城市污水与垃圾渗滤液及粪便污水合并处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化城市的迅速发展,城市垃圾和粪便已成为困扰城市的严重问题,其中的垃圾渗滤液和粪便污水更给环境带来很大的污染与危害。两类污水的氮和有机物浓度高,水质水量变化大,单独处理难度大,投资和运行管理费用高。若能将其与城市污水合并处理,利用城市污水对垃圾渗滤液、粪便污水的缓冲、稀释作用,实现垃圾渗滤液、粪便污水和城市污水同步处理同步达标,则具有非常重要的现实意义。
     然而垃圾渗滤液、粪便污水与城市污水合并处理将给城市污水处理厂带来严重的冲击负荷,往往出现脱氮效果不理想、生化系统不稳定、污泥产率大等突出问题,广州市大坦沙污水处理厂在长期接纳粪便污水和垃圾渗滤液的实际运行中发现两种污水瞬间混入时容易给污水厂带来较大的冲击负荷而导致氨氮、总氮出水不达标的现象。本文采用A~2/O工艺中试装置,通过现场试验,研究了垃圾渗滤液、粪便污水与城市污水合并处理的适宜混合比、工艺参数和最佳工况并且探讨了投加填料后系统处理效果的变化。
     分别以混有垃圾渗滤液、粪便污水和既混有垃圾渗滤液又混有粪便污水的城市污水为研究对象,探讨了其适宜的混合比,通过单因素试验和正交试验研究系统的有机物去除和脱氮特性。结果表明:对三类污水脱氮和COD去除最主要的因素是水力停留时间;好氧池溶解氧浓度、污泥回流比、混合液回流比等因素也有较显著影响。
     粪便污水与城市污水合并处理的适宜的混合比为1:300,当水温为28-33℃,泥龄为20d时,在最优工况(水力停留时间9h、好氧池溶解氧浓度3mg/L、污泥回流比80%、混合液回流比200%)下运行,COD、NH_4~+-N和TN平均去除率分别为88.0%、97.1%和69.9%。
     垃圾渗滤液与城市污水合并处理的适宜混合比为1:500,当水温为26-31℃,泥龄为20d时,在最优工况(水力停留时间11h、好氧池溶解氧浓度3mg/L、污泥回流比80%、混合液回流比200%)下运行,COD、NH_4~+-N和TN平均去除率分别为77.4%、97.2%和62.4%。
     垃圾渗滤液、粪便污水与城市污水合并处理的适宜的混合比为0.4:1.5:400,当水温为16-27℃,泥龄为20d时,在最优工况(水力停留时间11h、好氧池溶解氧浓度3mg/L、污泥回流比80%、混合液回流比200%)下运行,COD、NH_4~+-N和TN平均去除率分别为87.7%、97.3%和64.6%。不同混合污水出水浓度均满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。
     通过在好氧池投加悬浮填料形成A~2/O—生物膜工艺,进行解决污水厂接纳粪便液和垃圾渗滤液的瞬间混入带来的冲击负荷的影响和传统A~2/O工艺在生物脱氮除磷在泥龄方面的矛盾的研究。比较了两种新型填料的处理效果,研究了新型填料的挂膜,确定了填料的最佳投配比和最佳投配方式;考察了水力停留时间、混合液回流比和污泥回流比对该工艺处理该混合污水的脱氮除磷效果的影响;通过对泥龄的试验研究,解决脱氮与除磷在泥龄上的矛盾;在试验得出的适宜工况条件下研究该工艺处理该混合污水的同步脱氮除磷效果。
     研究表明:在好氧段中投加立体中空生物圆柱形悬浮填料比投加轻质多孔陶粒的运行效果好,通过闷曝方式20天左右,生物膜挂膜成功;填料的最佳投配比为20%;最佳投配方式为填料在好氧1池和好氧2池的体积比为1:3;系统在好氧池水力停留时间为5h、混合液回流比为120%和污泥回流比为60%下具有良好的脱氮除磷效果;控制泥龄为6d时能缓解脱氮和除磷在泥龄方面的矛盾;稳定运行一个月时间,系统对COD、氨氮、总氮和总磷具有高效稳定的去除效果,COD、氨氮、总氮和总磷的平均出水浓度分别为36.22 mg/L、0.3mg/L、12.9 mg/L和0.35 mg/L,满足国家排放标准一级A标准。
     通过16S rDNA克隆文库方法对AA/O-生物膜系统进行微生物群落的形态及多样性研究,获得如下结果:系统中含有丰富微生物菌群,存在多种与脱氮性能及与烷烃降解有关的菌种。好氧池2号池中的微生物菌群在种类与数量上均比前三个区域的要多,说明投加悬浮填料在一定程度上使该区域的微生物群落结构发生了变化,这种变化对系统更好地降解有机物和除氮起到了积极的作用。
With the rapid development of modern cities, urban garbage and fecal sewage has become a big concern,The landfill leachate and fecal sewage are resulting in significant pollutions to the environments. These two types of sewage have high concentrations of nitrogen and organic matters, and the influent quality and quantity are high changable. There were many problems when each of them was treated separately, such as difficulty to treat with proper technologies, high costs for above-mentioned investment and operation management. It is a good option to treat the three kind of sewage with combination so that the fecal sewage and landfill leachate can be easily treated to meet the discharging standards of China by using the effect of cushion and dilution.
     However, the combined treatment will bring about serious impact on the impulse loading to the sewage treatment plant, it may lead to unsatisfactory of nitrogen removal, biochemical system instability, high sludge production rate, and the effluent water quality. These phenomena were discovered in Datansa Sewage Treatment Plant which had the capacity of 550000 m~3/d to treat sewage waste water.Therefore, we designed an A~2/O bio-reactor in pilot scale to perform in-site tests for studying the optimal volumetric ratio of landfill leachate, fecal and domestic sewage, the operational parameters and optimal working conditions in the A2/O process. The variation of treatment efficiencies by adding suspended carriers in the oxygen tank are also investigated and discussed.
     The domestic sewage was mixed with landfill leachate and fecal sewage respectively. The affective factors of nitrogen and organic matters removal through single factor experiment and orthogonal test were conducted. The results showed that HRT had significant effects on nitrogen removal and on COD removal in both case of influent sewage. DO had a remarkable effect on NH4+-N removal in the influent mixture of domestic sewage with leachate.R had a remarkable effect on TN removal in the influent mixture of the domestic sewage with fecal. Moreover, r had a remarkable effect on TN removal to the latter wastewater.
     Leachate and domestic sewage synchronous processing at the optimal operating conditions(HRT11h、DO3 mg/L、R80%、r200%), the average removal efficiencies of COD、NH_4~+-N and TN were 77.4%、97.2% and 62.4%,respectively. In case of fecal sewage and domestic sewage synchronous processing at the optimal operating conditions(HRT9h、DO3mg/L、R80%、r200%), the average removal efficiencies of COD、NH_4~+-N and TN were 88.0%、97.1% and 69.9%, respectively. In case of leachate, fecal and domestic sewage synchronous processing at the optimal operating conditions(HRT11h、DO3mg/L、R80%、r200%), the average removal efficiencies of COD、NH_4~+-N and TN were 87.7%、97.3% and 64.6%,respectively. The effluent concentrations of COD、NH_4~+-N and TN in different mixed sewages could meet the discharging limits required by China Discharge Standard of pollutants for municipal wastewater treatment plant.
     The A~2/O -biofilm process was conducted by adding suspended carriers to the oxygen tank of previous A~2/O reactor. The objective was to solve the various disadvantage causing by the high organic loading of fecal sewage and landfill leachate as well as the contradiction of SRT between the denitrification and the phosphorus removal in A2/O process. The fuction and the effects of these two carriers were investigated , the optimal ratio and the operation parameters with the addition of the carriers were obtained. The influence of HRT on simultaneous denitrification and the phosphorus removal, the mixed-liquid return ratio and sludge return ratio were experimentally tested to solve the contradiction between the denitrification and the phosphorus removal.
     The results demonstrated that the dosage of suspended three-dimensional hollow cylindrical biological carrier in the aerobic tank was better than that dosed by lightweight porous ceramic in comparison with the effective operation. The bio-film was formed after 20 days of aeration performance. The optimal volumetric ratio of the carriers was 20%, the optimal volumetric ratio for carriers between the oxygen tank 1 and the oxygen tank 2 was 1:3. The system had a better removal efficiencies of nitrogen and phosphours in the case of the HRT was 5h, the mixed-liquid return ratio was 120% and the sludge return ratio was 60%. It can relieve the contradiction between the denitrification and the phosphorus removal under the condition of the sludge retention time to be 6 days. The system had high and stable removal efficiencies, the average concentrations of COD, NH_4~+-N, TN, TP in the effluent were 36.22 mg/L, 0.3mg/L, 12.9 mg/L, and 0.35 mg/L, respectively. The main water quality achieved in the effluent can meet the level A dischaging limits of the China discharging standard (GB18918-2002).
     By using the molecular biological methods, 16S rDNA, the morphology and diversity of microbial community in the A~2/O-biofilm system were studied, the results obtained from the experiments showed that abundant microorganisms communities and many bacteria species performing for the nitrogen removal and the degradation of of alkanes were found in the system. The species of various microorganisms in aerobic zone 2 was more abundant than those in the first three zones of the bioreactor. As a result, the dosage of suspended filler into the aerobic zone 2 could change and improve the structure and function of the microbial communities in the system with better biodegradation of organic matters and biological nitrogen removal in the system being achieved.
引文
[1]王宝贞,王琳.城市固体废物渗滤液处理与处置[M].北京:化学工业出版社,2005.6-8.
    [2]孟了,熊向陨,马箭.我国垃圾渗滤液处理现状及存在问题[J].给水排水,2003,29(10):26-30.
    [3]Lema J M. Characterislics of landfill leachates and alterna-tives for their treatment: a review[J].JW-PCF,1998,40:223-250.
    [4]陈玉成.城市生活垃圾渗沥水的污染及全过程控制[J].环境科学动态,1995,(4):15-17.
    [5]黄健平,鲍姜伶.垃圾渗滤液处理技术[J].环境科学与管理,2008,33(1):93-96.
    [6]赵由才,朱青山.城市生活垃圾卫生填埋场技术与管理手册[M] .北京:化学工业出版社,1999.
    [7]Lange DA,Cellier B F.,Dunchak T A. Case study of the Help model: actual versus predicted leachate production rates at a municipal landfill in northeastern Ohio[J].WQI,1997,11(12):40-42.
    [8]周敬宣,李冠峰,李艳萍.我国粪便处置现状与治理对策的研究[J].环境污染治理技术与设备,2003,4(3):9-10.
    [9]刘疆鹰,赵由才,赵爱华.大型垃圾填埋场渗滤液COD的衰减规律[J].同济大学学报,2000,28(3):328-332.
    [10]刘疆鹰,徐迪民,赵由才等.大型垃圾填埋场渗滤水氨氮衰减规律[J] .环境科学学报,2001,21(3):323-327.
    [11]杨志泉,周少奇. The biological treatment of landfill leachate using a simultaneous aerobic and anaerobic(SAA) bio-reator system[J].Chemosphere,2008,72:1751-1756
    [12]郑曼英,李丽桃.垃圾渗滤液中有机污染物初探[J].重庆环境科学,1996,19(4):41-43.
    [13]张兰英,韩静磊,安胜姬等.垃圾渗滤液中有机污染物的污染及去除[J].中国环境科学,1998,18(2):184-188.
    [14]王磊刚.垃圾填埋场渗滤液处理技术探讨[J].工业安全环保,2009,35(1):35-38.
    [15]Johnson K H.,Einarson M D,Ganbelin D J.An expensive lesson: Hydrogeologic characterization is the key to inward gradient landfilldesign[J].WQI,1997,11(12):43-45.
    [16]薛红琴,速宝玉,盛金昌.垃圾填埋场渗滤液的防渗措施和地下水的污染防护[J].安全与环境科学,2002,2(4):18-22.
    [17]王宗平,陶涛,金儒霖.垃圾填埋场渗滤液研究进展[J] .环境科学进展,1999,7(3):32-39.
    [18]席俊清,蒋火华,汪志国等.我国城市生活垃圾处理现状及存在问题分析[J].中国环境监测,2003,19(1):21-23.
    [19]Robinson H.D , et al.Leachate collection , treatment and disposal. Water and Environmental Management [J].1992,12(2):321-332.
    [20]Ehrin H J.Water and element balances of land fills In The Landfill Reactor and Final Storage.Lecture notes Science,Baccini P,ed.Belin:Springer Verlag[J].1992,20:83-115.
    [21]MikacN, CosovicB, Ahel M, et al. Assessment of groundwater contamination in the vicnity of municipal solid waste landfill (M), 1998,37(8):37-44
    [22]Arneth J D, Mide G K, Kerndorff H, et al. Waste in deposit influences on groundwater quality as a waste type and site selection for final storage quality. In: The landfill Reactor and final storage[C]. Lecture notes Science, Baccina P, ed. Belin: Springer Verlag.1989,20:399-415
    [23]Li XZ&Zhao Q.L.Recovery of ammonium-nitrogen from landfill leachate as amulti-nutrien fertilizer[J].Ecological Engineering 2003,20:171-181.
    [24] Ashok K. Pandey,Shri Dhar Pandey,and Virendra Misra1.Removal of toxic metals from leachates from hazardous solid wastes and reduction of toxicity to microtox by the use of calcium alginate beads containing humic acid[J].Ecotoxicology and Environmental Safety,2002,5(2):92-96.
    [25]姜必亮、蓝崇钰、王伯荪.垃圾填埋场渗滤液灌溉后重金属的生态效应[J].中国环境科学,2001,21(1):18-23
    [26]姜必亮、王伯荪、蓝崇钰.垃圾填埋场渗滤液灌溉地土壤和植物中重金属积累[J].应用与环境生物学报,2000,6(4):374-378
    [27]郑曼英,李丽桃,刑益和等.垃圾浸出液对填满场周围水环境污染的研究[J].重庆环境科学,1998,20(3): 17-20.
    [28]Berg P L,Rugge K,Pedersen J K,et al.Distribution of redox-sensitive groundwater quality parameters down gradient of a landfill[J].Environ.Sci. Technol , 1995 ,29:1387-1394.
    [29]郭永龙、王焰新、蔡鹤新等.垃圾填埋场渗滤液对地下水环境影响的评价[J].地质科技情报,2002,21(1):87-91
    [30]刘东、孙建亭、江丁酉等.二妃山垃圾填埋声污染地下水的可能性分析[J].地质科技情报,2002,21(3):79-84
    [31]范家明,周少奇.广州大田山垃圾填埋场渗滤液污染现状的调查[J].环境卫生工程,2001,9(4):160-162.
    [32]廖利、全宏东、吴学龙等.深圳盐田垃圾场对周围土壤污染状况分析[J].城市环境与生态,1999,12(3):51-53
    [33]B.Jefferson , A Laine Wastewater recycling the potential for membrance bio-reactors[J].Water Quality International,1997(11-12):12-13.
    [34] F.Hammes,YKalogo,W Verstrate.Anaerobic digestion technologies for closing the domestic water carbon and nutrient cycles[J].Wat.Sci.Tech.2000,41(3):203-211.
    [35]张道勇,王鹤平.中国使用化肥[M].上海:上海科技出版社,1997.173.
    [36]何强,孙倩,翟俊等.高氮高浓度粪便污水处理技术研究[J].重庆建筑大学学报,2007,29(4):104-105.
    [37]章海疆.关于城市生活粪便处理工艺方案的探讨[J].城市环境与城市生态,1993,4(2):22-24.
    [38]Kim D J,Lee D I,Keller J.Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitriying bacterial community by FISH [J].Bioresource Technology,2006,97(3):459-468.
    [39]何康生,余建恒,叶恒朋等.粪便水对大坦沙污水厂生产运行的影响及控制措施[J].中国给水排水.2007,23(24):92-94.
    [40]Lau W C. Removal of refractory chemicals in landfill leachate treatment by a photoassisted Fenton reaction [J]. Water Science and Technology, 1997, 35(4):239-248
    [41]王敏、阳小敏.垃圾渗滤液深度处理技术及其分析[J].江苏环境科技,2002,15(2):32-34
    [42]Boyle W C, Ham R K. Chemical treatment of leachate from sanitary landfills [J].Journal of Water Pollution Control Federation,1974,46(7):1776-1791.
    [43]张祥丹,王家民.城市垃圾渗滤液处理工艺介绍[J].给水排水,2000,26(10):9-14.
    [44]汪慧贞,沈家杰.固体垃圾填埋场渗沥水的处理[J].给水排水,1988,14(5):
    [45]蒋乐平.城市垃圾渗滤液厌氧处理的工艺分析[J].污染防治技术,2006,19(3):9-11.
    [46]Loukidou M X,Zouboulis A I.Comparison of two biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment [J].Environmental Pollution,2001,111(2):273-281.
    [47]赵剑锋、张宏伟.垃圾渗滤液脱氮处理工艺的工程实例[J].有色冶金设计与研究,2006,27(4):54-56.
    [48]李湛江,周少奇.Combined Treatment of Landfill Leachate by Biological and membrane filtration technology [J].Environmental engineering science,2007,24(9):1239-1249
    [49]谢可蓉,温旭志,谢璨楷等.SBR在垃圾渗滤液治理中的研究和应用[J].广东工业大学学报,2001,18(4):90-93.
    [50]Kettunen R H, Hoilijoki T H, Rintala J A. Anaerobic and sequential anaerobic-aerobic treatments of municipal wastes[J]. Bioresour Technol., 1996,58:31-40
    [51]Malina J F, Pohland F G.. Design of anaerobic processes for the treatment of industrial and municipal wastes [M]. Water quality management library,vol 7. Techonomic Publishing Co.; 1992
    [52]Inanc B, Calh B, Saatci A. Characterisation and anaerobic treatment of the sanitary landfill leachate in Istanbul[J]. Water Res.,2001, 35(10):2403-2410
    [53]Henry J G,Prasad D,Young H.Removal of organics from leachate by anaerobic filter[J].Water Research,1987,21(11):1395-1399.
    [54]Peng Y Z,Zhang S J,Zeng W,et al. Organic removal by denitrification and methanogenesis and nitrogen removal by nitrification from landfill leachate [J].Water Research,2008,42(7/8):883-892.
    [55]Agdag O N,Sponza D T.Anaerobic/aerobic treatment of municipal landfill leachate in sequential two-stage up-flow sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) system[J]. Process Biochemistry,2005,40(2):895-902.
    [56] Ozturk I,Altinbas M,Arikan O,et al.Anaerobic UASBR treatment of young landfill leachate[J].Fresenius Environmental Bulletin,1999,8(5):389-396.
    [57]Keenan P J,Iza J,Switzenbaum M S. Inorganic solids development in a pilot scale anaerobic reactor treating municipal solid waste landfill leachate[J].Water Environmental Research,1993,65(2):181-188.
    [58] Lin C Y.Anaerobic-Digestion of landfill leachate[J].Water Science and Technology,1991,17(4):301-306.
    [59]王凯军,贾立敏.城市污水生物处理新技术开发与应用(第一版)[M].北京:化学工业出版社,2001,35
    [60]王宝贞,王承武,杨栓大等.A(缺氧活性污泥)/B(A/O淹没式生物膜)复合系统处理垃圾填埋场渗滤液[J].给水排水,1996,22(5):15-18.
    [61] Diamadopoulos E,Samaras P,Dabou X,et al.Combined treatment and domesticsewage in a sequencing batch reactor[J].Water Science and Technology,1997,36(2):61-68.
    [62] Im J H,Woo H J,Choi M W,et al.Simutaneous organic and nitrogen removalfrom municipal landfill leachate using an Anaerobic-Aerobic system[J].Water Research,2001,35(10):2403-2410.
    [63]熊小京,冯喆文.垃圾渗滤液厌氧BF/好氧MBR工艺的脱氮特性.[J].华侨大学学报,2008,29(1):68-71.
    [64]孙洪伟,彭永臻,时小宁等.高氮渗滤液缺氧/厌氧UASB-SBR工艺低温深度脱氮.[J].中国环境科学,2009,29(2):207-212.
    [65]王小虎、胡春莲、杨铁庚等. SBR法处理垃圾渗滤液试验研究[J],环境卫生工程,2000,8(4):47-50
    [66]Osman N A., Delia T S. Anaerobic/aerobic treatment of municipal landfill leachate in sequential twe-stage up-flow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor(CSTR) system[J]. Process Biochemistry, 2005, 40:895-902
    [67]陈朱蕾.国内外城市粪便处理系统模式比较的研究[J].武汉城市建设学院学报,2000,17(1):20-23.
    [68]徐庆文.城市粪便污染及治理对策[J].贵州农学院学报,1994,13(1):83-88.
    [69]陈朱蕾.日本粪便处理技术进展[J].城市环境.1990,(2):74-76.
    [70] Toshihiro Tanaka.Ultrafiltration aids Japanese treatment[J].Water Qualitry International,1997,3(7):26-27.
    [71] Jone M Kalbermatten et al. Appropriate Sanitation Alternatives[M].The Johns Hopkins University Press,1982.103-106.
    [72]邓挺兴.高温消解-中温厌氧发酵-生物稳定塘系统处理城市粪便的卫生学评价[J].环境与健康,1992,9(6):241-244.
    [73]瞿永彬.粪便生活污水生物脱氮实用技术研究[J].环境卫生工程,1999,7(4):148-149.
    [74]田海涛,徐兆义.水解-SBR技术处理高浓度粪便污水的研究[J].铁道标准设计,2003(12):92-94.
    [75]王绍康.关于城市生活粪便处理工艺方案的探讨[J].城市管理与科技,2003,5(3):121-123.
    [76]Christensen T H,Stegmann R.Landfilling of waste:leachate[J].Elsevier Applied Science,1992:185-202.
    [77]Borghi A D,Binaghi L,Converti A,et a1.Combined treatment of leachate from sanitary landfill and municipal wastewater by activated sludge[J].Chem Biochem Eng,2003,17(4):277-283.
    [78] Cecen F,Cakioglu D.Impact of landfill leachate on the co-treatment of domestic wastewater[J].Biotechnology Letters,2003,23:821-826.
    [79]陈丹,李国建.国内外垃圾填埋渗滤液控制的比较及对策[J].环境保护,2001,6:16-18.
    [80]张大铃,李小平,冀世峰等.垃圾填埋场渗滤液与城镇污水合并处理生化试验研究[J].环境科学与管理,2009,33(11):85-88.
    [81] He Pinjing,Fu Qiang,Shao Liming,et a1.Study on removal characteristics of organics in leachate by co-treatment with domestic wastewater[J].Acta Scientiae Circumstantiae,2005,25(7):954-958.
    [82]卢宁川,陈天安,刘志宏.生活垃圾填埋场渗滤液与邻近小城镇生活污水合并处理[J].环境导报,2002,2:18-19.
    [83]张晓玲,王长明,付朝杰.垃圾填埋场渗滤液与城市污水合并处理可行性分析[J].环境科学与技术[J].2004,27:122-124.
    [84]林绍葵,崔松阳,饶欠平.优化A/O工艺合并处理城市污水及垃圾渗滤液[J].市政技术,2007,25(4):279-280.
    [85]王丽风,邓柳,胡开林.垃圾填埋场渗滤液处理技术评述[J].广州环境科学,2005,20(2):16-20.
    [86]乔勇,赵国志.垃圾渗滤液接入城市污水处理厂存在的问题探讨[J].给水排水,2006,32(2):12-16.
    [87]陈瑜.成都地区垃圾渗滤液-城市污水合并处理可行性研究[M].西南交通大学硕士学位论文,2008:28-30.
    [88]张鸿郭,周少奇.垃圾渗滤液和粪水混合处理研究[J].工业安全与环保,2008,34(7):1-3.
    [89]王绍康.关于城市生活粪便处理工艺方案的探讨[J].城市管理与科技,2003,5(3):121-123.
    [90]莫东华.垃圾渗滤液、粪便污水与城市污水合并处理脱氮研究[M].广州大学硕士学位论文,2008:25-80.
    [91] H ?degaard, et al. A new moving bed biofilm reactor. Wat. Sci. Technol[J]. 1994, 29(10):
    [92] H. ?degaard, B.Rusten and H Badin. Small wastewater treatment plant based on moving bed biofilm reactors. Wat. Sci. Technol[C]. 1993,28(10):351-359
    [93] L.J.Hem et al. Nitrification in a moving bed biofilm reactor. Wat Res [J]. 1994, 128(6): 1425-1433.
    [94]季民,董广瑞,霍金胜.移动床生物膜反应器水力特性的数值模拟.中国给水排水[J].2002, 18(5):14-17
    [95]Wang Jianlong, Shi Hanchang,Qian Yi. Wastewater treatment in a hybrid biological reactor(HBR):effect of organic loading rates. Process Biochemistry[J]. 2000,36:297-303
    [96]曹斌.复合生物反应器处理城市污水的试验研究.给水排水.2003, 29(12):28-31
    [97] G.Pastorelli, G.Andreottola, R.Canziani. Pilot-plant experiments with moving-bed biofilm reactors. Wat.Sci.Technol [J]. 1997,36(1):43-50
    [98]U.Welander, B.Mattiasson. Denitrification at low temperature using a suspended carrier biofilm process. Wat. Res [J]. 2003,37: 2394-2398
    [99]金冬霞,田刚.悬浮填料的选取及其性能试验研究[J].环境科学学报.2002,22(3): 333-337
    [100]刘霞,周增炎.生物粒子浮动床处理城市污水的试验研究[J].中国给水排水. 1998, 14(3):14-15
    [101]季民,杨造燕,薛广宁等.移动床生物膜反应器在污水处理中的应用研究.城市环境与城市生态[J].2000,13(3):47-49
    [102]杨殿海,吴军,周琪.城市污水化学生物强化一级处理及后续脱氮中试研究[J].四川环境.2003,22(4):26-28
    [103]H. Aspegren, U.Nyberg B.Andessen. Post denitrification in a moving bed biofilm reactor process[J]. Wat. Sci.Tech. 1998,38(1):31-38
    [104]G.Andreottola, P.Foladori, M.Ragazzi. Experimental comparison between MBBR and AS system for the treatment of Municipal wastewater [J]. Wat. Sci. Tech. 2000, 41(4-5): 375-382
    [105]H. Helness and H. ?degaard. Biological phosphorus removal in a sequencing batch moving bed biofilm reactor [J]. Wat. Sci. Tech. 1999, 40(4-5): 161-168
    [106]G.Pastorelli, R.Canzianietc. Phosphorus and nitrogen removal in moving-bed sequencing batch biofilm reactor (MBSBBR) [J]. Wat. Sci. Tech. 1999, 40(4-5): 169-176
    [107]E.V.Münch, K.Barr, S.Watts. Suspended carrier technology allows upgrading high-rate activated-sludge plants for nitrogen removal via process intensification [J]. Wat.Sci.Tech. 2000, 41(4-5):5-12
    [108]董斌.投加填料的活性污泥法工艺解决生物脱氮除磷的泥龄矛盾的试验研究[J].中国给水排水.2004年. 20(18):91-93
    [109]刘翔,高廷耀.生物接触氧化法处理污水的一处新型填料—悬浮填料.重庆环境科学,1999,21(2):42-44
    [110]夏四清,高廷耀,周增炎.悬浮填料生物反应器石化废水生物硝化研究.同济大学学报.2001.29(1):448-452
    [111]Bock E and Koops HP and Harms H.Nitrifying bacteria.In: Autotrophic Bacteria,Schlegel H G and Bowien B(eds), Science Tech Publishers, Madison, WI and Springer Verlag, Berlin, 1989.81-96.
    [112]Staley JT, Bryant MP, Pfennig N and Holt JG.Bergey's manual of systematicbacteriology(VO 1.3)[J]. Williams&Wilkins, 1989.1807-1835.
    [113]Purkhold U, Pommerening-Roser A, Juetschko S, Schmid MC, Koops,H-P and Wgner M. Phylogeny of All Recognized Species of Ammonia Oxidizers Based on Comparative 16S rRNA and amoA Sequence Analysis: Implication for Molecular Diversity Surveys[J]. Appl Environ Microbiol. 2000, 66: 5368-5382.
    [114]郑平,冯孝善,胡宝兰等.新型生物脱氮理论与技术[M].北京:科学出版社. 2004.
    [115]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社. 2006: 19-32.
    [116]李军,杨秀山,彭永臻.微生物与水处理工程[M].化学工业出版社.2002: 343-406.
    [117]李亚新.城市污水硝化反硝化及生物脱氮计算[J].环境工程. 1995.
    [118]顾夏声.水处理微生物学基础[M].中国建筑工业出版社. 1987.
    [119]宗宫功编著,张荪楠,吴之丽译.污水除磷脱氮技术[M].中国环境出版社. 1987.
    [120]郑兴灿,李亚新著.《污水除磷脱氮技术》,中国建筑出版社, 1998
    [121]Wentzel,M .C., Lotter,L .H., E kama.G A., Loewenthal, R.E.and M arais,G .V.R. Evaluation of biochemical models for biological excess phosphorus removal,Water Sci. Technol.23,567,1991
    [122]Smolers, Gj.f, vander Meij, l., van Loosdrecht, M.C.M., and Heijnen, J.J. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal processes. Biotechnol Bioeng.,44,837
    [123]钱易,郝吉明编.《环境科学与T程进展》,清华大学出版社, 1998
    [124]Kirsten S Jorgensen, Anneli S.L.Pauli. Polyphosphate accumulation among denitrifying bacteriain a ctivateds ludge[J].Environmentalm icrobiology, 1996, 1:161-168
    [125]Benefield, LarryD .等著,邢建等译.《废水生物处理过程设计》,中国建筑工业出版社, 1984.
    [126]钱易,米祥友主编.现代废水处理新技术,北京:中国环境科学出版社, 1992
    [127]俞辉群等译,生物脱氮原理,水与废水技术研究,中国建筑工业出版社, 1992
    [128]高廷耀,顾国维主编.《水污染控制工程》,高等教育出版社, 1999
    [129]樊毓新.城市污水二级处理厂脱氮除磷的简易改建研究.同济大学工学硕士论文, 2002
    [130]刘丽玲等.脱氮除磷新途径—反硝化除磷.化工设计,2004,14(2):37-39
    [131]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.209-210.
    [132] G. Taguchi. System of experimental design. Quality resources, vol. 1. New York, USA: Kraus; 1987.
    [133] L.R. Mason, F.R. Gunst and L.J. Hess. Statistical Design and Analysis of Experiments, Second ed. John Wiley & Sons, New York, (2003) pp.247–254.
    [134]余建恒,周少奇,曾武.大坦沙污水厂承接粪便污水的脱氮除磷研究[J].《环境工程学报》Vol2,No.12,2008.12:1606-1608
    [135]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006:26-32.
    [136]杨德.试验设计与分析[M].北京:中国农业出版社,2002.101-105.
    [137] C.R. Hicks. Fundamental concepts in the design of Experiments, Oxford University Press, New York. 1993
    [138]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.83-85.
    [139]余建恒,赵淑贤,夏耿东等.接入垃圾渗滤液对城市污水厂运行的影响与对策[J].中国给水排水.2010,126(4): 95-97
    [140]张忠祥,钱宜.废水生物处理新技术[M].北京:清华大学出版社,2004.184-201
    [141]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,6(1):13-15
    [142]Laanbroek H J, Gerards S. Competition for limitingamounts of oxygen between Nitrosomanas europaea andNitrobacteria winogradskyi grown in mixed continuouscultures[J].Arch Microbiology,1993,159:453-459.
    [143]王洪臣.城市污水处理厂运行控制与维护管理[M] .北京:科学出版社,1997:98-99
    [144] Mulder J W, Rogier van Kempen. N-removal bySHARON[A].IAWQ conference[C],1997.30-31.
    [145] Metcalf and Eddy Inc.Wastewater engineering treatment and reuse[M].4th. Beijing:Tsinghua University Press,2003:284-288.
    [146]Chen S,Sun D Z,Chung J S.Simultaneous removal of COD and ammonium from landfill leachate using anaerobic-aerobic moving-bed biofilm reactor system[J].Waste Management,2008,28(2):339-346.
    [147] Qureshi A,Lo K V,Liao P H,et al.Real-time treatment of dairy manure:Implication ofoxidation reduction potential regimes to nutrient management strategies[J].Bioresource Technology,2008,99(5):1169-1176.
    [148]Abu-ghararah Z.H. et. al. A proposed model for the anaerobic metabolism of short-chain fatty acids enhanced biological phosphorus removal systems. Res. J. WPCF,1989,61:1729-1730.
    [149] Satoh H. et. al Uprake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal process. Wat. Sci. Technol.,1992,26:933-942
    [150]孙华,张菊萍,李湘霖。投加悬浮填料改善活性污泥法处理性能的试验研究。重庆环境科学,2001,23(6):37~40
    [151]何国富,周增炎,高廷耀。悬浮填料活性污泥法的脱氮效果及影响因素。中国给水排水, 2003,19(6):6~8
    [152]何国富,周增炎,高廷耀。投加悬浮填料强化传统活性污泥法的脱氮功能试验研究。环境工程,2003,21(4):15~17
    [153]Minett and Steve.The Kaladnes Moving Bed for Wasterwater Treatment at Pulp and Paper Mills[J].Filtration&Separation,1995,32(5).
    [154]L J Hem,B Rusten,H Odegaard.Nitification in a Moving Bed Biofilm Reactor[J]. Wat.Res., 1994, 32(5)
    [155]江萍,胡九成.国产轻质球型陶粒用于曝气生物滤池的研究.环境科学学报[J],2002,22(4).459-464.
    [156]冯婧微,王晓丹,梁彦秋,刘永生.生物膜投料A/O工艺脱氮试验研究[J].辽宁化工. 2005 3(4): 159-164
    [157]傅金祥,顾丹亭,李微,陈东宁.曝气生物滤池复合式接种挂膜试验研究[J].沈阳建筑大学学报(自然科学版).2007.23(3):478-481
    [158]王文军等,生物膜研究进展,环境科学进展,1997(5):43-49
    [159]王圣武,马兆昆,生物膜污水处理技术和生物膜载体,江苏化工,2004,32(4)。
    [160]颜家保,董志军,夏明桂.悬浮填料系统处理炼油废水实验[J].中国给水排水,2004,20(10):46-48
    [161]MulderA.,van de Graaf L.,Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMSMicrobio.l Eco.l,1995. 61 (3):177-183.
    [162]高廷耀,顾国维主编.《水污染控制工程》,高等教育出版社, 1999
    [163]胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究[J].应用与环境生物学报,1999,5 (Suppl):68-73.
    [164]SiegristH.,ReithaarS.,Koch G.,eta.l Nitrogen Loss in Nitrifying Rotating Contactor Treating Ammonium Rich Leachate withoutOrganic Carbon. Wat. Sc.i & Tech.,1998,39 (4):589-591.
    [165]董滨,周增炎,高廷耀.投料A2/O工艺的硝化特性[J].给水排水. 2004.30(9):50-52
    [166]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社.2006:19-32.
    [167]KlangduenPochana,JurgKeller. Study offactors affecting simultaneous nitri-fication and denitrification(SND) [J]. Wat Sci Tech,1999,39(6):61-72
    [168]Van Neil E W J. Nitrification by heterotrophic denitrifiers and its rela-tionship to autotrophic nitrification. [PhD Thesis].Delft : Delft Univer-sity of Technology ,1991.78-80
    [169]冯婧微,王晓丹,梁彦秋,刘永生.生物膜投料A/O工艺脱氮试验研究[J].辽宁化工. 2005 3(4): 159-164
    [170]郝红元,郝红英,王伟.A2/O工艺影响因素的研究[J].给水排水,2003,29(4):12-14.
    [171]许保玖.当代给水与废水处理原理[M].北京:北京高等教育出版社,1990倒置A2/O脱氮除磷工艺中试[J].中国给水排水2004.20:11-17
    [172]Pace N.R., Stahld A., Laned J., et al. The analysis of natural microbial communities by ribosomal RNA sequences[J]. Adv Microbial Ecol. 1986, 9:1-55
    [173]Pacenr A. Molecular view of microbial diversity and the biosphere[J]. Science. 1997, 276: 734-740
    [174]Tomonori M., Keisuke H., Satoshi T., et al. Advances in water and wastewater treatment technology [M]. Tokyo: Shannon, 2001
    [175]Muyzer G., Waal E. C., Uitterlinden A. G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerse chain reaction amplified genes encoding for 16S rRNA[J]. Appl. Environ. Microbiol, 1993, 59:695-700
    [176]Casamayor E.O., Schǎfer H., Baneras L., et al. Identification of and spatio temporal differences between microbial assemblages from two neighboring sulfurous lakes: Comparison by microscopy and denaturing gradient gel electrophoresis [J]. Appl Environ Microbiol, 2000, 66(2) :499 - 508
    [177]Sekiguchi H.,Watanabe M,Nakahara T., et al. Succession of Bacterial Community Structure along the Changjiang River Determined by Denaturing Gradient Gel Electrophoresis and Clone Library Analysis[J]. Appl Environ Microbiol , 2002,68(10) :5142 - 5150
    [178]Smalla K., Wieland G., Buchner A., et al. Bulk and Rhizosphere Soil Bacteria Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant - Dependent Enrichment and Seasonal Shifts Revealed[J]. Appl Environ Microbiol, 2001,67 (10) :4742 - 4751
    [179]Fouratt M.A., Rhodes J.S., Smithers C.M., et al. Application of temperature gradient gel electrophoresis to the characterization of a nitrifying bioaugmentation product[J]. FEMS Microbiol Ecol., 2003, 43(2): 277-286
    [180]Yonezawa S., Kimura A., Koshiba S., et al. Mouse Myosin X: Molecular Architecture and Tissue Expression as Revealed by Northern Blot and in Situ Hybridization Analyses [J]. Biochemical and Biophysical Research Communications, 2000, 271(2): 526-533
    [181]Higo N., Oishi T., Yamashita A., et al. Northern blot and in situ hybridization analyses for the development of myristoylated alanine-rich c-kinase substrate mRNA in the monkey cerebral cortex[J]. 2004, 129(1):167-177
    [182]Principi P., Villa F., Bernasconi M., et al. Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization [J]. Water Research, 2006, 40(1): 99-106
    [183]Giovannoni S.J., Delong E.F., Olsen G.J., et al. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells [J]. Bact., 1988,170:720-726
    [184]Michael W., Daniel R.N., Stefan J., et al. combining fluorescent in situ hybridization with cultivation and mathematical modeling to study population structure and function of ammonia-oxidizing bacteria in activated sludge[J]. Wat. Sci. Tech., 1998, 37(4-5):441-449
    [185]Michael W., Gabriele R., Hans-Peter K., et al. In situ analysis of nitrifying bacteria in sewage treatment plants [J]. Wat. Sci. Tech., 1996, 34(1-2): 237-244
    [186]Tomonori M., Keisuke H., Satoshi T, et al. Advances in water and wastewater treatment technology [M]. Tokyo: Shannon, 2001.
    [187]Jonathan J. S., Joseph D. P., Timothy E F. 16S rRNA Restriction Fragment Length Polymorphism Analysis of Bacterial Diversity as a Biomarker of Ecological Health in Polluted Sediments from New Bedford Harbor, Massachusetts, USA[J]. Marine Pollution Bulletin, 1999, 38(8):663-675
    [188]Bonin P. C., Michotey, V. D., Mouzdahir A., et al. Anaerobic biodegradation of squalene: Using DGGE to monitor the isolation of denitrifying Bacteria taken from enrichment cultures [J]. FEMS Microbiology Ecology, 2002, 42 (1): 37-49
    [189]Moudjahidou D. D., Miet M., Nele V., et al. Phylogenetic Analysis of Partial Bacterial 16S rDNA Sequence of Tropical Grass Pasture Soil under Acacia tortilis subsp. raddiana in Senegal [J]. System. Appl. Microbiol., 2004, 27: 238–252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700