分布式MIMO OFDM系统同步技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信技术始终向着提供更高数据传输速率、更好传输质量的方向发展。正交频分复用(OFDM)技术可以很好地克服无线信道的频率选择性衰落,具有高效的频谱利用率和良好的抗窄带干扰能力,受到人们的广泛关注。多入多出(MIMO)技术能够显著增加信道容量,提高频谱利用率,也成为当今无线通信研究领域的热点之一。MIMO与OFDM的结合——MIMO-OFDM技术已经成为下一代移动通信系统中的核心技术。
     同步是通信系统首先需要解决的问题,同步的好坏直接影响整个系统的性能。OFDM系统对同步误差非常敏感,很小的频率偏移都将导致系统性能的急剧恶化。准确的时间同步和精确的频率同步是OFDM系统正常工作的前提。同时,MIMO系统,特别是分布式MIMO系统中的同步误差会带来严重的天线间干扰。因此,同步技术成为分布式MIMO-OFDM系统中的关键技术。
     论文针对OFDM系统、分布式MIMO系统和分布式MIMO-OFDM系统中的同步技术进行了研究,主要包括以下内容:
     分析了同步误差对OFDM系统及MIMO-OFDM系统性能的影响;针对基于互相关的时间同步方法,比较了几种时间同步检测门限的设置方法,分析表明,其中利用接收序列能量的方法不仅能够适应信道衰落的变化,而且可以工作在信噪比大范围变化的环境中。
     基于对恒模零自相关序列的研究,本文提出两种特殊环境下的OFDM同步方法:一种是存在窄带干扰时的OFDM时间同步方法,该方法在频域同时完成干扰的检测、消除和时间同步估计;另一种是存在大频偏时的时间、频率同步方法,该方法通过特殊的训练序列设计,在不改变互相关时间同步检测方式的前提下,仍能取得互相关尖锐的相关峰,同时互相关的检测方式也保证了对大范围频偏的估计性能。
     考虑分布式MIMO系统中存在多时延、多频偏的情况,建立了多参数最大似然(ML)联合估计的模型;并且针对直接计算ML估计复杂度高的问题,提出一种基于空间交替期望最大化算法的迭代计算方法;同时推导得出了多参数联合估计的克拉美-罗限(CRB);仿真表明所提算法的性能能够达到CRB。
     针对分布式MIMO-OFDM系统中存在多个时延偏差的情况,提出两种利用频域导频的定时跟踪方法:一种是低复杂度的基于异步相干的方法;另一种是考虑信道衰落影响的ML估计方法,该方法在取得良好定时跟踪性能的同时,也能完成对信道衰落参数的估计。
     本文丰富了对传统OFDM系统同步技术的研究,并对分布式MIMO和分布式MIMO-OFDM系统的同步技术进行了探索性的研究,所得到的研究成果具有一定的理论价值和应用价值。
Mobile communications always develop to provide higher data rate and better transmission quality. Orthogonal frequency division multiplexing (OFDM), which has been attracting much attention, can achieve higher frequency spectrum efficiency and overcome frequency-selective fading or narrow-band interference. Multiple input multiple output (MIMO), which has become one of the focuses in the area of wireless communications, can increase channel capacity and frequency spectrum efficiency remarkably. Hence MIMO-OFDM which is the combination of MIMO and OFDM has become the core technology of the next generation of mobile communications.
     Synchronization is the primary mission of communication systems, which influences the performance of the whole systems directly. OFDM is sensitive to synchronization errors. The performance of OFDM system will be deteriorated severely only by small carrier frequency offset. Correct time synchronization and precise frequency synchronization are the necessary precondition for OFDM systems. Furthermore, synchronization errors would bring severe inter-antenna interference to distributed MIMO systems, especially to distributed MIMO-OFDM systems. Hence synchronization has become the key technology of distributed MIMO-OFDM systems.
     This thesis focuses on the synchronization problems in OFDM, distributed MIMO and distributed MIMO-OFDM systems. The main contributions of this thesis can be described as follows:
     Firstly, the influences of timing error and carrier frequency offset on OFDM and MIMO-OFDM systems are mathematically modeled and analyzed. For the time synchronization method using cross-correlation, several different methods of setting detection threshold are compared. The method using the power of the received sequence not only adapts to the change of channel fading, but also works well with large change of signal-to-noise ratio.
     Secondly, based on the research on const amplitude zero auto-corelation (CAZAC) sequences, two synchronization methods for OFDM systems are proposed. One is the time synchronization method which works under narrowband interference. In this method, the interference detection and suppression procedure and the timing procedure are both processed in the frequency domain. Another method is the time and frequency synchronization method which works well with large frequency offset. By specially designed training sequences, this method can achieve sharp timing correlation peak without any additional operations in timing detection. And the cross-correlation also ensures the estimation performance for the large frequency offset.
     Thirdly, considering the multiple timing and frequency offsets in distributed MIMO systems, a maximum likelihood (ML) estimation model is set up. An iterative space-alternating generalized expectation-maximization (SAGE) based algorithm is proposed to resolve the problem of high computational complexity in ML estimation. Furthermore, the Cramér-Rao bound (CRB) for the multi-parameter estimation is also derived as a benchmark. The simulation results show the performance of the proposed method can reach the CRB.
     Finally, considering the multiple timing offsets in distributed MIMO-OFDM systems, two time tracking methods using pilots in the frequency domain are proposed. One is the method based on asynchronous coherence. This method is with simple structure and easy to perform. The other method is a ML estimation method with considering channel fading. This method can achieve better time tracking performance both with channel estimation.
     The research in this thesis extends the existing researches on OFDM synchronization, and explores the problem of synchronization in distributed MIMO systems and distributed MIMO-OFDM systems. The achievements have certain theoretical and practical values.
引文
[1] T. S. Rappaport. Wireless Communications: Principles and Practice, 2nd ed. New York, Addison Wesley/Pearson, 2004.
    [2]王京,姚彦,赵明等.分布式无线通信系统的概念平台.电子学报, 2002, 30(7): 937-940.
    [3] M. Rahnema. Overview of the GSM system and protocol architecture. IEEE Commun. Magazine, 1993, 31(4): 92-100.
    [4] D. N. Knisely, S. Kumar, S. Laha, et al. Evolution of wireless data services: IS-95 to cdma 2000. IEEE Commun. Magazine, 1998, 36(10): 140-149.
    [5] P. Chaudhury, W. Mohr and S. Onoe. The 3GPP proposal for IMT-2000. IEEE Commun. Magazine, 1999, 37(12): 72-81.
    [6] International Telecommunications Union, http://www.itu.int/en/pages/default.aspx.
    [7]李世鹤. TD-SCDMA第三代移动通信系统标准.北京,人民邮电出版社, 2003.
    [8] IEEE LAN/MAN Standards Committee. IEEE 802.16e-2005 and IEEE 802.16-2004/cor 1-2005. IEEE Press, 2006.
    [9] O. A. Alim and A. E. Naggary. Performance of MIMO antenna techniques on IEEE 802.16e. ITI International Conference on Information and Communications Technology, 2007: 289-295.
    [10]田韬,张新程,周晓津等. WiMAX 16e无线网络技术与应用.北京,人民邮电出版社, 2009.
    [11] A. Bria, F. Gessler, O. Queseth, et al. 4th-generation wireless infrastructures: scenarios and research challenges. IEEE Personal Commun., 2001, 8(6): 25-31.
    [12]尤肖虎,曹淑敏,傅学群.我国未来移动通信研究开发展望.电信科学, 2002, 8: 26-29.
    [13]何琳琳,杨大成. 4G移动通信系统的主要特点和关键技术.移动通信, 2004, 10: 34-36.
    [14] J. Jayakumari. MIMO-OFDM for 4G wireless systems. International Journal of Engineering Science and Technology, 2010, 2(7): 2886-2889.
    [15] J. A. C. Bingham. Multicarrier modulation for data transmission: an idea whose time has come. IEEE Cammun. Magazine, 1990, 28(5): 5-14.
    [16] L. J. Cimini, Jr. Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Trans. Commun., 1985, 33(7): 665-675.
    [17] B. Hirosaki. An orthogonally multiplexed QAM system using the discrete Fourier transform. IEEE Trans. Commun., 1981, 29(7): 982-989.
    [18] S. Weinstein, P. Ebert. Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Trans. Commun., 1971, 19(5): 628-634. 1.2
    [19] R. van Nee and R. Prasad. OFDM for wireless multimedia communications. London, Artech House, 1999.
    [20] S. B. Weinstein and P. M. Ebert. Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Trans. Commun. Technol., 1971, 19(5): 628-634.
    [21] ETSI. Digital Video Broadcasting: Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television. 1997.
    [22] ETSI. Radio Broadcasting Systems: Digital Audio Broadcasting to Mobile, Portable and Fixed Receivers. 1995.
    [23] P. S. Chow, J. C. Tu and J. M. Cioffi. Performance evaluation of a multichannel transceiver system for ADSL and VHDSL services. IEEE J. Select. Areas Commun., 1991, 9(6): 909-919.
    [24] IEEE 802.11. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. 1997.
    [25] IEEE P802.16e-2005. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems: Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands. 2005.
    [26]佟学俭,罗涛. OFDM移动通信技术原理与应用.北京,人民邮电出版社,2003.
    [27] Y. Zhao and S. G. Haggman. Sensitivity to Doppler shift and carrier frequency errors in OFDM systems-the consequences and solutions. IEEE Vehicular Technology Conference, 1996, 3: 1564-1568.
    [28] R. Li and G. Stette. Time limited orthogonal multicarrier modulation schemes. IEEE Trans. Commun., 1995, 43: 1269-1272.
    [29] J. Ahn and H. S. Lee. Frequency domain equalization of OFDM signal over frequency non selective Rayleigh fading channels. Electronics Letters, 1993, 29(16): 1476-1477.
    [30] J. Armstrong. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electronics Letters, 2002, 38(5): 246-247.
    [31] T. May and N. Rohling. Reducing the peak-to-average power ratio in OFDM radio transmission systems. IEEE Vehicular Technology Conference, 1998, 3: 2474-2478.
    [32] R. W. Bauml, R. Fischer and J. B. Huber. Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping. Electronics Letters, 1996, 32(22): 2056-2057.
    [33] L. J. Cimini and N. R. Sollenberger. Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequences. IEEE Communication Letters, 2000, 4(3): 86-89.
    [34] A. Naguib, N. Seshadri and A. Calderbank. Increasing data rate over wireless channels. IEEE Signal Processing Magazine, 2000, 17(3): 76-92.
    [35] D. Gesbert, M. Shafi, S. Da-shan, et al. From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE J. Select. Areas Commun., 2003, 21(3): 281-302.
    [36] A. Paulraj, R. Nabar and D. Gore. Introduction to Space-Time Wireless Communications. Cambridge, U.K.: Cambridge Univ. Press, 2003.
    [37] G. J. Foschini and M. J. Gans. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Commun., 1998, 6(3): 311-335.
    [38] G. J. Goschini. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1996, 1(2): 44-59.
    [39] I. E. Telatar. Capacity of multi-antenna Gaussian channels. European Trans. Telecommun., 1999, 10(6): 585-595.
    [40] E. Viterbo and J. Bouros. A universal lattice code decoder for fading channels. IEEE Trans. Inform. Theory, 1999, 45(5): 1693-1642.
    [41] D. G. Luenberger.最优化的矢量空间方法(蒋正新,郑梅春,译).北京,国防工业出版社, 1987.
    [42] G. D. Golden, G. J. Foschini, R. A. Valenzuela, et al. Detection algorithm and initial laboratory results using the V-BLAST space-time communication architecture. Electronics Letters, 1999, 35(1): 14-16.
    [43] V. Tarokh, N. Seshadri and A. Calderbank. Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Trans. Inform. Theory, 1998, 44: 744-765.
    [44] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE J. Select. Areas Commun., 1998, 16: 1451-1458.
    [45] J. Yang and S. Roy. On joint transmitter and receiver optimization for multiple-input multiple-output (MIMO) transmission systems. IEEE Trans. Commun., 1994, 42(12): 3221-3231.
    [46] A. Saleh, A. Rustako and R. Roman. Distributed antennas for indoor radio communications. IEEE Trans. Commun., 1987, 35(12): 1245-1251.
    [47] M. Sharif and B. Hassibi,“On the capacity of MIMO broadcast channels with partial side information. IEEE Trans. Inform. Theory, 2005, 51: 506-522.
    [48] K. J. Kerpez. A radio access system with distributed antennas. IEEE Trans. Veh. Technol., 1996, 45(2): 265-275.
    [49] M. V. Clark, T. M. Willis III, L. J. Greenstein, et al. Distributed versus centralized antenna arrays in broadband wireless networks. IEEE Vehicular Technology Conference, 2001: 33-37.
    [50] S. Zhou, M. Zhao, X. Xu, et al. Distributed wireless communication system: a new architecture for future public wireless access. IEEE Commun., Magazine, 2003, 41(3): 108-113.
    [51] H. Xia, A. B. Herrera, S. Kim, et al. A CDMA-distributed antenna system for in-building personal communications services. IEEE J. Select. Areas Commun., 1996, 14(4): 644-650.
    [52] A. Goldsmith, S. A, Jafar and N. Jindal. Capacity limits of MIMO channels. IEEE J. Select. Areas Commun., 2003, 21(5): 684-702.
    [53] Y. Ogawa, K. Nishio, T. Nishimura, et al. A MIMO-OFDM system for high-speed transmission. IEEE Vehicular Technology Conference, 2003, 1: 493-497.
    [54] H. Sampath, S. Talwar, J. Tellado, et al. A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trail results. IEEE Commun. Magazine, 2002, 40(9): 143-149.
    [55] G. L. Stuber, J. R. Barry and S. W. McLaughlin. Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE , 2004, 92(2): 271-294.
    [56] B. Stantchev and G. Fettweis. Time-variant distortions in OFDM. IEEE Communications Letters, 2000, 4(10): 312-314.
    [57] M. Speth, S. Fechtel, G. Fock, et al. Optimum receiver design for wireless broad-band systems using OFDM: Part I. IEEE Trans. Communications, 1999, 47(11): 1668-1677.
    [58] M. Speth, F. Classen and H. Meyr. Frame synchronization of OFDM systems in frequency selective fading channels. IEEE Vehicular Technology Conference, 1997, 3: 1807-1811.
    [59] P. H. Moose. A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Trans. Commun., 1994, 42(10): 2908-2914.
    [60] J.-J. Van de Beek, M. Sandell and P. O. Brjesson. ML estimation of timing and frequency offset in OFDM systems. IEEE Trans. Signal Processing, 1997, 45: 1800-1805.
    [61] M. Speth and H. Meyr. Synchronization requirements for COFDM systems with transmit diversity. IEEE Global Telecommunications Conference, 2003, 3: 1252-1256.
    [62] C. L. Yan, J. Y. Fang, Y. X. Tang, et al. OFDM synchronization using PN sequence and its performance. IEEE Personal Indoor and Mobile Radio Communications, 2003, 1: 936-939.
    [63] A. N. Mody and G. L. Stuber. Synchronization for MIMO OFDM systems. IEEE Global Telecommunications Conference, 2001, 1: 509-513.
    [64] X. Y. Liu, K. Pan, Y. Zuo, et al. Blind symbol synchronization for OFDM systems in multipath fading channels. IEEE Conference on Wireless Communications Networking and Mobile Computing, 2010: 1-4.
    [65] F. Classen and H. Meyr. Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channels. IEEE Vehicular Technology Conference, 1994, 3: 1655-1659.
    [66] Y. H. You, K. T. Lee and S. J. Kang. Pilot-aided frequency offset tracking scheme for OFDM-based DVB-T. IEEE Trans. Consumer Electronics, 2008, 46: 438-441.
    [67] J. Gonzalez-Bayon, A. Fernandez-Herrero and C. Carreras. Improved schemes for tracking residual frequency offset in DVB-T systems. IEEE Trans. Consumer Electronics, 2010, 56(2): 415-422.
    [68]赵亚红,董明科,吴伟陵. OFDM系统中一种基于导频子载波的联合频率偏移纠正和信道估计方法.北京邮电大学学报, 2003, 26(2): 82-85.
    [69]朱光喜,张青春,蔡玮.一种衰落信道下的OFDM载频同步跟踪算法.华中科技大学学报(自然科学版), 2004, 32(1): 56-59.
    [70] T. M. Schmidl and D. C. Cox. Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun., 1997, 45(12): 1613-1621.
    [71] J. B. Meng and G. H. Kang. A novel OFDM synchronization algorithm based on CAZAC sequence. IEEE Conference on Computer Application and System Modeling, 2010, 14: 634-637.
    [72] J. W. Choi, J. W. Lee, Q. Zhao, et al. Joint ML estimation of frame timing and carrier frequency offset for OFDM systems employing time-domain repeated preamble. IEEE Trans. Wireless Commun., 2010, 9(1): 311-317.
    [73] H. Abdzadeh-Ziabari, M. G. Shayesteh and M. Manaffar. An improved timing estimation method for OFDM systems. IEEE Trans. Consumer Electronics, 2010, 56(4): 2098-2105.
    [74] F. Tufvesson, O. Edfors and M. Faulkner. Time and frequency synchronization for OFDM using PN-sequence preambles. IEEE Vehicular Technology Conference, 1999, 4: 2203-2207.
    [75] U. Tureli, D. Kivanc and H. liu. Experimental and analytical studies on a high resolution OFDM carrier frequency estimator. IEEE Trans. Veh. Technol., 2001, 50(2): 629-643.
    [76] R. L. Frank and S. A. Zadoff. Phase shift pulse codes with good periodic correlation properties. IRE Trans. Inform. Theory, 1962, 8(6): 381-382.
    [77] D. C. Chu. Polyphase codes with good periodic correlation properties. IEEE Trans. Inform. Theory, 1972, 18(4): 531-532.
    [78] B. M. Popovic. Generalized chirp-like polyphase sequences with optimum correlation properties. IEEE Trans. Inform. Theory, 1992, 38(4): 1406-1409.
    [79] N. Zhang and S. W. Golomb. Polyphase sequence with low autocorrelations. IEEE Trans. Inform. Theory, 1993, 39(3): 1085-1089.
    [80] R. L. Frank. Polyphase Complementary Codes. IEEE Trans. Inform. Theory, 1980, 26(6): 641-647.
    [81] M. Marey and H. Steendam. Analysis of the Narrowband Interference Effect on OFDM Timing Synchronization. IEEE Trans. Signal Processing, 2007, 55(9): 4558-4566.
    [82] K. Shi, Y. Zhou, B. Kelleci, et al. Impacts of Narrowband Interference on OFDM-UWB Receivers: Analysis and Mitigation. IEEE Trans. Signal Processing, 2007, 55(3): 1118-1128.
    [83] L. Boemer and M. Antweiler. Perfect N-phase sequences and arrays. IEEE J. Select. Areas Commun, 1992, 10(4): 782-789.
    [84] P. Z. Fan and M. Darnell. Sequence Design for Communications Applications. London, John Wiley & Sons Ltd, 1996.
    [85] S. Tian, K. Panta and H. Suraweera. A novel timing synchronization method for ACO-OFDM-based optical wireless communications. IEEE Trans. Wireless Commun., 2008, 7(12): 4958-4967.
    [86] M. Ruan, M. Reed, and Z. N. Shi. Training symbol based coarse timing synchronization in OFDM systems. IEEE Trans. Wireless Commun., 2009, 8(5): 2558-2569.
    [87] J. Wang, Z. X. Yang and C. Y. Pan. A combined code acquisition and symbol timing recovery method for TDS-OFDM. IEEE Trans. Broadcast., 2003, 49(3): 304-308.
    [88] G. H. Liu and S. V. Zhidkov. A composite PN-correlation based synchronizer for TDS-OFDM receiver. IEEE Trans. Broadcast., 2010, 56(1): 77-85.
    [89] Y. X. Yan, M. Tomisawa, Y. Gong, et al. Joint timing and frequency synchronization for IEEE 802.16 OFDM systems. IEEE Mobile WiMAX Symposium, 2007: 17-21.
    [90] A. N. Mody and G. L. Stuber. Receiver implementation for a MIMO OFDM system. IEEE Global Telecommunications Conference, 2002, 1: 716-720.
    [91] P. Kim, G. E. Corazza, R. Pedone, et al. Enhanced frame synchronization for DVB-S2 system under a large of frequency offset. IEEE Wireless Communications and Networking Conference, 2007: 1183-1187.
    [92] Y. L. Zhang, X. B. Chen, W. H. Fan, et al. Robust and reliable frame synchronization method for DVB-S2 system. IEEE Wireless Telecommunications Symposium, 2010: 1-5.
    [93] J. M. Wu, Y. Chen, X. Y. Zeng, et al. Robust timing and frequency synchronization scheme for DTMB system. IEEE Trans. Consumer Electronics, 2007, 53(4): 1348-1352.
    [94] A. N. Mody and G. L. Stuber. Receiver implementation for a MIMO OFDM system. IEEE Global Telecommunications Conference, 2002, 1: 716-720.
    [95] U. Tureli and P. J. Honan. Modified high efficiency carrier estimator for OFDM communications with antenna diversity. The Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 2001, 2: 1470-1474.
    [96] U. Tureli, D. Kivanc and H. Liu. Multicarrier synchronization with diversity. IEEE Vehicular Technology Conference, 2001, 2: 952-956.
    [97] U. Tureli, R. Ambati, D. Kivanc, et al. Performance analysis of OFDM carrier synchronization with diversity. IEEE Vehicular Technology Conference, 2002, 1: 33-37.
    [98] U. Tureli, P. J. Honan and H. Liu. Low complexity nonlinear least squares carrier offset estimator for OFDM: identifiability, diversity and performance. IEEE Trans. Signal Processing, 2004, 52(9): 2441-2452.
    [99] T. C. W. Schenk and A. van Zelst. Frequency synchronization for MIMO OFDM wireless LAN systems. IEEE Vehicular Technology Conference, 2003, 2: 781-785.
    [100] A. van Zelst and T. C. W. Schenk. Implementation of a MIMO OFDM-based wireless LAN system. IEEE Trans. Signal Processing, 2004, 52(2): 483-494.
    [101] Y. Liu, T. F. Wong and A. Pandharipande. Timing estimation in multiple-antenna systems over Rayleigh flat-fading channels. IEEE Trans Signal Processing, 2005, 53(6): 2074-2088.
    [102] E. R. Jeong, S. K. Jo and Y. H. Lee. Least squares frequency estimation in frequency-selective channels and its application to transmissions with antenna diversity. IEEE J. Select. Areas Commun., 2001, 19(12): 2369-2380.
    [103] Y. D. Kim, J. K. Lim, C. H. Suh, et al. Carrier frequency estimation for transmissions with antenna diversity. IEEE Vehicular Technology Conference, 2002, 3: 1569-1573.
    [104] Y. Ogawa, K. Nishio, T. Nishimura, et al. Channel and frequency offset estimation for a MIMO-OFDM system. IEEE Vehicular Technology Conference, 2004, 2: 1523-1527.
    [105] T. Cui and C. Tellambura. Joint channel and frequency offset estimation and training sequence design for MIMO systems over frequency selective channels. IEEE Global Telecommunications Conference, 2004, 4: 2344-2348.
    [106] K. Lee and J. Chun. Frequency-offset estimation for MIMO and OFDM systems using orthogonal training sequences. IEEE Trans. Veh. Technol., 2007, 56(1): 146-156.
    [107] F. Simoens and M. Moeneclaey. Computationally efficient frequency offset estimation for flat-fading MIMO channels: performance analysis and training sequence design. IEEE Global Telecommunications Conference, 2004, 4: 2460-2464.
    [108] Y.-C. Wu and E. Serpedin. Data-aided maximum likelihood symbol timing estimation in MIMO correlated fading channels. IEEE International Conference on Acoustics, Speech and Signal Processing, 2004, 4: 829-32.
    [109] Y.-C. Wu and E. Serpedin. Training sequences design for symbol timing estimation in MIMO correlated fading channels. IEEE Global Telecommunications Conference, 2004, 1: 81-85.
    [110] K. Deng, Y. X. Tang, S. H. Shao, et al. Carrier frequency offset estimation for MIMO correlated fading channels. IEEE Wireless Communications and Networking Conference, 2007: 1036-1039.
    [111] K. Deng, Y. X. Tang, S. H. Shao, et al. Carrier frequency offset estimation for MIMO over spatially correlated flat-fading channels. Chinese Journal of Electronics, 17(1): 150-154.
    [112] R. H. Mo, Y. H. Chew, T. T. Tjhung, et al. Joint Blind Timing and Frequency Offset Estimation for MIMO-OFDM over Spatially Correlated Fading Channels. IEEE the Thirty-Ninth Asilomar Conference on Signal, Systems and Computers, 2005: 928-932.
    [113] F. Guo, D. Li, H. W. Yang, et al. A novel timing synchronization method for distributed MIMO-OFDM system. IEEE Vehicular Technology Conference, 2006, 4: 1933-1936.
    [114]施冠超,邓单,朱近康.一种适用于分布式MIMO-OFDM系统的时间同步算法.中国科学技术大学学报, 2009, 2: 142-147.
    [115] X. Li, Y.-C. Wu and E. Serpedin. Timing synchronization in decode-and-forward cooperative communication systems. IEEE Trans. Signal Processing, 2009, 57(4): 1444-1455.
    [116] Y. Yao and T.-S. Ng. Correlation-based frequency offset estimation in MIMO system. IEEE Vehicular Technology Conference, 2003, 1: 438-442.
    [117] O. Besson and P. Stoica. On parameter estimation of MIMO flat-fading channels with frequency offsets. IEEE Trans. Signal Processing2003, 51(3): 602-613.
    [118] O. Besson and Stoica. Channel and frequency offsets estimation in MIMO time-selective channels. IEEE Sensor Array and Multichannel Signal Processing Workshop, 2002: 135-139.
    [119] T.-H. Pham, A. Nallanathan and Y.-C. Liang. Joint channel and frequency offset estimation in distributed MIMO flat-fading channels. IEEE Trans. Wireless Commun., 2008, 7(2): 648-656.
    [120]许魁,沈越泓.分布式MIMO-OFDM系统的同步捕获算法.电子与信息学报, 2008, 30(9): 2207-2210.
    [121] Y. H. Zeng and A. R. Leyman. Time, frequency synchronization, and equalization for asynchronous multiuser MIMO systems. IEEE Trans. Wireless Commun., 2007, 6(7): 2593-2601.
    [122] A. P. Dempster, N. M. Laird and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 1977, 39(1): 1-38.
    [123] T. K. Moon. The expectation-maximization algorithm. IEEE Signal Processing Mag., 1996, 13: 47-60.
    [124] G. J. McLachlan and T. Krishnan. The EM algorithm and extension. New York: Wiley, 1997.
    [125] T. A. Fesler and A. O. Hero. Space-alternating generalized expectation-maximization algorithm. IEEE Trans. Signal Processing, 1994, 42(10): 2664-2677.
    [126] X. L. Meng and D. B. Rubin. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika, 1993, 80(2): 267-278.
    [127] S. Jagannathan, H. Aghajan and A. Goldsmith. The effect of time synchronization errors on the performance of cooperative MISO systems. IEEE Global Communications Conference, 2004: 102-107.
    [128] Y. Zhang, J. Zhang and F. Sun. A novel timing synchronization method for distributed MIMO-OFDM systems in multi-path rayleigh fading channels. IEEE Vehicular Technology Conference, 2008: 1443-1447.
    [129] H. L. van Trees and K. L. Bell. Bayesian bounds for parameter estimation and nonlinear filtering/tracking. Piscataway, NJ: Wiley-IEEE Press, 2007.
    [130] J. Ziv and M. Zakai. Some lower bounds on signal parameter estimation. IEEE Trans. Inform. Theory, 1969, 15(3): 386-391.
    [131]张维校,刘顺兰,曾嵘.一种新的分布式MIMO-OFDM系统同步算法.机电工程, 2010, 27(8): 111-113.
    [132] C. Feng, J. Zhang, Y. Zhang, et al. A novel timing synchronization method for MIMO OFDM systems. IEEE Vehicular Technology Conference, 2008: 913-917.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700