青藏高原东部高寒草甸的土壤种子库研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤种子库时期是植物种群生活史的潜种群阶段,反映了植被的演化进程,是植物群落的进化记忆。同时又是植被经历干扰后恢复的主要资源,在重塑和维持物种多样性以及退化生态系统的恢复与重建方面扮演着重要角色。目前,种子库的研究已成为植物生态学研究不可缺少的一部分。然而,对青藏高原高寒草甸种子库的研究处于空白状态,我们通过研究该地区种子库大小,物种组成,以及与地上植被间的关系,了解该地区土壤种子库分布格局,探讨种子库对地上植物群落构建中的作用,此外,本研究还可以对高寒草甸的管理,高寒地区退化生态系统的恢复与重建提供理论依据。我们得出以下主要结果:
     1)青藏高原东部高寒草甸拥有丰富的种子库资源,可萌发的种子库密度为674 seeds.m~(-2)-9779 seeds.m~(-2)。
     2)种子库种子密度随着干扰强度的增加而显著升高,而物种丰富度没有差异。种子密度和物种丰富度随着土壤深度的增加而减小。在种子库和地上植被中,多年生物种的比例随着干扰的增加而减小。在干扰地区大部分物种都具有持久性种子,说明这是对当前干扰的一种适应性对策。
     3) DCA结果显示,重度干扰地区的种子库与其地上植被物种组成相似性很高,说明种子库对地上植物群落构建中起到重要作用。此外,在重度干扰地区的种子密度高达6105 seeds.m~(-2),其植被恢复不存在种子限制问题,所以种子库很有潜力成为地上植被恢复的资源。然而,在封育,对照,轻度干扰地区的种子库与其地上植被物种组成相似性低,说明种子库对地上植被的贡献较低,我们推测地上植物群落的更新很有可能依赖于种子扩散和克隆生长。
     4)随着演替年龄的增大,种子库种子密度显著降低(符合假说);种子库物种丰富度和物种多样性显著增加(与假说相反);种子库与地上植被之间的相似性逐渐降低。地上植被与土壤表层种子库的相似性最高,随着土壤深度的增加而逐渐减小。演替初期物种产出大量长寿命的种子,在土壤中保持活力超过20年。不同演替阶段种子库一直被演替初期的物种所占据,演替后期物种对种子库贡献较小。
     5) NMDS分析结果表明,地上植被的物种组成表现出明显的演替趋势,而种子库物种组成变化很小。在演替初期,种子库对地上植物群落构建起到很大的作用,随着演替的进程,种子库作用逐渐减小,随着多年生克隆物种的增加,我们推测,在演替的后期,地上植物群落的更新主要依靠克隆生长和种子扩散。
     6)随着海拔的升高,不论是在整体还是各个分层上,瞬时种子库还是持久种子库中,种子库种子密度和物种丰富度显著降低。多年生物种比例随着海拔的升高在地上植被中逐渐增加,而在种子库中差异不大。高海拔地区拥有更高的种子库种子消耗率。
     7)大部分物种在不同的海拔上都具有持久种子库。23.6%的物种的种子库对策随不同的环境而改变。我们的结果不支持假说“种子库对策是物种的固有特征”。
     8)基于在三个海拔水平上的结果,发现青藏高原东部高寒草甸持久种子库趋向于拥有更小的种子。种子大小和频度之间呈负相关关系,随着海拔的升高,负相关趋势有所增加,但不显著。说明种子库在更高海拔地区趋向于拥有更小的种子。种子大小和种子频度随着土壤深度的增加没有呈现出统一的规律。因此,我们认为种子大小的分布和土壤深度没有关系。
     9) Sorensen相似性分析结果显示,种子库与地上植被之间的相似性随着海拔的升高而降低。NMDS分析结果显示,在整体上,种子库与其地上植被的物种组成相似性低,随着海拔的增高,其相似性逐渐降低,说明在更高的海拔地区,种子库对其地上植被的贡献减小。
The soil seed bank is one of the life history stages of plant populations, which iscalled subpopulation stage, and it is evolutionary memory of plant community whichreflects the evolution of the process of vegetation. Seed bank may function as a typeof genetic memory of a population, and play an important role in communitydynamics and regeneration. Seed bank is the major resource of vegetation restorationafter disturbance, and play a significant role in restoration and reconstruction ofdegraded ecosystem. At present, research of soil seed bank has become a recognizedand indispensable part of plant ecology now and has been an active research area. Sofar, no studies of seed banks from Oinghai-Tibet plateau exist. We through investigatethe size of seed bank, species composition, and relationship of seed bank andaboveground vegetation, attempting to find the distribution pattern of seed bank inthese areas, the role of seed bank in the process of plant communities construction.Moreover, this study provides a theoretical basis for restoration and reconstruction ofdegraded ecosystem in alpine areas.
     The result showed:
     1) There rich seed bank resources exist in the alpine meadow of easternQinghai-Tibet plateau. The mean viable seed density was 674 seeds.m~(2-) 9779seeds.m~(-2).
     2) The density of buried seeds increased significantly with increasing disturbance,but no difference in species richness. Seed density and species richness decreasedwith depth. The proportion of perennial species decreased with decreasing disturbanceboth in seed bank and vegetation. A large portion of species with persistent seeds inthe disturbed areas indicate that it is a strategy of adaptation to current disturbance.
     3) Detrended Correspondence Analysis (DCA) showed significant differences ofspecies composition between seed bank and vegetation except the seriously disturbedsite. Our results suggest that the establishment of new species in severely disturbedareas is more dependent on the seed bank. The mean seed density was 6105 viableseeds.m~(-2) in severely disturbed area, indicating that restoration of disturbed areas isnot seed limited, so the seed bank had a high potential for restoration of species-richvegetation. Oppositely, the restoration in less disturbed and mature meadows does notrely on seed banks, and the establishment of the vegetation in these communities is more likely to rely on seed dispersal and species with vegetative reproduction.
     4) The seed density in seed banks decreased with successional age, but speciesrichness and diversity increased. Hypotheses about changes in seed bank duringsuccession, predicting decreasing species richness and diversity, were not confirmed.The hypothesis that density of buried seeds declined during succession was confirmed.Similarity between the seed bank and vegetation decreased gradually with successionin the whole. The Vegetation is more similar to the seed bank in the shallow layer thanto the seed bank in the deeper soil, which shows that the vegetation contributes less tothe seed bank as soil depth increases, species of the later successional stagescontributed little to the seed bank. Most of species from early successional stageproduced longer-lived seeds, which stayed viable in the soil for a long period (morethan 20 years). The seed bank was mainly composed of first successional speciesduring the whole successional range.
     5) The result of NMDS showed that during the course of succession, thevegetation showed a clear successional trend. However, this trend is not reflected inseed bank, and the species composition of seed bank is unvaried during thesuccessional process. We conclude that seed bank play an important role onvegetation in the early succession stage. In the later succession stages, the proportionof perennial was increase, seed bank' role become weaker and weaker, so thecommunity regeneration is likely relies on vegetative reproduction and dispersal.
     6) The buried seed bank density and species richness decreased with the altitudeincrease whatever in the total or each separate soil layer, transient seed bank orpersistent seed bank. The proportion of perennial species increased with altitudeincrease in aboveground vegetation, but no difference in seed bank. The higheraltitude areas have higher seed bank depletion.
     7) The persistent seed bank was the most frequent strategy at all three altitudes.There 23.6% species in seed bank changed their strategy in different environment.The hypothesis "the seed bank strategy~ is a species' inherent trait, i.e.," was notconfirmed in our study.
     8) Based on the results from three altitudes, we found the seed from persistentseed bank tend to have smaller seeds than species with transient seeds. Seed size wasnegatively correlated with seed frequency, and the tendency increased with altitudeincrease, but the correlation was not significant. This indicated that the smaller seedstend to exist in higher altitude area. The result showed there no relationship between seed size and seed frequency with soil depth increased, so we think there norelationship between seed size distribution and soil depth.
     9) The result of Sorensen indicated that the similarity of Seed bank andvegetation decreased with altitude increase. The result of NMDS showed that thespecies composition of seed bank and vegetation was low in the whole, and thesimilarity decreased with altitude increase, indicating that the contribution of seedbank to aboveground vegetation community was smaller in higher altitude areas.
引文
邓自发,谢晓玲,王启基,周兴民.2003.高寒小嵩草草甸种子库和种子雨动态分析.应用与环境生物学报.9(1):7-10.
    李自珍,韩晓卓,李文龙,杜国祯.2004.高寒湿地植物群落的物种多样性保护及生态恢复对策.西北植物学报.24(3):363-369.
    于顺利,蒋高明.2003.土壤种子库的研究进展及若干研究热点.植物生态学报.27(4)552-560.
    于顺利,陈宏伟,郎南军.2007.土壤种子库的分类系统和种子在土壤中的持久性.27(5)2099-2108
    尚占环,龙瑞军,马玉寿,张黎敏,施建军,丁玲玲.2006.黄河源区退化高寒草地土壤种子库:种子萌发的数量和动态.应用与环境生物学报,12(3):313-317
    王刚,梁学功.1995.沙坡头人工固沙区的种子库动态.植物学报,37(3):231-237.
    赵丽娅,李兆华,李锋瑞,赵哈林.2005.科尔沁沙地植被恢复演替进程中群落土壤种子库研究.生态学报.25:3204-3211.
    Acosta, A., D(?)az, S., Menghi, M., Cabido, M., 1992. Patrones communitarios at diferentes escalas espaciales en pastizales de las Sierras de C(?)rdoba, Argentina. Revista Chilena Historia Natural 65:195-207.
    Also, I.G., Spjelkavik, S., Engelskjφn, T, 2003. Seed bank size and composition of Betula nana, Vaccinium uliginosum, and Campanula rotundifolia habitats in Svalbard and northern Norway. Canadian Journal of Botany. 81:220-231.
    Amiaud, B., Touzard, B., 2004. The relationships between soil seed bank, aboveground vegetation and disturbances in old embanked marshlands of western France. Flora. 199: 25-35.
    Araki S, Shiozawa S, Washitani I. 1998. An experimental device for studying seed responses to naturally fluctuating temperature of surface soil under a constant water table. Functional Ecology 12:492-499.
    Archibold, O.W., 1984. A comparison of seed reserves in arctic, subarctic and alpine soils. Canadian Field Naturalist. 98: 337-344.
    Arroyo, M.T.K., Cavieres, L.A., Castor, C., Humana, A.M., 1999. Persistent soil seed bank and standing vegetation at a. high alpine site in the central Chilean Andes. Oecologia. 119:126-132.
    Auld, T. D., O'Connell, M.A 1991. Predicting patterns of post-fire seed germination in 35 eastern Australian Fabaceae. Australian Journal of Ecology. 16:53-70.
    Bakker, J.P., 1989. Nature management by grazing and cutting. On the ecological significance of grazing and cutting regimes applied to restore former species-rich grassland communities in the Netherlands. Kluwer, Dordrecht.
    Bakker, J.P., Poschlod, P., Strykstra, R.J., Bekker, R.M., Thompson K., 1996. Seed banks and seed dispersal: important topics in restoration ecology. Acta Botany Neerl. 45: 461-490.
    Baskin, C.C., Baskin, J.M. 1998. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, C.A: Academic Predd.
    Bekker, R.M., Verweij, G.L., Smith, R.E.N., Reine, R., Bakker, J.P., Schneider, S., 1997. Soil seed bank in European grasslands: does land use affect regeneration perspectives? Journal of Applied Ecology. 34:1293-1310.
    Bekker, R.M., Lammerts, E.J., Schutter, A., Grootjans, A.P., 1999. Vegetation development in dune slacks: the role of persistent seed banks. Journal of Vegetation Science, 10:645-654.
    Bekker, R.M., Verweij, G. L., Bakker, J. P., Fresco, L. F. M., 2000. Soil seed bank dynamics in hayfield succession. Journal of Ecology, 88: 594-607.
    Bennington, C. C., McGraw, J.B., Vavrek, M.C. 1991. Ecological genetic variation in seed banks, Ⅱ: Phenotypic and genetic differences between young and old subpopulations of Luzula parviflora. Journal of Ecology. 79:627-644.
    Bertiller, M.B., Elissalde, N.O., Rostagno, C.M., Defosse, G.E., 1995. Environmental patterns and plant species distribution along a gradient of precipitation in western Patagonia. Journal Arid Environment. 29: 85-97.
    Bertiller, M.B., 1996. Grazing effects on sustainable semiarid rangelands in Patagonis: the state and dynamics of the soil seed bank. Environmental Management. 20:123-132.
    Bewley, J.D., Black, M. 1994. Seeds. Physiology of development and germination, 2~(nd) edu. New York: Plenum.
    Bigwood, D.W., Inouye, D.W. 1988. Spatial pattern analysis of seed banks: an improved method and optimizing sampling. Ecology. 69:497-507.
    Bliss, L.C. (1985) Alpine. In Billings, W.D., and Mooney, H.A. (eds) Physiological Ecology of North American Plant Terrestrial Communities. Chapman & Hall, New York. pp. 41-65.
    Bliss, L.C. 1971. Arctic and alpine plant life cycles. Annual Review of Ecology and Systematics. 2: 405-438.
    Billings, W.D., Mooney H.A. 1968. The ecology of arctic and alpine plants. Biological Reviews. 43: 481-529.
    Bossuyt, B., Hermy, M., 2004. Seed bank assembly follows vegetation succession in dune slacks. Journal of Vegetation Science. 15: 449-456.
    Brown, S.C., 1998. Remnant seed banks and vegetation as predictors of restored marsh vegetation. Canadian Journal of Botany, 76: 620-629.
    Butler, B. J., Chazdon, R. L. 1998. Species richness, spatial variation, and abundance of the soil seed bank of a secondary tropical rain forest. Biotropica, 30:214-222.
    Casanova, M.T., Brock, M.A. 1990. Charophyte germination and establishment from the seed bank of an Australian temporary lake. Aquatic Botany. 36:247-254
    Carol, C.B., Jerry, M.B. 1998. Seeds Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, California Academic Press. 1998.133-179.
    Carter, C.T., Ungar, I.A., 2002. Aboveground vegetation, seed bank and soil analysis of a 31 year old forest restoration on coal mine spoil in southeastern Ohio. American Midland Naturalist. 147:44-59.
    Cavieres, L.A., Arroyo, M.T.K., 2000. Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae): altitudinal variation in the Mediterranean Andes of Central Chile. Plant Ecology. 149:1-8.
    Cavieres, L.A., Arroyo, M.T.K. 2001. Persistent soil seed banks in Phacelia secunda J.F. Gmel. (Hydrophyllaceae): experimental detection of variation along an altitudinal gradient in the Andes of central Chile. Journal of Ecology 81: 31-39.
    Cerabolini, B., Ceriani, R.M., Caccianiga, M., Andreis, R.D., Raimondi, B. 2003. Seed size, shape and persistence in soil: a test on Italian flora from Alps to Mediterranean coasts. Seed Science Research, 13: 75-85.
    Chambers, J. C., MacMahon, J.A., Haefner, J.H, 1991. Seed entrapment in alpine ecosystems: effects of soil particle size and diaspore morphology. Ecology. 72: 1668-1677
    Chambers, J.C., 1993. Seed and vegetation dynamics in an alpine herb field: effects of disturbance type. Canadian Journal of Botany. 71: 471-485.
    Chang, E.R., Jefferies, R.L., Carleton, T.J. 2001. Relationship between vegetation and soil seed banks in an arctic coastal marsh. Journal of Ecology. 89: 367-384.
    Chesson, P.L., 1986. Environmental variation and the coexistence of species. In:Community Ecology. Diamond, J., Case, T.J. eds. pp: 240-256. Hrper & Row, New York.
    Clarke, K. R., 1993: Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18:117-143.
    Cohen, J., 1966. Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology. 12:119-129.
    Crawley, M.J., 1990. Rabbit grazing, plant competition and seedling recruitment in acid grassland. Journal of Applied Ecology. 27: 803-820.
    Csontons, P., Tamas, J. 2003. Comparison of soil seed bank classification systems. Seed Science Research. 13:101-111.
    Cummins, R.P., Miller, G.R. 2002. Altitudinal gradients in seed dynamics of Calluna Vulgaris in eastern Scotland. Journal of Vegetation Science. 13: 859-866.
    Dalling, J.W., Swaine, M.D., Garwood, N. C. 1997. Soil seed bank community dynamics in seasonally moist lowland tropical forest, Panama. Journal of Tropical Ecology. 13: 659-680.
    Dessaint, F., Chadoeuf, R., Barralis, G. 1991. Spatial pattern analysis of weed seeds in the cultivated soil seed bank, Journal of Applied Ecologyl. 28: 721-730.
    Diemer, M., Prock, S., 1993. Estimates of alpine seed bank size in two Central European and one Scandinavian subarctic plant communities, Arctic Antarctic and Alpine Research. 25:194-200.
    Donelan, M., Thompson, K., 1980: Distribution of viable seeds along a successional series. Biological Conservation. 17: 297-311.
    Ebersole, J.J., 1989: Role of seed bank in providing colonizers on a tundra disturbance in Alaska. Canadian Journal of Botany, 67: 466-471.
    Edwards, P.J., Wratten, S.D. 1980. Ecology of insect-plant interactions. Edward Arnold, London
    Edwards, G.R., Crawley, M.J., 1999. Herbivores, seed banks and seedling recruitment in mesic grassland. Journal of Ecology. 87: 423-435.
    Eriksson, O. 1995. Seedling recruitment in deciduous forest herbs: the effect of litter, soil chemistry and seed bank. Flora. 190: 65-70
    Fay, P.K., Olsoh, W.A. 1978. Technique for separating weed seed from soil. Weed Science. 26: 530-533.
    Faith, D. P., Minchin, P. R., Belbin. L. 1987: Compositional dissimilarity as a robust measure of ecological distance. Vegetatio, 69:57-68.
    Falinska, K., 1999: Seed bank dynamics in abandoned meadows during a 20-year period in the Bialowieza National Park. Journal of Ecology, 87: 461-475.
    Fasham, M.J.R., 1977: A comparison of nonmetric multidimensional scaling, principal components and reciprocal averaging for the ordination of simulated coenoclines, and coenoplanes. Ecology, 58: 551-561.
    Fenner, M., Thompson, K. 2005. The Ecology of Seeds. Cambridge University Press.
    Fenner, M., 1985. Seed ecology. Chapman and Hall, London.
    Forcella, F. 1984. Aspercies-area Curve for burede vible seeds. Australia Journal of Agriculture Research. 35:645-652.
    Forcella, F. 1992. Prediction of weed seedling densities from buried seed reserves. Weed Research. 32: 29-38.
    Freedman, B., Hill, N., Svoboda, J., Henry, G., 1982. Seed banks and seedling occurrence in a high arctic oasis atAlexandra Fjord, Ellesmere Island, Canada. Canadian Journal of Botany. 60:2112-2118.
    Funes, G., Basconcelo, S., D(?)az, S., Cabido, M. 1999. Seed bank dynamics of Lachemilla pinnata (Rosaceae) in different plant communities of mountain grassland in central Argentina. Annual Botanici Fennici. 36:109-14.
    Funes, G., Basconcelo, S., D(?)az, S., Cabido, M. 2003. Seed bank dynamics in tall-tussock grasslands along an altitudinal gradient. Journal of Vegetation Science.14:253-258.
    Galen, C., Stanton, M.L., 1991: Consequences of emergence phenology for reproductive success in Ranunculus adoneus (Ranunculacaeae). American Journal of Botany, 78: 978-988.
    Gartner, B.L., Chapin, F.S., Shaver, G.R., 1983: Demographic patterns of seedling establishment and growth of native graminoids in an Alaskan tundra disturbance. Journal of Applied Ecology, 20: 965-980.
    Garwood, N.C. 1989. Tropical seed bank: a review. In: Leck, M.A., Parker, V.T., Simpson, R.L. eds. Ecology of soil seed bank. San Diego, Academic Press.1-5.
    Gradin, U., Rydin, H., 1998: Attributes of the seed bank after a century of primary succession on islands in Lake Hjalmaren, Swden. Journal of Ecology, 86: 293-303.
    Grandin, U., 2001. Short-term and long-term variation in seed bank/vegetation relations along an environmental and successional gradient. Ecography. 24:731-741.
    Grime, J.P., 1979: Plants strategies and vegetation. Wiley, Chichester.
    Grime, J.R, 2001. Plant strategies, vegetation processes and ecosystem properties. Wiley Chichester, UK.
    Gross, K.L., 1990. A comparison of methods for estimating seed numbers in the soil. Journal of Ecology. 78:1079-1093.
    Grubb, P.J., 1997. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews. 52:107-145.
    Halassy, M., 2001. Possible role of the seed bank in the restoration of open sand grassland in old fields. Community. Ecology. 2:101-108.
    Harper, J.L. 1997. Population Biology of Plants. London: Academic Press, 256-263.
    Hendeison, C.B., Peterson, K.E., Redak, R.A. 1988. Spatial and temporal patterns in the seed bank and vegetation of desert grassland community. Journal of Ecology.76:717-728.
    Hester, A. J., Gimingham, C. H., Miles, J., 1991: Succession from heather moorland to birch woodland. Ⅲ. Seed availability, germination and early growth. Journal of Ecology, 79: 329-344.
    Holmes, P.M., Cowling, R.M., 1997: Diversity, composition and guild structure relationships between soil-stored seed banks and mature vegetation in alien plant-invaded South African fynbos shrublands. Plant Ecology, 133:107-122.
    Hill, M.O., 1979. DECORANA- a FORTRAN Program of detrended correspondence analysis and reciprocal averaging. Ecology and Systemics, Cornell University, Ithaca, NY
    Hill, M.O., Gauch, H.G.., 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio. 42: 47-58.
    Hopfensperger, K.N., 2007. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos. 116:1438-1448.
    Hopkins, M.S., Graham, A.W. 1983. The species composition of soil seed banks beneath lowland tropical rainforests in north Queensland, Australia. Biotropica.15:90-99.
    H(?)lzel, N., Otte, A. 2004. Assessing soil seed bank persistence in flood-meadows: The search for reliable traits. Journal of Vegetation Science. 15: 93-100.
    Hyatt, L. 1999. Differences between seed bank composition and field recruitment in a temperate zone deciduous forest. The American Midland Naturalist. 142: 31-38.
    Ihaka, R., Gentleman, R. 1996. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics. 5: 299-314.
    Ingersoll, C., Wilson, M., 1993. Buried propagule bank of a high subalpine site: microsite variation and comparisons with aboveground vegeation. Canadian Journal of Botany. 71: 712-717.
    Jalili, A., Hamzeh'ee, B., Asri, Y., Shirvany, A., Yazdani, A., Khoshnevis, M.,Zarrinkamar, F., Ghahramani, M., Safavi, R., Shaw, S., Hodgson, J., Thompson, K., Akbarzadeh, M., Pakparvar, M., 2003. Soil seed banks in the Arasbaran protected area of Iran and their significance for conservation management. Biological Conservation. 109: 425-431.
    Jensen, K., 1998: Species composition of soil seed bank and seed rain of abandoned wet meadows and their relation to aboveground vegetation. Flora, 193:345-359.
    Jutila, H.M., 1998. Seed banks of grazed and ungrazed Baltic seashore meadows. Journal of Vegetation Science. 9: 395-408.
    Kalamees, R., Zobel, M., 1998: Soil seed bank composition in different successional stages of a species rich wooded meadow in Laelatu, western Estonia. Acta Oecologica. 1:175-180.
    Kalamees, R., Zobel, M., 2002. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology, 83(4): 1017-1025.
    Kalamees, R., Zobel, M., 1998: Soil seed bank composition in different successional stages of a species rich wooded meadow in Laelatu, western Estonia. Acta Oecologica. 1:175-180.
    Kemp, P.R. 1989. Seed bank and vegetation process in desert. In: Ecology of Soil Seed Bank. Leck, M.A., Parker, V.T., Simpson, R.L, eds. San Diego, Academic Press. 257-282.
    Kirkham, F.W., Kent, M. 1997. Soil seed bank composition in relation to the above-ground vegetation in fertilized and unfertilized hay meadows on a Somerset peat moor. British Geological Society: 34: 899-902.
    Kiirikki, M., 1993: Seed bank and vegetation succession in abandoned fields in Karkali nature reserve. Annales Botanici Fennici, 30:139-152.
    Kinloch, J.E., Friedel, M.H., 2005. Soil seed reserves in arid grazing lands of central Australia. Part 1: seed bank and vegetation dynamics. Journal of Arid Environment. 60: 133-161.
    Kinucan, R.J., Smeins, F.E., 1992. Soil seed bank of a semiarid Texas grassland under three long-term (36 years) grazing regimes. American Midland Naturalist. 128: 11-21.
    Kitajima, K., Tilman, D., 1996. Seed banks and seedling establishment on an experimental productivity gradient. Oikos. 76: 381-391.
    Kjellsson, G., 1992: Seed banks in Danish deciduous forests: species composition, seed influx and distribution pattern in soil. Ecography. 15: 86-100.
    Klug-p(u|¨)mpel, B., Scharfetter-Lehrl, G., 2008: Soil diaspore reserves above the timberline in the Austrian Alps. Flora, 203: 292-303.
    Kondrar'ev, K.Y., Korzov, V.I, Rudneva, L.B. 1986. Determination of soil weediness by the photometric method. Doklady Botany Science. 284: 99-102.
    Larvorel, S., Debussche, M., Lebreton, J.D., Lepart, J., 1993. Seasonal patterns in the seed bank of Mediterranean old-fields. Oikos. 67: 114-128.
    Legendre, P., Legendre. L., 1998. Numerical ecology. New York: Elsevier.
    Leck, M.A., Simpson, R.L., 1987: Seed bank of a freshwater tidal wetland: turnover and relationship to vegetation change. American Journal of Botany, 74: 360-370.
    Leck, M.A., Simpson, R.L., 1995: Ten-year seed bank and vegetation dynamics of a tidal freshwater marsh. American Journal of Botany, 82:1547-1557.
    Leck, M. A., Leck, F. C., 1998: A ten-year seed bank study of old field succession in central New Jersey. Journal of the Torrey Botanical Society, 125: 11-32.
    Leck, M.A., 2003. Seed-bank and vegetation development in a created tidal freshwater wetland on the Delaware River, Trenton, New Jersey, USA. Wetlands, 23: 310-343.
    Leck, M.A., Sch(u|¨)tz, W., 2005. Regeneration of Cyperaceae, with particular reference to seed ecology and seed banks. Perspectives in Plant Ecology, Evolution and Systematics. 7: 95-133.
    Leishman, M.R., Westoby, M. 1994. The role of large seed size in shaded conditions: experimental evidence. Functional Ecology. 8:205-214
    Leishman, M., Westoby, M. 1998. Seed size and shape are not related to dormancy in Australia in the same way as in Britain. Functional Ecology. 12: 480-485.
    Leishman, M.R., Masters, G.J., Brown, V.K. 2000 Seed bank dynamics: the role of fungal pathogens and climate change. Functional Ecology. 14: 293-299.
    Levin, D.A. 1990. The seed bank as a source of genetic novelty in plants. American Naturalist. 135:563-572
    Levassor, C., Ortega, M., Peco, B. 1990. Seed bank dynamics of Mediterranean pastures subjected to mechanical disturbance, Journal of Vegetation Science.1:339-344
    Looney, P.B., Gibson, D.J. 1995. The relationship between the soil seed bank and above-ground vegetation of a coastal barrier island. Journal of Vegetation Science,6:825-836.
    Lopez-Marino, A., Luis-Calabuig, E., Fillat, F., Bermudez, F.F., 2000. Floristic composition of established vegetation and the soil seed bank in pasture
    communities under different traditional management regimes. Agriculture
    Ecosystem and Environment. 78: 273-282.
    Lord, J., Westoby, M., Leishman, M., 1995. Seed size and phylogeny in 6 temperate floras - constraints, niche conservatism, and adaptation. American Naturalist 146:349-364.
    Luzuriaga, A.I., Escudero, A., Olano, J.M., Loidi, J., 2005. Regenerative role of seed banks following an intense soil disturbance. Acta Oecologica. 27: 57-66.
    Lunt, I.D. 1995. Seed longevity of six native forbs in a closed Themeda triandra grassland. Australian Journal of Botany. 43: 439-449.
    Malone, C.R. 1967. A rapid method for enumeration of viable seeds in soil. Weeds. 15:381-382.
    Matlack, G. R., Good, R. E., 1990: Spatial heterogeneity in the soil seed bank of a mature coastal plain forest. Bull Torrey Botanical Club, 117:143-152.
    Marks, P.L. 1983. On the origin of the filed plants of the northeastern United States. American Naturalist. 122: 210-228.
    Matus, G., Papp, M., Tothmeresz, B., 2005. Impact of management on vegetation dynamics and seed bank formation of inland dune grassland in Hungary. Flora.200:296-306.
    Mayor, M.D., Boo, R.M., Pelaez, D.V., El(?)a, O.R., 2003. Seasonal variation of the soil seed bank of grasses in central Argentina as related to grazing and shrub cover. Journal of Arid Environment. 53:461-477.
    McGraw, J.B., Vavrek, M.C., 1989. The role of buried seeds in arctic and alpine plant communities. In: Leck MA, Parker VT, Simpson RL (eds) Ecology of soil seed banks. Academic Press Inc, San Diego, CA. pp. 91-106.
    McGraw, J.B., Vavrek, M.C., Bennington, C.C., 1991. Ecological genetic variation in seed bank.l. Establishment of a time transect. Journal of Ecology. 79: 617-625.
    Meissner, R.A., Facelli, J.M., 1999. Effects of sheep exclusion on the soil seed bank and annual vegetation in chenopod shrublands of South Australia. Journal of Arid Environment. 42:117-128.
    Meyer, S.E., Kitchen, S.G., Carlson, S.L. 1995. Seed germination timing patterns in intermountain Penstemon (Scrophulariaceae). American Journal of Botany. 82:377-389.
    Milberg, P., 1992. Seed bank in a 35-year-old experiment with different treatments of a semi-natural grassland, Acta Oecologica. 13: 743-752.
    Milberg, P., Hansson, M.L., 1993. Soil seed bank and species turnover in a limestone grassland, Journal of Vegetation Science. 4: 35-42.
    Milberg, P., 1995. Soil seed bank after eighteen years of succession from grassland to forest. Oikos. 72: 3-13.
    Milton, W.E.J. 1939. The occurrence of buried viable seeds in soils at different elevations and in a salt marsh. Journal of Ecology. 27:149-159.
    Molau, U., Larsson, E.L., 2000. Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Canadian Journal of Botany. 78; 128-141.
    Moles, A. T., Hodson, D. W., Webb, C. J. 2000. Seed size and shape and persistence in soil in the New Zealand flora. Oikos 89: 541-545
    Moles, A. T., Westoby, M. 2004. Seed mass and seedling establishment after fire in Ku-ring-gai Chase National Park, Sydney, Australia. Austral Ecology. 29: 383-390
    Morin, H., Payette, s. 1988. Buried seed populations in the montane, subalpine, and alpine belts of Mont Jacques Cartier, Quebec. Canadian Journal of Botany. 66:101-107.
    Morgan, M.J., 1998: Composition and seasonal flux of the soil seed bank of species rich Themeda triandra grasslands in relation to burning history. Journal of Vegetation Science, 9:145-156.
    Mudoch, A.J., Ellis, R.M., 2000. Dormancy, viability and longevity. In: Fenner M (eds) Seeds: the ecology of regeneration in plant communities, CAB Intemation, London, UK, pp. 183-214
    Murdoch, A.J., Ellis, R.H., 1992: Longevity, viability and dormancy. In Fenner, M. (eds), Seeds: the Ecology of Regeneration in Plant Communities. CAB International, London. pp. 193-229.
    Murry, K.G. 1988. Avian seed dispersal of 3 neotropical gap-dependent plants.Ecological Monographs. 58: 271-298.
    Nakagoshi, N. 1985. Buried viable seeds in temperate forests. In: The PopulationStructure of Vegetation. White, J. eds. pp: 551-570. Junk, Dordrecht.
    Navie, S.C., Cowley, R.A., Rogers, R.W., 1996. The relationship between distance from water and the soil seed bank in a grazed semi-arid subtropical rangeland. Australian Journal of Botany. 44: 421-431.
    Onaindia, M., Amezaga, I. 2000. Seasonal variation in the seed banks of native woodland and coniferous plantations in Northern Spain. Forest Ecology and Management, 126:163-172.
    Onipchenko, V.G., Semenova, G.V., van der Maarele E. 1998. Population strategies in severe environments: alpine plants in the northwestern Caucasus. Journal of Vegetation Science. 9: 27-40.
    Pake, G. E., D. L., Venable. 1995. Is coexistence of sonoran desert annuals mediated by temporal variability in reproductive success. Ecology, 76:246-261.
    Parker, V.T., Kelly, V.R. Seed banks in California chaparral and other Mediterranean climate shrubland. In: Ecology of soil seed bank. Leck, M.A., Parker, V.T., Simpson, R.L. Academic Press, New York. 231-255.
    Peco, B., Ortega, M., Levassor, C., 1998. Similarity between seed bank and vegetation in Mediterranean grassland: a predictive model. Journal of Vegetation Science. 9: 815-828.
    Peco, B., Traba, J., Levassor, C., Sanchez, A.M., Azc(?)rate, F.M. 2003. Seed size, shape. and persistence in dry Mediterranean grass and scrublands. Seed Science Research. 13: 87-95.
    Pierce, S.M., Cowling, R.M. 1991. Disturbance regimes as determinants of seed banks in coastal dune vegetation of the southeastern Cape. Journal of Vegetation Science,2: 403-412.
    Pons, T.L. 1989. Breaking of seed dormancy by nitrate as a gap detecting mechanism, Annals of Botany. 63:139-143.
    Porsild, A.E., Harington, C.R., Mulligan, G.A. 1967. Lupinus arcticus Wats. grown from seeds of Pleistocene age. Science. 158:113-114.
    Price, M. V., Joyner, J.W., 1997. What resources are available -to desert granivores: seed rain or soil seed bank? Ecology. 78: 764-773.
    Priestley, D.A. 1986. Seed Ageing: Implication for Seed Storage and Preservation in the Soil. Cornell Univ. Press.
    Ray, P.M., Steeves, T.A., 1983: Botany. Saunders College Publishing, Philadelphia.
    Rice, K.J., 1989. Impacts of seed banks on grassland community structure and population dynamics. In: Leck, M.A., Parker V.T., Simpson, R.L., Editors, Ecology of Soil Seed Banks, Academic Press, San Diego. pp.211-230.
    Roach, D.A., 1983. Buried seed and standing vegetation in two adjacent tundra habitats, northern Alaska. Oecologia. 60: 359-364.
    Roberts, H.A., 1981. Seed banks in soils. Advances in Applied Biology. 6:1-55.
    Roberts, T. L., Vankat, J. L., 1991: Floristics of a chronsequence corresponding to old field-deciduous forest succession in southwestern Ohio. II. Seed banks. Bull Torrey Botanical Club, 118: 377-384.
    Roberts, E.H., Totterdell, S. 1981. Seed dormancy in Rumex species in response to environmental factors. Plant Cell and Environment, 4: 97-106.
    Rothrock, P.E., Squiers, E.R., Sheeley, S., 1993: Heterogeneity and size of a persistent seed bank of Ambrosia artemisiifolia L and Setaria faberi Herrm. Bull Torrey Botanical Club, 120:417-422.
    Russi, L., Cooks, P.S., Roberts, E.H., 1992. Seed bank dynamics in a Mediterranean grassland. Journal of Applied Ecology. 29: 763-771
    Rydgren, K., Hestmark, G. 1997. The soil propagule bank in a boreal old-growth spruce forest: changes with depth and relationship to aboveground vegetation. Canadian Journal of Botany, 75:121-128.
    Sarakhan, J. 1974. Studies on plant demography: Ranualis repen, R ulbasus, R acris. Reproductive strategies and seed population dynamics. Journal of Ecology.62:151-177.
    Shaver, G.R., Gartner, B.L., Chapin, F.S., Linkins, A.E., 1983: Revegetation of arctic disturbed sites by native tundra plants. In Permafrost: Fourth International Conference: Proceedings, July 17-22, 1983. University of Alaska and National Academy of Sciences, Fairbanks, Alaska. pp, 1133-1138.
    Simpson, R.L. 1989. Ecology of soil seed bank. San Diego: Academic Press. 149-209.
    Skoglund, J., 1990: Seed banks, seed dispersal and regeneration processes in wetland areas. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science, publication 253. Uppsala University, Uppsala.
    Smilauer, P., 1992. CANODRAW User's guide, version 3.0. Microcompuer Power, Ithaca NY
    Smith, C.C., Fretwell, S.D. 1974. The optimal balance between size and number of offspring. American Naturalist. 108: 499-506
    Solomon, T.B., 2003. Rangeland evaluation and perceptions of the pastoralists in the Borana Zone of Southern Ethiopia. PhD thesis, University of the Free State,Bloemfontein, South Africa, p.329.
    Standifer, L.C.A. 1980. Technique for estimating weed seed population in cultivated soil. Weed Science. 28:134-139.
    Staniforth, R.J., Griller, N., Lajzerowicz, C., 1998. Soil seed banks from coastal subarctic ecosystems of Bird Cove, Hudson Bay. Ecoscience. 5: 241-249.
    Stanton, M.L., Galen, C., 1997: Life on the edge: adaptation versus environmentally mediated gene flow in the snow buttercup, Ranunculus odoneus. American Naturalist, 150:143-177.
    Sternberg, M., Gutman, M., Perevolotsky, A., Kigel, J., 2003. Effects of grazing on soil seed bank dynamics: An approach with functional groups. Journal of Vegetation Science. 14: 375-386.
    Stocklin, J., Fischer, M. 1999. Plants with longer-lived seeds have lower local extinction rates in grassland remnants 1950-1985. Oecologia. 120: 530-543
    Symonides, E., 1986: Seed bank in old-field successional ecosystems. Ekologia
    Polska, 34:3-29.
    Templeton, A.R., Levin, D.A. 1979. Evolutionary consequences of seed pools. American Naturalist 114: 232-249
    ter Heerdt, G.N.J., Verweij, G.L., Bakker, R.M., Bakker, J.P., 1996. An improved method for seed bank analysis: seedling emergence after removing the soil by sieving. Functional Ecology. 10:144-151
    Thomas, P. 1993. Bet-hedging germination of desert annuals: beyond the first year.American Naturalist. 142: 474-487.
    Thompson, K., Grime, J.P., Mason, G.. 1977. Seed germination in response to diurnal fluctuations in temperature. Nature (London), 267:147-148.
    Thompson, K., 1978. The occurrence of buried viable seeds in relation to environmental gradients. Journal of Biogeography. 5: 425-430.
    Thompson, K., Grime, J.P., 1979. Seasonal variation in the seed bank of herbaceous species in ten contrasting habitats. Journal of Ecology. 67: 893-921.
    Thompson, K., 1992. The functional ecology of seed banks. In: Fenner M. (eds) Seeds: the ecology of regeneration in plant communities, pp. 231-258.
    Thompson,K., Band, S.R., Hodgson, J.G., 1993. Seed size and shape predict persistence in soil. Ecology. 7: 236-241.
    Thompson, K., Bakker, J.P., Bekker, R.M., 1997. The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge, UK.
    Thompson, K. 2000. The functional ecology of seed banks. In: Seeds, The Ecology of Regeneration in Plant Communities, 2~(nd). Fenner. M, Wallingford: CABI, 215-235.
    Thorsen, J.A., Crabtree, G. 1977. Washing equipment for separating weed seed from soil. Weed Science. 25: 41-42.
    Tongway, D.J., Sparrow, A.D., Friedel, M.H., 2003. Degradation and recovery processes in arid grazing lands of central Australia: Part 1. Soil and land resources. Journal of Arid Environment. 55: 301-326.
    Tracy, B.F., Sanderson, M.A., 2000. Seed bank diversity in grazing lands of the Northeast United States. Journal of Range Management. 53:114-118.
    Trillo, T. A., Carro, A.J.M. 1993. Germination, seed-coat structure and protein patterns of seeds from Adrenocarpus decorticans and Astragalus granatensis growing at different altitudes. Seed Science and Technology. 21:317-326.
    Touzard, B., Arniaud, B., Landlois, E., Lemauviel, S., Clement, B., 2002: The relationships between soil seed bank, aboveground vegetation and disturbances in an eutrophic alluvial wetland of western France. Flora, 197:175-185.
    Uhl, C., Clark, K., Clark, H., Murphy, P. 1981. Early plant succession after cutting and burning in the upper Rio Negro region of the Amazon Basin. Journal of Ecology. 69: 631-649.
    Ungar, I.A., Woodell, S.R.J. 1996. Similarity of seed banks to aboveground vegetation in grazed and ungrazed salt marsh communities on the Gower Peninsula, South Wales. International Journal of Plant Science, 157: 746-749.
    Urbanska, K. M., M. Fattorini. 1998a. Seed bank studies in the Swiss Alps. I. Unrestored ski run and the adjacent intact grassland at high elevation. Botanica Helvetica, 108: 93-104.
    Urbanska, K. M., M. Fattorini. 19986. Seed bank studies in the Swiss Alps. Ⅱ. Restoration plots in a high-alpine ski run. Botanica Helvetica, 108: 289-301
    Van Der Valk, A.G., Davis, C.B., 1976. The seed banks of paairie glacial marshes. Canadian Journal of Botany. 54:1832-1838.
    Van Der Valk, A.G., Davis, C.B., ,1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology. 59: 322-355.
    Van der Valk, A.G., Pederson, R.L., 1989: Seed banks and the management and restoration of natural vegetation. In Leck, M.A., Paker, V.T., and Simpson, R.L., (eds), Ecology of soil seed banks. San Diego: Academic Press, pp. 329-346.
    van der Valk, A.G., 1992. Establishment, colonization and persistence. In:Glenn-Levin DC, Pett, RK, Veblen TT (eds) Plant succession. Theory and Prediction. Chapman and Hall, London, pp. 60-102.
    Van der Wall, S.B. 1994. Removal of wind-dispersed pine seeds by ground-foraging vertebrates. Oikos. 69:125-132.
    van den WoUenberg, A.L. 1977. Redundancy analysis. An alternative for canonical correlation. Psychometrika, 42: 207-219.
    Venable, D.L., Brown, J.S., 1988. The selective interactions of dispersal, dormancy,and seed size as adaptations for reducing risk in variable environments. The American Naturalist. 131: 360-384.
    Villiers, T.A., 1973: Ageing and the longevity of seeds in field conditions. In Heydecker, W. (eds), Seed Ecology. The Pennsylvania State University Press, London, pp. 265-288
    Wagner, M., Poschlod, P., Setchfield, R.P., 2003: Soil seed bank in managed and abandoned semi-natural meadows in Soomaa National Park, Estonia. Annales Botanici Fennici, 40: 87-100.
    Wanger, M., Heinrich, W., Jetschke, G., 2006: Seed bank assembly in an unmanaged ruderal grassland recovering from long-term exposure to industrial emissions. Acta Oecologica, 30: 342-352.
    Washitani, I.., Masuda, M. 1990. A comparative study of the germination characteristics of seeds from a moist tall grassland community. Functional Ecology. 4: 543-557.
    Washitani, I., Takenaka, A., Kuramoto, N., Inoue, K. 1997. Aster kantoensis Kitam.,an endangered flood plain endemic plant in Japan: Its ability to form persistent soil seed banks. Biological Conservation, 82: 67-72.
    Warr S. J., Thompson K., and Kent M., 1993: Seed banks as a neglected area of biogeographic research: A review of literature and sampling techniques. Progess in Physical Geography, 17: 329-347.
    Wearne, L. J., Morgan, J. W., 2006: Shrub invasion into subalpine vegetation: implications for restoration of the native ecosystem. Plant Ecology, 183: 361-76.
    Welling, P., Tolvanen, A., Laine, K., 2004. The Alpine Soil Seed Bank in Relation to Field Seedlings and Standing Vegetation in Subarctic Finland. Arctic Antarctic and Alpine Research 36: 229-238.
    Westoby, M., Jurado, E., Leishman, M. 1992. Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution. 7: 368-372.
    Westhoff, V., Van Der Maarel, E., 1978: The Braun Blanquet approach. In: Whittaker, R.H. (eds.) Classification of plant communities (pp. 297-399). Junk, The Hague.
    Whipple, S.A., 1978. The relationship of buried, germinating seeds to vegetation in an old-growth Colorado subalpine forest. Canadian Journal of Botany . 56: 1505-1509.
    Willems, J. H., Bik, L. P. M., 1998: Restoration of high species density in calcareous grasslands: the role of seed rain and soil seed bank. Applied Vegetation Science, 1: 91-100.
    Wisheu, I.C., Keddy, P.A., 1991. Seed banks of a rare wetland plant community: distribution patterns and effects of human-induced disturbance. Journal of Vegetation Science. 2: 181-188.
    Wilson, S.D., Moore, D.R.J., Keddy, P.A. 1993. Relationships of marsh seed banks to vegetation patterns along environment gradients. Freshwater Biology. 29:361-370.
    Wolters, M., Bakker, J. P., 2002: Soil seed bank and driftline composition along s successional gradient on a temperate salt marsh. Applied Vegetation Science, 5: 55-62.
    Zhang, J., Maun, M.A., 1994: Potential for seed bank formation in seven Great Lakes sand dune species. American Journal of Botany, 81: 387-394.
    Zhang, S.T., DU, G.Z., Chen, J.K. 2004 Correlates of seed size in a subalpine in the east of the Tibet plateau. Ecosciene. 11: 6-15.
    Zhang, S. T., Du, G.Z., Chen, J.K. 2004 Seed size of a subalpine meadow in relation to phylogeny, growth form, and longevity on the east of Tibet plateau. Folia Geobotanica. 39: 129-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700