colloidal Dispersions as Probed by the Kossel Diffraction Technique[J]. Journal of Colloid And Interface Science, 1997, 191: 471~481.
    [35] Yoshiyama T, Sogami I S. Kossel images as direct manifestations of the gap structure of the dispersion[J]. Physical Review Letters, 1986, 56(15): 1609~1612.
    [36] Shinohara T, Yoshiyama T, Sogami I S, et al. Measurements of elastic constants of colloidal silica crystals by Kossel line analysis[J]. Langmuir, 2001, 17(26): 8010~8015.
    [37] Carlson R J, Ashier S A. Characterization of optical diffraction and crystal structure in monodisperse polystyrene colloids[J]. Applied Spectroscopy, 1984, 38: 297.
    [38] Pieranski P, Dubois-Violette E, Rothen F, et al. Geometry of Kossel lines in colloidal crystals[J]. Journal de Physique, 1981, 42(1): 53~60.
    [39] Dubois-Violette E, Pieranski P, Rothen F, et al. Shear waves in colloidal crystals: I. Determination of the elastic modulus[J]. Journal de Physique, 1980, 41(4): 369~376.
    [40] Shinohara T, Yamada H, Sogami I S, et al. Gravitational, vertical compression of colloidal crystals as studied by the Kossel diffraction method[J]. Langmuir, 2004, 20(12): 5141~5144.
    [41] Kanai T, Sawada T, Maki I, et al. Kossel line analysis of flow-aligned textures of colloidal crystals[J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, 2003, 42(6B; ISSU 391): 655~657.
    [42] Shinohara T, Kurokawa T, Yoshiyama T, et al. Structure of colloidal crystals in sedimenting mixed dispersions of latex and silica particles[J]. Physical Review E, 2004, 70(6): 62401.
    [43] Kanai T, Sawada T, Toyotama A, et al. Air‐Pulse‐Drive Fabrication of Photonic Crystal Films of Colloids with High Spectral Quality[J]. Advanced Functional Materials, 2005, 15(1): 25~29.
    [44] Hoogenboom J P, Vergeer P, van Blaaderen A. A real-space analysis of colloidal crystallization in a gravitational field at a flat bottom wall[J]. The Journal of chemical physics, 2003, 119: 3371.
    [45] Simeonova N B, Kegel W K. Gravity-induced aging in glasses of colloidal hard spheres[J]. Physical review letters, 2004, 93(3): 35701.
    [46] Yethiraj A. Tunable colloids: control of colloidal phase transitions with tunable interactions[J]. The Royal Society of Chemistry, 2007, 3: 1099~1115.
    [47] Bartlett P, Pusey P N, Ottewill R H. Colloidal crystallization under time-averaged zero gravity[J]. Langmuir, 1991, 7(2): 213~215.
    [48] Liu L, Wang J, Xu S, et al. Influence of Gravity on Structure of Colloidal Crystal Using Simulated Microgravity[J]. Chinese Journal of Chemical Physics, 2009, 22: 41.
    [49] Ishikawa M, Okubo T. Nucleation kinetics of polystyrene colloidal crystallization in highly deionized water[J]. Journal of crystal growth, 2001, 233(1-2): 408~416.
    [50] Ishikawa M, Morimoto H, Okubo T, et al. Growth of colloidal crystals under microgravity[J]. Issues, 2002, 1(2): 338~345.
    [51] Okubo T, Tsuchida A, Takahashi S, et al. Kinetics of colloidal alloy crystallization of binary mixtures of monodispersed polystyrene and/or colloidal silica spheres having different sizes and densities in microgravity using aircraft[J]. Colloid & Polymer Science, 2000, 278(3): 202~210.
    [52] Okubo T, Tsuchida A, Okuda T, et al. Kinetic analyses of colloidal crystallization in microgravity--aircraft experiments1[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 153(1-3): 515~524.
    [53] Okubo T, Tsuchida A, Kobayashi K, et al. Kinetic study of the formation reaction of colloidal silica spheres in microgravity using aircraft[J]. Colloid & Polymer Science, 1999, 277(5): 474~478.
    [54] Okubo T, Kobayashi K, Kuno A, et al. Kinetic study of the formation reaction of colloidal silica spheres by transmitted-light-intensity and dynamic light-scattering measurements[J]. Colloid & Polymer Science, 1999, 277(5): 483~487.
    [55] Cheng Z, Zhu J, Russel W B, et al. Colloidal hard-sphere crystallization kinetics in microgravity and normal gravity[J]. Applied Optics, 2001, 40(24): 4146~4151.
    [56] Cheng Z, Chaikin P M, Zhu J, et al. Crystallization kinetics of hard spheres in microgravity in the coexistence regime: Interactions between growing crystallites[J]. Physical review letters, 2001, 88(1): 15501.
    [57] Weitz D, Bailey A, Manley S, et al, Results from the Physics of Colloids Experiment on ISS. In 53 rd International Astronautical Congress of the International Astronautical Federation(IAF), Houston, TX, 2002.
    [58] Doherty M P, Bailey A E, Jankovsky A L, et al. Physics of colloids in space- Flight hardware operations on ISS[A]. AIAA Aerospace Sciences Meeting & Exhibit, 40 th, Reno, NV[C]. 2002.
    [59] Luo Y Y, Hu S X, Lu Y, et al. Real time observation of partial dislocations in thin colloidal crystals[J]. Applied Physics Letters, 2009, 95: 174107.
    [60]骆意勇.胶体晶体位错缺陷和胶体晶体结构转变的研究.中国科学院物理研究所, 2009.
    [61] Rogach A L, Kotov N A, Koktysh D S, et al. Electrophoretic deposition of latex-based 3Dcolloidal photonic crystals: A technique for rapid production of high-quality opals[J]. Chemistry of materials, 2000, 12(9): 2721~2726.
    [62] Holgado M, Garcia-Santamaria F, Blanco A, et al. Electrophoretic deposition to control artificial opal growth[J]. Langmuir, 1999, 15(14): 4701~4704.
    [63] Loudet J C, Poulin P. Application of an electric field to colloidal particles suspended in a liquid-crystal solvent[J]. Physical Review Letters, 2001, 87(16): 165503.
    [64] Shimoda Y, Ozaki M, Yoshino K. Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal[J]. Applied Physics Letters, 2001, 79: 3627.
    [65] Cowell C, Vincent B. Temperature-particle concentration phase diagrams for dispersions of weakly interacting particles[J]. Journal of Colloid and Interface Science, 1982, 87(2): 518~526.
    [66] Schaefer D W, Ackerson B J. Melting of colloidal crystals[J]. Physical Review Letters, 1975, 35(21): 1448~1451.
    [67] Williams R, Crandall R S, Wojtowicz P J. Melting of crystalline suspensions of polystyrene spheres[J]. Physical Review Letters, 1976, 37(6): 348~351.
    [68] Ye Y H, Badilescu S, Truong V V, et al. Self-assembly of colloidal spheres on patterned substrates[J]. Applied Physics Letters, 2001, 79: 872.
    [69] Ye Y H, LeBlanc F, HachéA, et al. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality[J]. Applied Physics Letters, 2001, 78: 52.
    [70] Zhou J, Sun C Q, Pita K, et al. Thermally tuning of the photonic band gap of SiO colloid-crystal infilled with ferroelectric BaTiO[J]. Applied Physics Letters, 2001, 78: 661.
    [71] Velev O D, Kaler E W. Structured porous materials via colloidal crystal templating: from inorganic oxides to metals[J]. Advanced Materials, 2000, 12(7): 531~534.
    [72] Xia Y, Gates B, Yin Y, et al. Monodispersed colloidal spheres: old materials with new applications[J]. Advanced Materials, 2000, 12(10): 693~713.
    [73] Park S H, Xia Y. Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters[J]. Langmuir, 1999, 15(1): 266~273.
    [74] Denkov N D, Velev O D, Kralchevsky P A, et al. Two-dimensional crystallization[J]. 1993.
    [75] Dimitrov A S, Nagayama K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces[J]. Langmuir, 1996, 12(5): 1303~1311.
    [76] Heise B H. Precision determination of the lattice constant by the Kossel line technique[J]. Journal of Applied Physics, 1962, 33(3): 938~941.
    [77]李永祚.用Kossel衍射技术精确测定晶格常数[J].材料工程, 1993, (8): 34~36.
    [78] Cladis P E, Garel T, Pieranski P. Kossel diagrams show electric-field-induced cubic-tetragonal structural transition in frustrated liquid-crystal blue phases[J]. Physical review letters, 1986, 57(22): 2841~2844.
    [79] Bragg W L. The Specular Reflection of X-rays.[J]. Nature, 1912, 90(2250): 410.
    [80] Bragg W H, Bragg W L. The reflection of X-rays by crystals[J]. Proceedings of the Royal Society of London. Series A, 1913, 88(605): 428.
    [81] Bragg W L. The analysis of crystals by the X-ray spectrometer[J]. Proceedings of the Royal Society of London. Series A, 1914, 89(613): 468.
    [82] Arora A K, Tata B V R. Ordering and phase transitions in charged colloids[M]. Wiley-VCH, 1996.
    [83] Hiltner P A, Krieger I M. Diffraction of light by ordered suspensions[J]. The Journal of PhysicalChemistry, 1969, 7(73): 2386~2389.
    [84]姚启钧.光学教程:第四版[M]. 2008.
    [85] Aquamarine Laser Doide NDHA210APAE1 Product Guide. In.
    [86] Chen C W, Betz M W, Fisher J P, et al. Macroporous hydrogel scaffolds and their characterization by optical coherence tomography[J]. Tissue Engineering Part C: Methods, 2010, 17(1): 101~112.
    [87] Versolato O O, Giri G S, Wansbeek L W, et al. Laser spectroscopy of trapped short-lived Ra^{+} ions[J]. Physical Review A, 2010, 82(1): 10501.
    [88] Guppy Pro F-146 B/C Datasheet. In.
    [89] Gonzalez R C, Woods R E. Digital Image Processing, Second Edition[M]. 2002.
    [90] Zhongshen L, Design and Analysis of Improved Butterworth Low Pass Filter. In Electronic Measurement and Instruments, 2007. ICEMI'07. 8th International Conference on; IEEE: 2007; pp 1~729.
    [91] Hong L, Wan Y, Jain A. Fingerprint image enhancement: algorithm and performance evaluation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1998, 20(8): 777~789.
    [92] Marr D, Hildreth E. Theory of edge detection[J]. Proceedings of The Royal Society B, 1980, 207: 187~217.
    [93]杨振亚,王勇,王成道.基于LOG算子的亚像素边缘检测[J].计算机应用与软件, 2004, 21(9): 87~89.
    [94] Balasubramanian V N, Krishna S, Panchanathan S. Person-independent head pose estimation using biased manifold embedding[J]. EURASIP Journal on Advances in Signal Processing, 2008, 2008: 283540.
    [95] Kim J, Kim L, Hwang S. An advanced contrast enhancement using partially overlapped sub-block histogram equalization[J]. IEEE Transactions on Circuits And Systems For Video Technology, 2001, 11(4): 475~484.
    [96] Hall E L. Almost Uniform Distributions for Computer Image Enhancement[J]. IEEE Transactions on Computers, 1974, 23(2): 207~208.
    [97] Sun T, Neuvo Y. Detail-preserving median based filters in image processing[J]. Pattern Recognition Letters, 1994, 15(4): 341~347.
    [98] Wang Z, Zhang D. Progressive switching median filter for the removal of impulse noise from highly corrupted images[J]. IEEE Transactions On Circuits and Systems -II: Analog and Digital Signal Processing, 1999, 46(1): 78~80.
    [99]邢藏菊,曲延锋,徐健,等.一种用于抑制椒盐噪声的多窗口中值滤波器[J].电子与信息学报, 2002, 24(12): 1912.
    [100] Schall P. Laser diffraction microscopy[J]. Reports on Progress In Physics, 2009, 72: 76601.
    [101] Bayer B E. "Color Imaging Array" U. S. Patent 3 971 065[P].
    [102] Lukac R, Plataniotis K N, Hatzinakos D. Color image zooming on the Bayer pattern[J]. IEEE Transactions On Circuits And Systems For Video Technology, 2005, 15(11): 1475~1492.
    [103] Datesheet of DS18B20 Programmable Resolution 1-Wire Digital Thermometer. In.
    [104]刘鸣,车立新,陈兴梧,等.温度传感器DS18B20的特性及程序设计方法[J].电测与仪表,2001, (10): 47~51.
    [105] Sung S W, Lee I, Lee J. New Process Identification Method for Automatic Design of PID Controllers[J]. Automatica, 1998, 34(4): 513~520.
    [106] Reznik L, Ghanayem O, Bourmistrov A. PID plus fuzzy controller structures as a design base for industrial applications[J]. Engineering Applications Of Artificial Intelligence, 2000, 13: 419~430.
    [107] Tan K K, Lee T H, Jiang X. On-line relay identification, assessment and tuning of PID controller[J]. Journal of Process Control, 2001, 11: 486~496.
    [108] Bolat E D, Erkan K, Postalcio?lu S. Microcontroller Based Temperature Control of Oven[J]. Lecture Notes In Computer Science, 2005, 3809: 1295~1300.
    [109]王清海.基于PID的锅炉温度控制系统设计[J].云南大学学报(自然科学版), 2009, 31(S2): 140~142.
    [110]于强,俞号峰,刘威.空间晶体生长炉综合控制方法[J].空间科学学报, 2011, (1): 87~92.
    [111] Zadeh L A. From Circuit Theory to System Theory[J]. Proceedings of the Ire, 1962, 50(5): 856~865.
    [112] Moser I, Chiong R. A Hooke-Jeeves based memetic algorithm for solving dynamic optimisation problems[J]. Hybrid Artificial Intelligence Systems, 2010: 301~309.
    [113] Datesheet of MHF Series 12 Watt DC/DC Converters. In.
    [114] Reed R, LaBel K, Kim H, et al. Test Report of Proton and Neutron Exposures of Devices that utilize Optical Components and are contained in the CIRS Instrument[J]. Greenbelt,(Maryland) NASA/Goddard Space Flight Center.
    [115] O'Bryan M V, LaBel K A, Reed R A, et al. Single event effect and radiation damage results for candidate spacecraft electronics[A]. Radiation Effects Data Workshop, 1998. IEEE[C]. IEEE, 1998. 39~50.
    [116] Datesheet of FMC EMI 28 Volt Input Filter. In.
    [117] Datesheet of CMOS Static RAM IDT71256 256K(32K*8-Bit). In.
    [118]顾海洲,马双武. PCB电磁兼容技术—设计实践[M].清华大学出版社, 2004.
    [119] Kesselman W, Mertel H, The History of Military EMC Specifications. In.
    [120] Schattner S, Bopp G, Erge T, et al. PV-EMI–Developing Standard Test Procedures for the electromagnetic compatibility (EMC) of PV Components and Systems[A]. 16th European Photovoltaic Conference and Exhibition[C]. 2000.
    [121]蒋全兴,王桂华,景莘会,电磁干扰和电磁兼容性术语[S]. In;总装备部:北京, 2003.
    [122]张海藩.软件工程导论(第五版)[M].清华大学出版社, 2008.
    [123] Dijkstra E, The Humble Programmer. In Communications of the ACM, 1972.
    [124] Bauer F L, NATO Software Engineering Conference. In 1968.
    [125] Boehm B W. Seven basic principles of software engineering[J]. Journal of Systems And Software, 1983, 3(1): 3~24.
    [126] LDRA-Testbed User Guide[M]. 2009.
    [127] Roche J M. Software metrics and measurement principles[J]. ACM SIGSOFT Software Engineering Notes, 1994, 19(1): 77~85.
    [128] Kolence K W, Kiviat P J. Software unit profiles & Kiviat figures[J]. ACM SIGMETRICS Performance Evaluation Review, 1973, 2(3): 2~12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700