介质阻挡放电增强热丝CVD沉积硅薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介质阻挡放电(DBD)等离子体增强热丝化学气相(HWCVD)沉积技术结合了PECVD与HWCVD的特点,具有沉积速率高、无离子损伤等优点,在薄膜沉积中有广泛的应用前景。本文以DBD-HWCVD法沉积硅薄膜,利用Raman散射谱、透射光谱、X射线衍射谱和扫描电子显微镜、Hall等检测手段,系统研究了硅薄膜的性质,研究内容包括:介质阻挡放电的峰值电压对硅薄膜结构性质的影响;沉积气压对硅薄膜结构性质的影响;不同的掺杂浓度、钨丝与衬底之间的距离对薄膜电学性质的影响。研究结果表明:
     1.随着沉积气压的增大,硅薄膜的沉积速率增大。同时当DBD的峰值电压增大时,薄膜的沉积速率增大。
     2.随着沉积压强的增大,薄膜的光学带隙降低,并且加入DBD及增加DBD的峰值电压都会导致光学带隙进一步减小。
     3.随着气压的增加与介质阻挡放电的引入及放电电压的提高,晶化率在58%至68%之间变化,总的变化趋势是增加的。从晶化率的结果来看,DBD的引入及DBD作用的增强,都没有使薄膜的结构表现出因离子轰击而非晶化的趋势,晶化率反而有所增强。
     4.80Pa以下,随着压强的增大,薄膜的晶粒尺寸由6.3nm下降到4.4nm,下降了30%,介质阻挡放电的加入及峰值电压的增加,晶粒尺寸也是减小的。在100Pa时,由于H原子的刻蚀作用减弱,DBD峰值电压对气相分子的离解作用占主要地位,所以晶粒尺寸增大。
     5.随着B2H6掺杂浓度的增大,薄膜的沉积速率增大。当B2H6浓度为7%时,载流子浓度和电导率取得最大值。
     6.随着钨丝与衬底之间距离Dsc的增大,薄膜的沉积速率降低,载流子浓度减小。是因为H原子数量增加,薄膜的表面刻蚀增大,从而降低了薄膜的生长速率。
Dielectric barrier discharge (DBD) plasma enhanced hot wire chemical vapor deposition (HWCVD) technique remains characteristic features of Plasma enhanced (PE)-HWCVD with high deposition rate, whereas film damage caused by high-energy ions bombardment is avoided. In this paper, DBD-PHWCVD was used to deposit a-Si:H thin films, the properties of Si films were analyzed by Raman scattering spectroscopy, transmission spectroscopy, X-ray diffraction, Scanning electron microscopy and Hall, including:the structural and electrical effect of different DBD peak voltage, deposition pressure, doping concentration, distance between hot-wire and substrates on Si film's structure were studied systematically, the results have been shown:
     1. The deposition rate of Si films increased with increasing of the gas pressure. At the same time when the peak voltage DBD increased, the deposition rate increased.
     2. With the deposition pressure increased, the optical band gap of the Si film decreased. And the optical band gap will further decrease with increasing of the pressure, or importing of DBD, or increasing of DBD peak voltage.
     3. With the deposition pressure increased, or with taking effect of DBD, or the DBD peak voltage increased, the crystallization ratio are between 58-68% and overall trend increased. The results showed from the crystallization ratio, or with taking effect of DBD, or the DBD peak voltage increased, the structure of the film did not show amorphous due to ion bombardment, but has been enhanced crystallization ratio.
     4. With the pressure increased under 80Pa, the film grain size is from 6.3nm down to 4.4nm (down 30%). With taking effect of DBD, or the DBD peak voltage increased, the grain size is reduced. In the 100Pa, because H atom etching weakened, DBD peak voltage is a leading role in dissociation of gas-phase molecule, so the grain size increased.
     5. With the B2H6 doping concentration increased, the deposition rate increased. When B2H6 concentration is less than 7%, the carrier concentration and electrical conductivity increased; when B2H6 concentration more than 7%, the carrier concentration and conductivity decreased.
     6. With the distance Dsc between hot-wire and the substrate increased, the deposition rate and the carrier concentration decreased. Because the number of H atoms increased, the surface etching effect increased, so the film growth rate reduced.
引文
[1]赵玉文.太阳电池新近展[J].物理学与新能源材料,2004,2:99-105.
    [2]梁宗存,沈辉,李戮洪,等.太阳能电池及材料研究[J].材料导报,2000,8:38-40.
    [3]]Haysons J, Allison J, Arndt R, et al. The CMOSAT non-reflective silicon solar cell: a second generation improved cell[J]. In:Int Cof on Photovoltaic power generation. Hmaburg,1974:487-490.
    [4]M. A. Green. Advanced Principles and Practice Bridge Printery[J]. Silicon Solar cells, 1995,130.
    [5]M. A. Green. Crystalline silicon Photovoltaic cells[J]. Advanced Materials, 2001,13(12-13):1019-1022.
    [6]耿新华,孙云,王宗衅,等.薄膜太阳电池的研究新进展[J].物理学报,1999,2:96-102.
    [7]Shoji Furukawa, Tatsuro Miyasato. Quantum size effects on the optical band gap of microcrystalline Si:H[J]. Phys.Rev. B,1988,38:5726-5729.
    [8]Crandall R S. Defect relaxation in amorphous silicon:Stretched exponentials, the Meyer-Neldel rule, and the Staebler-Wronski effect[J]. Phys. Rev. B,1991, 43(5):4057-4070.
    [9]Nazeeruddin M K, Angelis F D, Fantacci S, et al. Combined Experimental and DFT-TDDFT computational Study of photoelectrochemical cell Ruthenium Sensitizers[J]. J Am. Chem. Soc,2005,127(48):16835-16847.
    [10]Stephan Will, Helmut Mell, Margarethe Poschenrieder, et al.a-Si:H deposited at high rate on the cathode of a rf-PECVD reactor[J]. Journal of Non-Crystalline solids,1998,227-230:29-33.
    [11]G Willeke, H Nussbaumer, H Bender, et al. A simple and effective light trapping technique for polycrystalline silicon solar cells[J]. Solar Energy Materials and Solar cells,1992,26(4):345-356.
    [12]Sansonnens L, Howling A A, Schmitt J P M, et al. A voltage uniformity study in large-area reactors for RF plasma deposition [J]. Plasma Sources Sci Technol,1997, 6:170-178.
    [13]Stephan U, Kuske J, et al. Problems of power feeling in large area PECVD of amorphous silicon[J]. Mat Res Soc Symp Proc,1999,557:157-162.
    [14]刘国汉,丁毅,朱秀红,等HW-MWECR-CVD法制备氢化微晶硅薄膜及其微结构研究[J].物理学报,2002,55(11):6147-6150.
    [15]Matsumura H. Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method[J]. Jpn J Appl Phys,1998,37:3175-3187.
    [16]刘艳红,刘东平,刘爱民,等.介质阻挡放电等离子体热丝化学气相沉积的方法与装置[P].中国专利,200610134141.8.2007,04,18.
    [17]Ulrich Kogelschatz. Dielectric-barrier Discharges:Their History, Discharge Physics, and Industrial Applications[M]. Plasma Chemistry and Plasma Processing, 2003.
    [18]Wiesmann H, Ghosh A K, McMahon T, et al. a-Si:H produced by high-temperature thermal decomposition of silane[J]. Journal of Applied Physics,1979.50(5):3752-3754.
    [19]Hideki Matsumura, Hiroyuki Tachibana. Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiFz[J]. Applied Physics Letter,1985,47(8):833-835.
    [20]Mahan A H, Carapella J, Nelson B P, et al. Deposition of device quality, low H content amorphous silicon[J]. J Appl Phys,1991,69(9):6728-6730.
    [21]Mahan A H, Nelson B P, Salamon S, et al. Deposition of device quality, low H content a-Si:H by the hot wire technique[J]. Journal of Non-Crystalline Solids, 1991,137-128:657-660.
    [22]Weber U, Mukherjee C, Seitz H, et al. Proceeding of the European Photovoltaic Solar Energy Conference[C]. Glasgo wp 286,2000.
    [23]Nelson B, Iwaniczko E, Mahan A H, et al. Extended abstract of the first international conference on cat-CVD(HWCVD) process[C].2000.
    [24]Guo Yu, Zhang Xiwen, Han Gaorong. Room Temperature Growth of Hydrogenated Amorphous Silicon Films by Dielectric Barrier Discharge Enhanced CVD[J]. Plasma Science and Technology,2007,9(2):177-180.
    [25]P A T T van Veenendaal, R E I Schropp. Processes in silicon deposition by hot-wire chemical vapor deposition [J]. Current Opinion in Solid State and Materials Science, 2002,6 (5):465-470.
    [26]Cat-CVD (hot-wire CVD):how different from PECVD in preparing amorphous silicon[J]. Journal of Non-Crystalline Solids,2004,19-26:338-340.
    [27]Nomoto K. Role of hydrogen atoms in the formation process of hydrogenated microcrystalline silicon[J]. Jpn. J. Appl. phys,1990.29:1372-1375.
    [28]Nakayama Y. High-Rate deposition of a-Si:H film Using the decomposition of Mono-Silane[J]. Jpn. J. Appl. phys,1982,21:604-606.
    [29]赵艳辉等.不同结构介质阻挡放电的放电特性[J].大连海事大学学报,2004,30(3).
    [30]李雪辰等.大气压介质阻挡放电放电特性研究[J].河北大学学报,2002,22(1).
    [31]Carballeda-Galicia D M, Castanedo-Perez R, Jimenez-Sandoval 0, et al. High transmittance CdO thin films obtained by the sol-gel method [J]. Thin solid films, 2000,371:105-108
    [32]F L Martinez, I Martil, G Gonzalez-Diaz, et al. Optical absorption in amorphous hydrogenated silicon nitride thin films deposited by the electron cyclotron resonance plasma method and subjected to rapid thermal annealing[J]. thin solid films,1999,343-344:433-436.
    [33]Swanepoel R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films[J].J Phys E:Sci Instrum,1984,17(10): 896-903.
    [34]A M Nasr, H I Abd El-Kader, M Farhat. Characterization of photoactive polymer thin films using transmission spectrum[J]. Thin Solid Films,2006,515:1758-1762.
    [35]Mulato M, Chambouleyron I, Birgin E G, Martinez J M. Determination of thickness and optical constants of amorphous silicon films from transmittance data[J]. Appl Phys Lett,2000,77:2133-2135.
    [36]Dong-Sing Wuu, Shui-Yang Lien, Hsin-Yuan Mao, at al. Growth and characterization of polycrystalline Si films prepared by hot-wire chemical vapor deposition[J]. Thin solid films,2006,498:9-13.
    [37]Synthesis of highly conductive boron-doped p-type hydrogenated microcrystalline silicon (μc-Si:H) by a hot-wire chemical vapor deposition (HWCVD) technique[J]. Solar Energy Materials & Solar Cells,2000,64:333-346.
    [38]Aqili A K S, Maqsood A. Determination of thickness, refractive index, and thickness irregularity for semiconductor thin films from transmission spectrum[J]. Applied Optics,2002,41(1):218-224.
    [39]沈峰.PECVD法制备P型非晶硅薄膜及多晶硅薄膜[D]:(硕士学位论文).武汉:武汉理工大学,2008
    [40]Yuliang He, Chenzhong Yin, Guangxu Cheng, et al. The structure and properties of nanosize crystalline silicon films[J]. Journal of Applied Physics,1994,75(2): 797-803.
    [41]刘宁宁,孙甲明,潘少华,等.非晶Si/SiO2超晶格的制备及其光谱研究[J].物理学报,2000,49(5):1019-1022.
    [42]G Lucovsky, R J Nemanich, J C Knights. Structural interpretation of the vibrational spectra of a-Si:H alloys[J]. Physical review B,1978,19:2064-2073.
    [43]刘韶华.热丝化学气相沉积制备多晶硅薄膜的研究[D]:(硕士学位论文).大连:大连理工大学,2006.
    [44]A Fontcuberta i Morral, P Roca i Cabarrocas. Etching and hydrogen diffusion mechanisms during a hydrogen plasma treatment of silicon thin films[J]. Journal of Non-Crystalline Solids,2002,299-302:196-200.
    [45]Perrin J, Takeda Y, Hirano N, et al. Sticking and recombination of the SiH3 radical on hydrogenated amorphous silicon the catalytic effect of diborane[J]. Surface Science,1989,210(1-2):114-128.
    [46]Kumar P, Schroeder B. Electrical properties/Doping efficiency of doped microcrystalline silicon layers prepared by hot-wore chemical vapor deposition[J]. Thin Solid Films,2008,516(5):580-583.
    [47]Luo Q P, Zhou B Z, Chan Y K, et al. Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition[J]. Applied Surface Science,2008,255(5):2910-2915.
    [48]K H Yen, S Nishizaki, K Ohdaira, et al. Investigation of Cat-CVD amorphous silicon film properties under high catalyzer temperature [J]. Phys Status Solidi C 7,2010, 3-4:583-587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700