儿茶素氧化产物的分离纯化及生物活性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
儿茶素氧化产物的生物活性日益受到人们的重视和关注,国内外学者都对其进行了许多研究。本实验采用柱色谱与制备型液相色谱对儿茶素氧化产物进行了分离分析,并对分离纯化得到的物质进行了结构鉴定和生物活性的分析。结果表明:
     用柱层析分离由碱性氧化反应生成的儿茶素氧化产物。分别采用了MCI GEL CHP20P柱、浓度从10%到70%依次增加的甲醇水溶液,和Sephadex LH-20柱、浓度从20%到60%依次增加的丙酮水溶液,进行梯度洗脱,每次增加梯度为10%,对儿茶素氧化聚合物进行分离。洗脱体系可以将儿茶素氧化聚合物中极性有差别的物质分离开,该两种体系均能有效地将儿茶素与氧化产物分开,甚至能将极性相近的氧化聚合物之间进行分离。此部分实验收集到M6、S7和S10主要含有儿茶素低聚合物的组分。
     对柱层析分离中分离得到的M6、S7和S10组分,采用OBD(C18)柱和乙腈-水洗脱体系进行了制备实验。经进一步分离,分别得到M6-2、S7-1、S7-2、S10-1和S10-2。经MS分析和1HNMR和13CNMR分析,参考相关文献,确定M6-2为一种黄酮甙类化合物Kaempferol-3-O-β-D-glucoside,S7-1为EGCG氧化后两分子以C2’-C2’方式连接聚合而成的EGCG二聚体,S7-2为GCG,S10-1为epitheaflagallin-3-O-gallate,S10-2为theaflavin-3-gallate。
     对儿茶素氧化产物混合物(P)及分离组分S7的总抗氧化能力(T-AOC)、清除OH·、O2-·能力进行了分析研究,结果表明氧化产物混合物与S7都具有较高的生物活性。差异显著性比较结果显示,P的总抗氧化能力显著高于98%TP和EGCG,清除羟自由基的能力显著高于EGCG、98%TP和80%TFs,清除O2-·能力显著高于80%TFs;S7的总抗氧化能力显著高于EGCG,清除羟自由基的能力显著高于EGCG和98%TP,均与80%TFs相当,而清除O2-·能力显著高于80%TFs。
People pay more attention to the biological activity of oxidation products of catechins increasingly. Scholars home and abroad have done many researches on them. In this paper, column chromatography and preparative HPLC were uesed to separate oxidation products of catechins, the structures of fractions are identified, and the bioability was analyzed. The results of study show:
     Column chromatography was used to separate oxidation products of catechins produced in alkalescence condition. Tea oxidation products were fractionated by MCI GEL CHP20P column with 10% step-wise elution of H2O containing increasing proportions of MeOH from 10% to 70% and Sephadex LH-20 column with 10% step-wise elution of H2O containing increasing proportions of acetone from 20% to 60%. Oxides with different polaritis were seperated. Thesse two eluting system can separate catechins and oxides, and different oxides with close polarities availably. M6, S7 and S10 were collected in this part of experiment, which contained oligomers of catechins.
     M6, S7 and S10 were applied to a column of OBD(C18) with H2O containing acetonitrile. After purification, M6-2, S7-1, S7-2, S10-1 and S10-2 were get. According to the results of MS and NMR analysis and refer to literatures, the structures of these substance s were determined, M6-2 was Kaempferol-3-O-β-D-glucoside, and S7-1 was dipolymer of EGCG linked at the B-rings through a C-C bond, S7-2 were GCG, S10-1 were epitheaflagallin-3-O-gallate, S10-2 were theaflavin-3-gallate.
     The bioability of oxides P and fraction S7 on total antioxidation(T-AOC) and radicals scavenging of OH·, O2-·were tested. The results showed the bioactivity of oxide and S7 were active. Significant difference analysis showed that, the T-AOC of P was significantly higher than that of 98%TP and EGCG, the ability of scavenging OH·of it was significantly higher than that of EGCG, 98%TP and 80%TFs, and the ability of scavenging O2-·of it was significantly higher than that of 80%TFs. The T-AOC of S7 was significantly higher than that of EGCG, the ability of scavenging OH·of it was significantly higher than that of EGCG and 98%TP, it was equal to 80%TFs. And the ability of scavenging O2-·of S7 was significantly higher than that of 80%TFs.
引文
1.陈亚非.茶多酚的保健功能[J].广州食品工业科技, 2005, 11(4): 73.
    2.杜其珍,江和源.茶色素的药理及其应用[J].中国茶叶, 1997, 19(5): 36~37.
    3.杜晓,李宁,周茹娟,等.植物中分离的儿茶素类及其聚合物的抑菌作用[J].四川农业大学学报, 2005, 23(3): 374~378.
    4.郭炳莹,程启坤.茶汤组分与金属离子的络合性能[J].茶叶科学, 1991, 11(2): 139~144.
    5.郝瑞霞,张劲松,唐庆九.灵芝子实体中两个新的天然三萜类化学成分的分离、纯化和鉴定[J].菌物学报, 2006, 25(4): 599~602.
    6.贾之慎,邬建敏,唐孟成.比色法测定Feton反应产生的羟自由基[J].生物化学与生物物理进展, 1996, 23(2): 184~186.
    7.江和源,程启坤.高效逆流色谱在茶黄素分离上的应用[J].茶叶科学, 2000, 20(1): 40~45.
    8.江和源,柯昌强,王川丕等.茶籽饼粕中黄酮苷的HPLC分析、制备与MS鉴定[J].茶叶科学, 2005, 25(4): 289~294.
    9.李春美,窦宏亮,陈美红.儿茶素氧化产物的分离鉴定及其抗氧化活性研究[J].食品科学, 2008, 29(12): 141~145.
    10.李春美,谢笔钧.茶多酚及其氧化产物清除不同体系产生的活性氧自由基的分光光度法研究[J].精细化工, 2000, 17(4): 241~244.
    11.李春美,谢笔钧.茶儿茶素氧化产物体外清除·OH自由基作用的研究[J].天然产物研究与开发, 1999, 12(1): 50~53.
    12.李春美,谢笔钧.儿茶素氧化聚合产物药理作用研究概况[J].茶叶, 2001, 27(1): 28~34.
    13.李春美.茶儿茶素氧化聚合物及其生物活性的研究[D].华中农业大学博士学位论文, 2000.
    14.李春美等.高效液相色谱法分离茶儿茶素氧化聚合物[J].茶叶科学, 2001, 21(1): 69~71.
    15.李大祥,宛晓春,萧伟祥.儿茶素化学氧化条件的研究简报[J].茶业通报, 2000, 22(2): 17~18.
    16.李大祥,宛晓春.论茶儿茶素的化学氧化[J].茶业通报, 2000, 22(3): 22~23.
    17.李大祥,宛晓春,杨昌军等.茶儿茶素氧化机理[J].天然产物研究与开发, 2006, 18: 171~181.
    18.李磊.几种天然抗氧化物质的抗氧化活性比较及茶多酚的抗氧化保健功效研究[D].杭州:浙江大学硕士论文, 2008.
    19.李立祥等.茶多酚氧化实验研究[J].南京农业大学学报, 2002, 25(2): 101~103.
    20.李润丰,赵月卿.不同种类茶提取物抗氧化活性的研究[J].安徽农业科学, 2009, ,37(9):4134~4136,4139.
    21.刘莉华.儿茶素及其氧化产物的分离制备、化学特性及对红茶品质的影响[D].杭州:安徽农业大学博士学位论文, 2003.
    22.吕丽爽.天然抗氧化剂低聚原花青素的研究进展[J].食品科学, 2002, 23(2):147~150.
    23.罗成,周达,鲁晓翔.天然产物抗氧化机理的研究进展[J].食品工业科技, 2009,30(24): 335~339.
    24.马庆一,卫军,池银珠.天然色素作为防腐剂的筛选及应用研究[J].食品科学, 2002, 23(5): 121~124.
    25.戚向阳,钱怡,张英等.茶儿茶素氧化聚合物研究进展[J].食品科技, 2009,34(6):33~37.
    26.沈生荣,杨贤强,赵保路,等.茶多酚复合体对氧自由基清除作用[J].茶叶科学, 1992, 12(1): 59~64.
    27.宛晓春.茶叶生物化学第三版[M].中国农业出版, 2003.
    28.王彩霞,徐德平.黄精中乌苏酸型皂苷的分离与结构鉴定[J].食品与生物技术学报, 2008, 27(3): 33~36.
    29.王静,戚向阳,朱学良等.表没食子儿茶素没食子酸酯及其不同氧化级分的抑菌活性研究[J].天然产物研究与开发, 2008, 20: 91~94.
    30.王静,戚向阳.表没食子酸儿茶素没食子酸酯体外氧化影响因素及其氧化产物分析[J].精细化工, 2006, 23(11): 1094~1098.
    31.王坤波,刘仲华,黄建安.儿茶素体外氧化制备茶黄素的研究[J].茶叶科学, 2004, 24(1): 53~59.
    32.王坤波.茶黄素的酶促合成、分离鉴定及功能研究[D].湖南农业大学博士论文,2007.
    33.吴雪原,李纯.茶黄素组分的薄层凝胶色谱分析法[J].茶业通报, 1988, 2: 17~19.
    34.萧伟祥,宛晓春.茶儿茶素体外氧化产物分析[J].茶叶科学, 1999,19(2): 143~149.
    35.萧伟祥,王根,王勇.天然食用茶黄色素与茶绿色素的研究[J].茶叶科学, 1994, 14(1): 49~54.
    36.萧伟祥等.茶儿茶素体外氧化产物分析[J].茶叶科学, 1999, 19(2): 145~149.
    37.谢笔钧等.绿茶、乌龙茶、红茶中主要组分和酚类化合物抑制脂肪氧合酶活性和抗油脂自动氧化特性的研究.天然产物开发与研究, 1994, 6(4): 20~23.
    38.熊皓平,杨伟丽,张友胜,等.天然植物抗氧化剂的研究进展[J].天然产物研究与开发, 2001, 13(5): 75~79.
    39.徐德平等.茶叶皂素的提取分离与检测[J].中国茶叶, 2008, 8: 29~31.
    40.杨成对,宋莉晖,汪聪慧.葡萄籽中原花青素的液相色谱质谱分析[J].现代仪器分析, 2005, 4: 46~47.
    41.杨贤强,王岳飞,陈留记等.茶多酚化学[M].上海科学技术出版社, 2003.
    42.张建勇,江和源,江用文.茶黄素的酸性氧化形成研究[J].食品科学,2008,29(1):50~54.
    43.张建勇,江和源,崔宏春等.茶色素的提取制备技术[J].中国茶叶, 2009,9:8~10.
    44.赵克然,杨毅军,曹道俊.氧自由基与临床[M].北京:中国医药科技大学出版社, 2000.
    45.邹节明,王力生,马学敏.苦玄参中一个新葫芦苦素成分的分离与结构鉴定[J].药学学报, 2004, 39(11): 910~912.
    46. Alan P. Kozikowski. Studies in Polyphenol Chemistry and Bioactivity. 4.Synthesis of Trimeric, Tetrameric, Pentameric, and Higher Oligomeric Epicatechin-Derived Procyanidins Having All-4a,8-Interflavan Connectivity and Their Inhibition of Cancer Cell Growth through Cell Cycle Arrest[J]. J. Org. Chem. 2003, 68: 1641~1658.
    47. Amany I. Microbial metabolism of biologically active secondary metabolites from Nerium oleander L.[J]. Chemical & Pharmaceutical Bulletin, 2008, 56(9):1253~1258.
    48. Andrson R A,Broadhurst C L, Polansky M M, et al.Isolation and characterization of polyphenol type-Apolymers from cinnamon with insulin-like biological activity[J]. J of Agricultral and Food Chemistry, 2004(1): 65~70.
    49. Bagchi D ,Bagchi M,Sidney J, et al . Free radicals and grape seed procyanidin extract : important in human health and disease prevention [J]. Toxicology , 2000, 148(3): 187~197.
    50. Bajar K. L.,Anan T, Tsushida T. Effect of (-)-epicatechin on polyphenol oxidase from tea leaves[M]. Agric.Biol.Chem., 1987.
    51. Cai Y,Evans F.J.,Roberts M.F.,et al. Polyphenolic compounds from croton lechlerz[J]. Phytochemistry, 1991, 30(6): 2033~2040.
    52. Chen Y.C.,Liang Y.C. Inhibition of TPA-induced protein kinase C and transcription activator protein-1 binding activities by theaflavin-3,3’-digallate from black tea in NIH3T3 cells[J]. J.Agric.Food Chem., 1999, 47(4): 1416~1420.
    53. Chika M,Chenwa,David O K. Protective Effect of Tea Extract and TP Against the Cytoxicity of 1,4-Nathoqunone in Insolated Rat Hepatocyles[J]. Biosci Biotechnol Biochem, 1997, 61(11): 1901~1905.
    54. Daniele D R,Amanda J S,William M, et al. HPLC-MS nanalysis of phenolic compounds and purine alkaloids in green and black tea[J]. J of Agricultral and Food Chemistry, 2004, 10: 2807~2815.
    55. Denis J C,Harry E Nursten.Separation of thearubingins on Sephadex LH20[J]. Phytochemistry, 1977, 16: 1269~1272.
    56. Djordjevic V B. Free radicals in cell biology[J]. Int Rev Cytol ,2004, 237: 57~89.
    57. Elke A,Trautwein,Yaping D. Evelyne Meynen,et al. Purified black tea theaflavins and theaflavins/catechin supplements did not affect serum lipids in healthy individuals with mildly to moderately elevated cholesterol concentrations[J]. Eur J Nutr,2010, 49:27~35.
    58. Ferdinando B,Subhalakshmi N,Lynne S,et al. Biocatalytic synthesis of water-soluble oligo(catechin)[J]. Journal of macromolecular science,part A:pure and applied chemistry, 2005, 42(11): 1547~1554.
    59. Finger A,Engelhardt U.H.,Wray V. Flavonol glycosides in tea-kaempferol and quercetin rhamnodiglucosides[J]. J.Sci.Food Agric, 1991, 55(2): 313~321.
    60. Gali H.U.,Perchellet E.M.,Gao X.M.,et al. Comparison of the inhibitory effects of monomeric, dimeric and trimeric procyandins on the biochemical markers of skin tumor promotion in mouse epidermis in vitro[J]. Planta.Med., 1994, 60(3): 235~239.
    61. Goetz G,Fkyerat A,Tabacchi R,et al. Resistance factors to grey mould in grape berries: identification of some phenolics inhibitors of Botrytis cinerea stilbene oxidase[J]. Phytochemistry, 1999, 52: 759~767.
    62. Yen G C. Antioxidant activity of various tea extracts in relation to their antimutagenility[J]. J.Agric. Food Chem, 1997, 45: 30~34.
    63. Graham H.N. Green tea compositon,consuption and polyphenol chemistry[J]. Prev.Med.,1992, 21(3): 334~350.
    64. Gross G.G.,Hemingway R.W.,Yoshida T,et al. Plant polyphenols 2-Chemistry,biology, pharmacology,ecology[M]. Kluwer Academic/Plenum Publishers,1999, 697~724.
    65. Guo Z ,Xu L. Procyanidins : a plant medicine on the development [J ] . Foreign Medical Science ( Plant Medici ne Section) , 1996, 11(1): 21~23.
    66. Hathway D.E.,Seakins J.W.T. Autoxidation of catechin[J]. Nature, 1955, 176(4474): 218.
    67. Hirose Y,Yamaoka H,Nakayama M. A novel quasi-dimeric oxidation product of(+)-catechin from lipid peroxidation[J]. J.Amer.Oil Chem.Soc., 1991, 68: 131~135.
    68. Itoh N,Katsube Y,Yamamoto K,et al. Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin-3-O-gallate[J]. Tetrahedron, 2007, 63: 9488~9492.
    69. Jie G,Lin Z,Zhao B.L.,et al. Free radical scavenging effect of Pu-erh tea extracts and their protective effect on oxidative damage in human fibroblast cells[J]. J.Agric.Food Chem., 2006,54(21): 8058~8064.
    70. K. Vijaya,S. Ananthan,R. Nalini. Antibacterial effect of theaflavin, polyphenon 60(Camellia sinensis) and euphorbia hirta on Shigella spp.- a cell culture study[J]. Journal of Ethnopharmacology, 1995, 49: 115~118.
    71. Kozikowski A.P.,Tuckmantel W,Bottcher G. Studies in Polyphenol Chemistry and Bioactivity.4. Synthesis of trimeric,tetrameric,pentameric,and higher oligomeric epicatechin-derived procyanidins having All-4β,8-interflavan connectivity and their inhibition of cancer cell growth through cell cycle arrest[J]. J.Org.Chem, 2003, 68: 1641~1658.
    72. Lesley J Putman,Larry G Buiter. Separation of high molecular weight sorghum procyanidins by HPLC [J]. J Agric Food Chem, 1989, 37: 943~946.
    73. Li C.,Meng X.,Winnik B.,et al. Analysis of urinary metabolites of tea catechins by liquid chromatography/electrospray ioniza mass spectrometry[J]. Chem.Res.Toxicol., 2001, 14(6): 702~707.
    74. Li CM,Xie BJ. Evaluation of the antioxidant and pro-oxidant effects of tea catechin oxypolymers[J].J. Agric.Food Chem., 2000, 48: 6362~6366.
    75. Li DX,Wan XC,Yang CJ, et al. Oxidation machanism of tea catechins[J]. Nat Prod Res Dev, 2006, 18: 171~181.
    76. Li Y,Tanaka T,Kouno I. Oxidative coupling of the pyrogallol B-ring with a galloyl group during enzymatic oxidation of epigallocatechin 3-O-gallate[J]. Phytochemistry, 2007, 68: 1081~1088.
    77. Lin C C,Wu S J,Chang C H, et al. Antioxidant activity of Cinnamomun cassia [J]. Phytotherapy Research, 2003, 17: 726~730.
    78. Lin J K. Cancer prevention by tea polyphenols through mitotic signal transduction blockage[J]. Biochem. Pharmacol., 1999, 58: 911~918.
    79. Lotito S.B.,Goretta L.A.,Renart M.L. Influence of oligomer chain length on the antioxidant activity of procyanidins[J]. Biochem.Biophys.Res.Commun, 2000, 276: 945~951.
    80. Manuel Pinelo,V. Felipe Laurie,Andrew L. Waterhouse. A simple method to separate red wine nonpolymeric and polymeric phenols by solid-phase extraction [J]. J. Agric. Food Chem. 2006, 54:2839~2844.
    81. Matsuo Y,Tanaka T,Kouno I. A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments[J]. Tetrahedron, 2006, 62: 4774~4783.
    82. Michael A,Paul D,Emilios P, et al. Methods for testing antioxidant activity[ J ]. Analyst, 2002, 127: 183~198.
    83. Millin D J.Swaine D,Dix P L. Separation and classification of the brown pigments of aqueous Infusions of blaek tea.J SciFood Agric, 1969, 20: 296~302.
    84. N Ahmad. Nitric oxide synthase and skin tumor promotion[J]. Bioch. & Biophy. Res. Commun., 1997, 232: 328~331.
    85. Ohmori K,Ushimaru N,Suzuki K. Oligomeric catechins:An enabling synthesis strategy by orthogonal activation and C(8) protection[J]. PNAS,2004, 101(33): 12002~12007.
    86. Pan YM,Liang Y,Wang H S, et al. Antioxidant activities of several Chinese medicine herbs[ J ]. Food Chemistry, 2004, 88: 347~350.
    87. Proestos C,Chorianopoulos N,Nychas G.E.,et al. RP-HPLC analysis of the phenolic compounds of plant extracts.Investigation of their antioxidant capacity and antimicrobial activity[J].J.Agric. Food Chem, 2005, 53(40): 1190~1195.
    88. Roberts E A H. The phenolic substances ofmanufactured teaⅡ-Their origin as enzymic oxidation products in fermentation[J]. J Sci Food Agric, 1958, 4(9): 212~216.
    89. Scalberta A. Antimicrobial properties of tannins[J], Phytochemistry, 1991, 30(12): 3875~3883.
    90. Seerkedgieva J,Mamoiova N. Plant polyphenolic complex inhibits the reproduction of injluemzz and herpes simplex virus[A] . He ming way R , Lakes P. Plant Polyp Hemols[C] . NewYork : Plenum press , 1992, 715~717.
    91. Shengmin S,Shiying T,Ruth E S, et al. New dibenzotropolone derivatives characterized from black tea using LC-MS-MS[J]. Bioorganic and Medicinal Chemistry, 2004,11: 3009~3017.
    92. Shengmin Sang,Chung S. Yang,Chi-Tang Ho. Peroxidase-mediated oxidation of catechins[J]. Phytochemistry Reviews 2004, 3: 229~241.
    93. Shengmin Sang. Theadibenzotropolone A, a new type pigment from enzymatic oxidation of (?)-epicatechin and (?)-epigallocatechin gallate and characterized from black tea using LC/MS/MS[J]. Tetrahedron Letters 2002, 43: 7129~7133.
    94. Shengmin Sang,Joshua D. Lambert, et al. Enzymatic synthesis of tea theaflavin derivatives and their anti-inflammatory and cytotoxic activities[J]. Bioorganic & Medicinal Chemistry 2004, 12: 459~467.
    95. Suja K P,Jayalekshmy A, Arumughan C. Antioxidant activity of sesame cake extract[J]. Food Chemistry, 2005, 91: 213~219.
    96. Susanne Valcic,Annette Muders, et al. Antioxidant Chemistry of Green Tea Catechins.Identification of Products of the Reaction of(-)-Epigallocatechin Gallate with Peroxyl Radicals[J]. Chem. Res. Toxicol. 1999, 12: 382~386.
    97. Susanne V. Antioxidant Chemistry of Green Tea Catechins. New Oxidation Products of (-)-Epigallocatechin Gallate and (-)-Epigallocatechin from Their Reactions with PeroxylRadicals[J]. Chem. Res. Toxicol., 2000, 13(9): 801~810.
    98. Takashi T,Chie M. Accumulation of epigallocatechin quinone dimers during tea fermentation and Formation of Theasinensins[J]. J. Nat. Prod. 2002, 65: 1582~1587.
    99. Tanaka T,Mine C,Kouno I. Structures of two new oxidation products of green tea polyphenols generated by model tea fermentation[J]. Tetrahedron, 2002, 58: 8851~8856.
    100. Tess D B. Biological Evaluation of Proanthocyanidin Dimers and Related Polyphenols[J]. J. Nat. Prod. 1999, 62: 954~958.
    101. Toda M. Antibacterial and bactericidal activities of tea extracts and catechins against methicillin-resistant staphylococcusaureus[J]. Nippon Saikingaku Zasshi-Japanese Journal of Bacteriology, 1991, 46(9): 839~845.
    102. Tomiyasu K,Nishiwaki M,Ohsuzu F, et al. Inhibitory effect of tea flavonoid on the ability of cells to oxidize low density lipoprotein[J]. Biochem Pharmacol, 1999, 58: 1695~1703.
    103. Valavanidis A,Vlahogianni T,Dassenakis M, et al. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants[J]. Ecotoxicol Environ Saf ,2006, 64(2): 78~89.
    104. Wada S,He P M, Watanabe N, et al. Suppression of d-galactosamine-induced rat liver injury by glycosidic flavonoids-rich fraction from green tea[J]. Biosci Biotechnol Biochem, 1999,63: 570~572.
    105. Wang CX,Li YQ. Research progress on property and application of theaflavins[J]. African Journal of Biotechnology, 2005, 5: 213~218.
    106. Wang Z Y. Interaction of epicatechins derived from green tea with rat hepatic cytochrome P450[J]. Drug Metab. Dispos., 1998, 16: 98~103.
    107. Y. Matsuo. Enzymatic oxidation of gallocatechin and epigallocatechin: Effects of C-ring configuration on the reaction products[J]. Phytochemistry, 2008, 69: 3054~3061.
    108. Yen G C,Chen H Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity[J]. J Agric Food Chem, 1997, 45: 30~34.
    109. Yen GC,Chang YC,Su SW. Antioxidant activities and compounds of rice koji fermented with Aspergillus candidus[J]. Food Chemistry, 2003, 83: 49~54.
    110. Yosuke M,Takashi T,Isao K. A new mechanism for oxidation of epigallocatechinand production of benzotropolone pigments [J]. Tetrahedron, 2006, 62: 4774~4783.
    111. Yuehun H,Fereidoon S. Antioxidant activity of green tea and its catechins in a fish meat model system.Jagric Food Chem, 1997, 45: 4262~4265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700