约束阻尼复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻尼材料由于具有变形耗能的性质,被广泛应用于现代航空、航天、航海、交通运输、大型机械等领域控制宽频带随机噪声激励产生的振动和噪声。但是大多数粘弹性材料的弹性模量很低,它们不能直接成为工程中的结构材料,因此必须将它们粘附于需要作减振降噪处理的构件上组成阻尼复合结构,才能发挥减振降噪的作用。复合结构的基本类型有自由阻尼和约束阻尼两种,因此派生出工程上所说的自由阻尼材料和约束阻尼材料。约束阻尼材料由于振动时发生剪切变形而具有更大的结构能量损耗,因而在振动与噪声控制工程中得到了越来越广泛的应用。
     本文的目的是进行约束阻尼复合材料的制备和性能研究,在实验中约束阻尼材料一般都由基层,约束层和阻尼层3种基本材料构成,本文选择钢片和铝片作为基层和约束层材料。本文选择的是环氧树脂和多乙烯多胺固化体系,以及玻璃纤维增强环氧树脂体系作为阻尼层材料。
     通过测试与分析笔者得到如下结论:(1)本文当选择的阻尼层材料为环氧树脂和多乙烯多胺固化体系时,当固化剂多乙烯多胺含量(质量比)为13%时,此时材料的阻尼性能相对较好,损耗因子能够达到0.85以上;(2)当选择阻尼层材料为环氧树脂和多乙烯多胺固化体系时,随着阻尼层材料厚度的增加,体系损耗因子反而减小,损耗因子最大峰值为0.5688,体系整体插入损失峰值能够达到近-20dB,且整体平均插入损失都在-15dB以下;(3)当阻尼层材料选择为纤维增强环氧树脂阻尼材料时,随着阻尼层材料厚度的增加,各阶阻尼损耗因子都呈现出逐渐增大的趋势,损耗因子最大峰值为0.3542,体系整体插入损失峰值能够达到近-20dB,且整体平均插入损失都在-15dB以下;(4)当选择钢片作为约束层材料时,约束阻尼材料整体损耗因子比选择铝片作为约束层材料时损耗因子要大,差值在0.1左右;(5)新型带槽扩展层的约束阻尼结构的阻尼性能比起只增加无槽扩展层的约束阻尼结构和没有增加新型带槽扩展层的约束阻尼结构的阻尼性能都要好。损耗因子差值能够达到0.5以上。
Because of the nature of deformation energy, damping materials is widely used in modern aviation, aerospace, marine, transportation, heavy machinery and other areas to control broadband random noise, the vibration and noise excitation. But the most of the viscoelastic materia lthe modulus of elasticity is very low, they can not direct a project in the structural material, it must adhere to their treatment needs for reducing vibration and noise damping components on the composition of composite structures, can play a damping to reduce the noise. The basic types of composite structures with free damping and constrained damping, so what works derived free damping materials and constrained damping material.The constrained layer damping occurs greater structural loss when the shear deformation due to vibration,and therefore has been more widely used.in vibration and noise control engineering.
     The purpose of this paper is to prepare constrained damping composites and study the properties. In the experiment, the constrained damping composites is usually by the primary constraint damping materials, binding layer and damping layer. the material of the primary and constrained layer.This is to select stainless steel sheet and aluminum as the primary and the constrained layer material. The choice of this paper is the epoxy resin and polyethylene polyamine curing system, and glass fiber reinforced epoxy resin system as the damping materials.
     We can get the following conclusions from the test and analysis:(1) When the choice of damping layer materials is polyethylene polyamine curing epoxy resin system, when the curing agent polyethylene polyamine content (mass ratio) was 13%, the damping properties of the material is good. The peak of the maximum loss factor is over than 0.85; (2) When choosing the polyethylene polyamine epoxy curing system, when increasing the damping layer thickness butreducing the loss factor of the system. The peak of the maximum loss factor is 0.5688. The peak insertion loss of the whole system can achieve near-20dB, and the average insertion loss is less than-15dB; (3) When the damping layer material chosen for the fiber-reinforced epoxy resin damping material, with the damping layer thickness increases the damping loss factor of the order emerged gradually increasing trend. The peak of the maximum loss factor is 0.3542. The peak insertion loss of the whole system can achieve near-20dB, and the average insertion loss is less than-15dB; (4) When choosing steel as the constrained layer material, the loss factor is larger than the the loss factor of choosing aluminum as the constrained layer material. The difference of about 0.1;(5) New grooved extension of constrained damping layer damping performance compared to an increase of only non-expansion slot constrained damping layer structure and no increase in the new extension with a slot constrained layer damping structures have good damping properties. the difference of the loss factor can reach more than 0.5.
引文
[1]Johnson C D, Kienholz D A. Finite element prediction of damping in structures with constrainedviscoelastic layers. AIAA Journal,1982,20(9):1284-1290
    [2]张人德,赵钧良.减振降噪阻尼材料及其应用[J].上海金属,2002,24(2):18-23
    [3]熊伟,刘耀宗,邱静,郁殿龙.功能材料,2005,36(10):1497-1498
    [4]Whittier, J. S., "The Effect of Configurational Additions using Viscoelastic Interfaces onthe damping of a Cantilever Beam", Wright Air Development Center, WADC TechnicalReport 58-568,1959.
    [5]Mead, D. J., Passive Vibration Control, Wiley, London,1998.
    [6]Rogers, L., and Parin, M., "Experimental Results for Stand-off Passive Vibration Damping Treatment," Passive Damping and Isolation, Proceedings SPIE Smart Structures and Materials, Vol.2445, pp.374-383,1995.
    [7]Falugi, M., "Analysis of Five Layer Viscoelastic Constrained Layer Beam", Proceedingsof Damping'91, Vol. II, Paper No. CCB,1991.
    [8]Falugi, M., Moon, Y., and Arnold, R., "Investigation of a Four Layer Viscoelastic Constrained Layer Damping System," USAF/WL/FIBA/ASIAC, Report No.189.1A.1989.
    [9]Parin, M., Rogers L., Moon Y. I., and Falugi M., "Practical Stand-Off Damping Treatment for Sheet Metal", Proceeding of Damping'89, Vol. Ⅱ, Paper No. IBA.,1989.
    [10]Garrison M. R., Miles R. N., Sun J., and Bao W., "Random response of a plate partiallycovered by a constrained layer damper", Journal of Sound and Vibration 172, pp 231-245,1994.
    [11]Tao Y., Morris D. G., Spann F., Haugse E., "Low Frequency noise reducing structures using passive and active damping methods", Passive Damping and Isolation Proceedings129of SPIE Smart Structures and Materials, Vol.3672,1999.
    [12]Yellin J. M.,Shen I. Y.,Reinhall P. G., and Huang P., "An Analytical and ExperimentalAnalysis for a One-Dimensional Passive Stand-Off Layer Damping Treatment", ASMEJournal of Vibration and Acoustics, Vol.122, pp.440-447,2000.
    [13]Yang, B. and Tan, C. A., "Transfer Functions of One-Dimensional Distributed ParameterSystems", Journal of Applied Mechanics, Vol.59, pp.1009-1014,1992
    [14]Johnson C D, Kienholz D A. Finite element prediction of damping in structures with
    constrained viscoelastic layers. AIAA Journal,1982,20(9):1284-1290
    [15]黎大志,陈树年.复合材料阻尼测试方法.噪声与振动控制[J],2000,(6):18-22
    [16]孙社营.粘弹性阻尼结构动态性能的有限元分析.材料开发与应用,1999,14(6):31-36
    [17]王慧彩,赵德有.粘弹性阻尼夹层板动力特性分析及其试验研究.船舶力学,2005,9(4):110-118
    [18]张海燕.复合夹板结构动力特性研究.武汉理工大学硕士学位论文,2005
    [19]Yang L, Sun Q, Zhu Z, Xu Z, Finite element analysis of the free-damped beam-st}ened plateJournal of Southeast University (English Edition),2004,20(3):328-331
    [20]Cao X, Mlejnek H P. Computational prediction and redesign for viscoelastically damped structures.Computer Methods in Applied Mechanics and Engineering,1995,125(1):1 - 16
    [21]14张忠明,刘宏昭,王锦程,杨根仓.材料阻尼及阻尼材料的研究进展已[J].功能材料,2001,32(3):227-230
    [22][3]杨雪,王源升,朱金华.高分子聚合物约束阻尼复合结构的计算.胶体与聚合物,2002,20(1):26-29
    [23]18张庆鸿等.振动与噪声的阻尼控制.北京机械工业出版社,1993,56-88.
    [24]戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社,1991.
    [25]杨亦权,杜森,郑强.新型高聚物阻尼材料研究进展.功能材料2002,33(3):234-236.
    [26]万勇军,谢美丽,顾宜.高分子阻尼材料进展.材料导报,1998,12(2):43-45
    [27]吴石山.阴尼橡胶的改性研究.高分子材料科学与工程,2001,17(1):156-158
    [28]马丽华,高永忠,温家亮等.粘弹性高温阻尼材料的研究.工程塑料应用,1999,27(8):5-7.
    [29]刘习军,贾启芬,张文德,工程振动与测试技术仁.天津大学出版社,1999,226-236.
    [30]杨雪,王源升,朱金华,余红伟.多层粘弹阻尼复合结构阻尼性能的研究[J].海军工程大学学报,2005,17(2):72-74.
    [31]王勇,梅启林,黄志雄.新型高分子阻尼材料的研究.武汉工业大学学报,2000,22(4):22-24
    [32]盛胜我.材料复切变模量的测量方法[J].应用声学.1994(6):12-15.
    [33]孙培林,李晓娟,等.声学材料阻尼性能弯曲共振试验方法初探[J].华东船舶工业学院学报,1997,11(2):61-65.
    [34]ASTM E75622005 Standard Test Method for Measuring Vibration2 Damping Properties of Materials.
    [35]GB/T 16406-1996声学材料阻尼性能的弯曲共振试验方法[S].
    [36]张令弥.振动测试与动态分析[M].北京:航空工业出版社,1992.
    [37]黎大志,陈树年.复合材料阻尼测试方法及空气阻尼影响的探讨.振动与冲击[J].1992,(1-2):129-131.
    [38]王正兴,代会军.粘弹性阻尼材料在板结构中的优化计算[J].噪声与振动控制,2000,(6):18-21,30.
    [39]GUI Hongbin, ZHAO Deyou, ZHENG Yunlong. A review finite element method analyzing dynamic problem of structure withviscoelastic damped layer [J]. Journal of Vibration and Shock,2001,20 (1):44-47. (in Chinese)
    [40]CAI Si2wei. Stucture mechanics of composite[M]. Beijing:The People's Communication Press,1987:284-291. (in Chinese)
    [41]Institute of Mechanics in China Academy of Sciences. Stability and vibration of sandwich plates and shells[M]. Beijing:Science Press,1977,1-5,98. (in Chinese)
    [42]WANG Xuelin. Application of the spliting rigidity method to dynamic analysis and design of the viscoelastic damped sandwich beam[J]. Journal of Mechanical Strength,1995,117 (1):60-63. (in Chinese)
    [43]ZHENG Hui, CHEN Duanshi, LUI Zhenhuang. Study of the vibratory damping properties of constrained damping panels based [J]. Journal of Applied Mechanics,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700