固体有机废弃物发酵产氢特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环保要求的日益严格和化石能源的日益短缺,氢能作为清洁高效的可再生能源受到人们的普遍重视。本文针对固体有机废弃物进行了厌氧发酵产氢实验研究,利用TRACE GC色谱仪分析发酵过程中产生的气相及液相成分及含量,以研究微生物发酵产氢的特性。
     本文首先选用西湖底的厌氧活性污泥、产气肠杆菌、污水处理厂的淤泥、沼气池发酵液以及猪粪等不同菌群对废弃食物——马铃薯进行厌氧发酵产氢特性实验研究,得到马铃薯在各不同菌群及工况下的发酵产氢能力,同时发现产氢菌间的协同作用很重要,在控制好发酵条件的情况下,产氢菌群发酵通常会好于单一产氢菌的发酵。
     其次从不同废弃食物发酵产氢特性研究的角度,采用厌氧活性污泥为接种物,以马铃薯、青菜和米饭3种富含不溶解碳水化合物的废弃食物作为培养基料,对其发酵产氢特性进行了试验研究。发现马铃薯、青菜和米饭的发酵降解率分别为45.7%、89.2%和30.5%,每克已降解干物质的产氢量分别为:82.4ml·g~(-1)、62.6ml·g~(-1)和37.7ml·g~(-1)。气相样品中均没有CH_4产生,说明将厌氧活性污泥预先煮沸30分钟能有效抑制产甲烷菌同时保持产氢菌的活性。反应过程中控制发酵液pH值为4.5左右,发酵液相产物中乙醇一直占主导地位,其浓度远大于其它挥发性脂肪酸的浓度,但是在发酵后期,随着丙酸含量有所增加产氢量逐渐减少。
     最后采用厌氧活性污泥为接种物,以水葫芦为发酵底物进行产氢实验研究。试验结果分析表明:H_2含量在10%~20%之间,气相样品中均没有CH_4产生。在本实验的发酵条件和所取淤泥发酵产氢时,pH值为5.5时的发酵产氢要优于pH为4.5时的发酵产氢能力;55℃的发酵温度要优于35℃的发酵温度;1:1的底物接种物比例发酵要优于3:7的底物接种物比例发酵。在发酵底物经水解酶预处理、底物与接种物比例为1:1、发酵温度为55℃、初始pH值为5.5的条件下获得最大产氢量,实验得到每克已降解干物质的最大产氢量为122.3ml·g~(-1)。液相色谱分析表明:各底物的发酵液产物中富含乙醇、乙酸、丙酸和丁酸等挥发性有机酸,且含量以乙酸居多,没有发现戊酸的生成。
Biogas is a potential alternative fuel that is renewable in nature and thereby does not contribute to the net atmospheric concentration of the greenhouse gas. It is a colorless combustible gas produced by the fermentation of biomass and other wastes. Three times experiments have been studied aiming at the solid organic waste hydrogen fermentation. To investigate the mechanisms of biohydrogen production by anerobic fermentation of solid organic waste, gas chromatography is used to analysis the biogas and volatile fatty acid in anaerobic bio-reactor.
    Firstly, the ability of hydrogen production by digested sludge from the West Lake, Enteobacter aerogences, digested sludge from sewage farm, the fluid of methane pool and dejecta (pig) have been studied. The rule of the ability of hydrogen production by different bacteria under different control condition. Simultaneity, the importance of the synergistic effect on hydrogen production has been proved. Under the same suited control condition, the hydrogen production of the mixed cutler is higher than the single one.
    Secondly, the biohydrogen production from three food wastes mainly composed of undissolved carbohydrates by anaerobic fermentation of digested sludge is studied. It is found by experiments that the degradation rates of potato, greengrocery and rice in the fermentation are respectively 45.7%, 89.2% and 30.5%. The biohydrogen yield of per gram of dried potato, greengrocery and rice are respectively 82.4 ml·g~(-1), 62.6 ml·g~(-1) and 37.7 ml·g~(-1). No methane is detected in the biogas, because the methane-producing activity is restrained and the hydrogen-producing activity is simultaneously kept when the digested sludge is preheated in the boiling water for 30 min. Ethanol concentration is much higher than other volatile fatty acids in the fermentation solution when the pH value is controlled around 4.5. The biohydrogen production rate firstly increases to a peak and then decreases with an increase of propionic acid concentration in the fermentation solution.
    Finally, the extraction of hydrogen from the fermentation of eichhornia crassipes by digested sludge is demonstrated. The results show that: The contents of H_2 and CO_2 are 10%~20%, 75%~90% and no CH_4 respectively. Ethanol, acetate, propionate and butyrate are detected, and the trace of valerianate is not found in the liquid of fermentation. Associated with the hydrogen production potential, the pH value of 5.5 is better than that of 4.5, the fermentation temperature of 55 ℃ is better than that of 35 ℃ and the food-to-microorganism ratio of 1:1 is better than that of 3:7 . The high hydrogen production potential of 122.3 ml·g~(-1) occurred when the pH value of fermentation liquid is 5.5, the fermentation temperature is 55℃ and the food-to-microorganism ratio is 1:1.
引文
[1] 世界能源理事会.新的可再生能源[M].第一版.北京:海洋出版社,1998.
    [2] M. Momidan, T. N. Veziroglu. Current status of hydrogen energy[J]. Renewable and Sustainable Energy Reviews, 2002, 6: 141~179.
    [3] Chiba Mitsugi, Arai Harumi, Fukuda Kenzo. WE-NET: JAPANESE HYDROGEN PROGRAM. Int. J. Hydrogen Energy, Vol. 23, 3,: pp. 159~165, 1998.
    [4] Jiunn-Jyi Lay, Young-Joon Lee, Tatsuya Noike. Feasibility of Biological Hydrogen Production From Organic Fraction of Municipal Solid Waste[J]. Water Resource, 1999, 33 (11): 2579~2586.
    [5] James E. Funk. Thermochemical hydrogen production: past and present[J]. International Journal of Hydrogen Energy, 2001, 26: 185~190.
    [6] 梁建光,吴永强.生物产氢研究进展[J].生物学通报,2002,29(6):81~85.
    [7] M. Momirlan, T. Veziroglu. Recent directions of world hydrogen production[J]. Renewable and Sustainable Energy Reviews, 1999, 3: 219~231.
    [8] 杨慧芬,张强.固体废物资源化[M].第一版.北京:化学工业出版社,2004:278~284.
    [9] 杨运嘉,胡志华.生物质细菌制氢[J].云南师范大学学报,2002,22(2):45~49.
    [10] 林明,任南琪,王爱杰等.混合菌种在发酵法生物产氢中的协同作用[J].环境科学,2003,24(2)::54~59.
    [11] 任南琪,李建政,林明等.产酸发酵细菌产氢机理探讨[J].太阳能学报,2002,23(1):124~128.
    [12] 李建政,任南琪,林明等.有机废水发酵法生物制氢中试研究[J].太阳能学报,2002,23(2):252~256.
    [13] 王勇,任南琪,孙寓娇等.乙醇型发酵与丁酸型发酵产氢机理及能力分析[J].太阳能学报,2002,23(3):366~373.
    [14] 任南琪,赵丹,陈晓蕾等.厌氧生物处理丙酸产生和积累的原因及控制对策[J].中国科学(B辑),2002,32(1):83~89.
    [15] Lay J J, Lee Y J, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J]. Water Res, 1999, 33 (11): 2579~2586.
    [16] Okamoto M, Miyahara T, Mizuno O, et al. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes[J], Water Science and Technology, 2000, 41 (3): 25~32.
    [17] 卢怡,张无敌,宋洪川等.猪粪发酵产氢潜力的研究[J],可再生能源,2003,2:11~13.
    [18] 卢怡,张无敌,宋洪川等.稻草发酵产氢潜力的研究[J],新能源及工艺,2003,2:26~28.
    [19] 李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展[J].生物技术通报,2003,4:1~5.
    [20] 任南琪,李建政.生物制氢技术[J].太阳能,2003,2:4~6.
    [21] 梁建光,吴永强.生物产氢研究进展[J].生物学通报,2002,29(6):81~85.
    [22] Rohrback GH, Scott WR, and Canfield JH. Proceedings of the 16th Annual Power Sources Conference, 1962, 18.
    [23] Egorov A M, Avilova T V, Dikob M M, et. al. Eur J Biochen, 1979, 99: 569.
    [24] Zehnder A J, Huser B A, Brock T D, et. al. Arch Microbiol, 1980, 124: 1.
    [25] Innotti EL, Kafkawitz D, Wolin MJ, et.al. J Bacteriol, 1973, 114: 1231.
    [26] Fiala G, Stetter KO. Arch Microbiol, 1986, 145: 56.
    [27] Nandi R, Bhattacharya PK, Bhaduri AN, et. al. Biotechnol Bioeng, 1992, 39: 775.
    [28] Tanisho S, Wakao N, Kosako Y, J Chem Eng (Japan). 1983, 16: 529.
    [29] Kuhn M, Steinbuchel A, Schlegel HG. J Bacterol, 1984, 159: 633.
    [30] Kalia VC, Jain SR, Kumar A, et. al. World J Microbiol Biotechnol, 1994, 10: 224.
    [31] Pfennig N, Rev Microbiol. 1977, 31: 275.
    [32] Ormerod JG, Ormerod KS, Gest H. Arch Biochem Biophys, 1961, 94: 449.
    [33] Gorrell TE, Uffen RL. J Bacteriol, 1977, 131: 533.
    [34] 杨素萍,赵春贵,曲音波等.生物产氢研究与进展[J].中国生物工程杂志,2002,22(4):44~48.
    [35] 张衍国,吕俊复.国内外垃圾能源化焚烧技术发展现状及前景[J].综合利用,1998,(7):38~41.
    [36] 王维平,吴玉萍.论城市垃圾对策的演进与垃圾产业的产生[J].生态经济,2001,10:34~37.
    [37] 任南琪,李建政.环境污染防治中的生物技术tM].第一版.北京:化学工业出版社,2004.
    [38] 郑元景,杨海林,蔺金印.有机废料厌氧发酵技术[M].第一版.北京:化学工业出版社,1988.
    [39] 钱泽澎,闵航.沼气发酵微生物学[M].第一版.浙江:浙江科学技术出版社,1986.
    [40] 陈洪章,徐建.现代固态发酵原理及应用[M].第一版.北京:化学工业出版社,2004.
    [41] 任南琪,王宝贞,马放.有机废水产酸发酵的生理生态学分析[J].中国沼气,1995,13(1).
    [42] 王一专,吴竟仑.中国水葫芦危害、防止及开发利用[J].杂草科学,2004,3.
    [43] 王勇,任南琪,孙寓姣等.乙醇型发酵与丁酸型发酵产氢机理及能力分析[J].太阳能学报,2002,23(3).
    [44] 肖本益,魏源送,刘俊新.微生物发酵产氢的影响因素分析[J].微生物学通报,2004,31.
    [45] 郑集,陈钧辉.普通生物化学[M].第三版.北京:高等教育出版社,1998.
    [46] 李建政,任南琪,林明等.有机废水发酵法生物制氢中试研究[J].太阳能学报,2002,23(2).
    [47] 林明,任南琪,王爱杰等.几种金属离子对高效产氢细菌产氢能力的促进作用[J].哈尔滨工业大学学报,2003,35(2).
    [48] 李白昆,吕炳南,任南琪.厌氧活性污泥与几株产氢细菌的产氢能力及协同作用研究[J].环境科学学报,1997,17(4).
    [49] 李建政,任南琪.产酸相最佳发酵类型工程控制对策[J].中国环境科学,1998,18(5):398~402.
    [50] 李建昌,张无敌,宋洪川等.生物质产氢的研究现状与发展[J].能源工程,2001,6.
    [51] 秦智,任南琪,李建政.丁酸型发酵产氢的运行稳定性[J].太阳能学报,2004,25(1).
    [52] Samir Kumar Khanal, Wen-Hsing Chen, Ling Li, et al. Biological hydrogen production: effects of pH and intermediate products[J]. International Journal of Hydrogen Energy, 2004, 29: 1123~1131.
    [53] Osamu Mizuno, Richard Dinsdale, Freda R. Hawkes, et al. Enhancement of hydrogen production from glucose by nitrogen gas sparging[J]. Bioresource Technology 73, 2000: 59~65.
    [54] Lay JJ, Fan KS, Chang JI, et al. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge[J]. International Journal of Hydrogen Energy, 2003, 28(12): 1361~136.
    [55] Han SK, Shin HS. Biohydrogen production by anaerobic fermentation of food waste[J]. International Journal of Hydrogen Energy, 2004, 29(6): 569~577.
    [56] Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J]. Water Research, 1999, 33(11): 2579~2586.
    [57] 陈坚,堵国成,李寅等.发酵工程实验技术[M].第一版.北京:化学工业出版社,2003.
    [58] 郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].第一版.科学出版社,北京:2004.
    [59] 任南琪,林明,马汐平等.厌氧高效产氢细菌的筛选及其耐酸性研究[J].太阳能学报,2003,24(1),80~84.
    [60] 左剑恶,张薇,左宜等.利用有机基质厌氧生物产氢的实验研究[J].环境污染与防治,2003,25(4):200~204,212.
    [61] 林明,任南琪,马汐平等.产氢发酵细菌培养基的选择和改进[J].哈尔滨工业大学学报,2003,35(4):398~402.
    [62] 林明,任南琪,王爱杰等.高效产氢发酵细菌在不同气相条件下产氢[J].中国沼气,2002,20(2):3~7,23.
    [63] 赵静玫,刘波,孙艳等.微生物发酵秸秆产氢的气相色谱分析[J].分析仪器,2003,2:29~31.
    [64] 刘艳玲,任南琪,刘敏等.气相色谱法分析厌氧反应器中的挥发性脂肪酸(VFA)[J].哈尔滨建筑大学学报,2000,33(6):31~34.
    [65] 甄卫东,任南琪,李建政等.pH值、碱度对产酸脱硫反应器硫酸盐去除率的影响[J].哈尔滨商业大学学报(自然科学版),2003,19(2):174~177.
    [66] Yaoting Fan, Chenlin Li,, Jiunn-Jyi Lay, et al. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost[J]. Bioresource Technology, 2004, 91: 189~193.
    [67] Annika T. Nielsen, Helena Arnandusson, Rober Bjorklund, et al. Hydrogen production from organic waste[J]. Hydrogen Energy, 2001, 26: 547~550.
    [68] 李勇.碳水化合物加工技术[M].第一版.北京:化学工业出版社,2004:3,151~153.
    [69] 刘伯,王海岩,赵静玫等.几株产氢微生物的产氢能力及协同作用[J],食品与发酵工业,29(8):23~26.
    [70] 徐正浩,王一平.外来入侵植物成灾的机制及防除对策[J].生态学杂志,2004,23(3):124~127.
    [71] 储建君.水葫芦[J].杂草科学,2003,(2):10.
    [72] Ding Jianqing, Wang Ren, Fu Weidong, et al. Water hyacinth in Chian: its distribution, problems and control status[J]. Biological and Integrated Control of Water Hyacinth, Eichbornia Crassipes. Printed Version Published in 2001: 29~32.
    [73] 段惠,强胜,吴海容等.水葫芦[Eichhornia crassipes(Mart.)Solms.][J].杂草科学,2003,2.
    [74] 谢萍,周学文,杨家雄等.滇池凤眼莲饲喂肉仔鸡试验的研究[J].饲料工业,1999,20(4):26~28.
    [75] 郑集,陈钧辉.普通生物化学[M].第三版.高等教育出版社,1998.
    [76] 兰吉武,陈彬,曹伟华等.水葫芦厌氧发酵产气规律[J].黑龙江科技学院学报,2004,14(1).
    [77] 周岳溪,孔欣,郝丽芳等.水葫芦两相厌氧生物处理技术研究[J].中国沼气,1996,14(3).
    [78] 梁新红,常景玲.农作物秸杆生产单细胞蛋白的研究概况[J].山西食品工业,2003,3:5~9.
    [79] Gould JM. Studies on the mechanism of alkaline peroxide delignification of agricultural residues[J]. Biotechnology and Bioengineering, 1985, 27 (3): 225~231.
    [80] Gould JM. Enhanced polysaccharide recovery from agricultural residues and perennial grasses treated with alkaline hydrogen peroxide[J]. Biotechnology and Bioengineering, 1985, 27 (6): 893-896.
    [81] 谢君,孙迅,任路等.侧耳菌与粗毛栓菌在麦草培养基中产生木质纤维素降解酶的研 究[J].生物工程学报,2001,17(5):575~578.
    [82] Bonnet C, Volat B, Bardin R, Degganges V, et al. Use of immunofluorescence technique for studying a Nitrobacter population from wastewater treatment plant following discharge in river sediments: first experiment data. Wat Res, 1997, 31 (3): 661~664.
    [83] Richard DJ, McEwan AG. The identification of cytochromes involved in the transfer of electron ro the periplasmic nitrate reductase of Rhodobacter capsulatus and resolution of a soluble nitrate-cytochrorm C_(552) recos complex. Eur L Biochem, 1990,: 263~270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700