碳纳米管修饰电极在毛细管电泳中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于CNTs具有良好的导电性、催化活性和较大的比表面积,用碳纳米管对电极进行修饰可以降低电极反应的过电势,增加峰电流,改善分析性能,提高方法选择性和灵敏度,因此,近年来碳纳米管作为修饰电极材料也已广泛应用于食品化学、生命电分析化学、药物化学、环境监测及其它领域。毛细管电泳-电化学检测法(CE-EC)由于具有分离效率高、快速、简便、检测限低等优点,适合低浓度复杂样品的检测,因而得到了广泛的应用。将化学修饰电极微型化,并应用于毛细管电泳检测生命物质中,将会扩大检测的范围,提高检测的灵敏度和选择性。
     本论文以电化学分析系统为技术依托,研制了碳纳米管修饰葡萄糖生物传感器,在此基础上将碳纳米管修饰葡萄糖生物传感器微型化并与毛细管电泳联用,实现了对血清中葡萄糖的快速灵敏检测。探索了毛细管电泳-电化学检测过氧化氢的实验条件,为下一步细胞内过氧化氢的检测奠定基础。论文共分四章。
     第一章,综述了碳纳米管修饰电极在食品化学、生命化学、药物化学、环境检测等领域中的应用研究进展。主要介绍了碳纳米管在化学修饰电极和电化学生物传感器方面的应用情况,以及碳纳米管修饰电极与毛细管电泳联用的研究进展。碳纳米管作为一种新型的电极修饰剂,由于本身所拥有的独特性质使其具有广阔的发展前景。随着碳纳米管功能化的发展,其各种生物兼容性的多元功能化更加赋予了碳纳米管许多潜在的优势,在未来的生物、医药检测中将发挥重要的作用。
     第二章,通过电化学沉积将壳聚糖、葡萄糖氧化酶和碳纳米管固定到镀铂金电极上,制备了一种新型葡萄糖生物传感器。以计时安培检测法,探讨了影响该生物传感器灵敏度的各因素,利用该生物传感器定量测定了人血清中的葡萄糖,测得的结果与对照值基本相符。该研究为测定人血清中的葡萄糖提供了新方法。研究表明:镀铂金电极上的铂颗粒多孔的结构,增加了酶在传感器上负载量,提高了电流响应的灵敏度;碳纳米管具有较大的比表面积和较快的电子传递速率,能保证葡萄糖的催化产物(H2O2)在膜内快速扩散和反应,而不聚集在电极表面,从而提高了电极的响应电流,缩短了响应时间,葡萄糖氧化酶也可以固定在碳纳米管的表面和内部并保持其活性,从而增加酶在电极表面的吸附量;传感器表面的Nafion膜有效阻止了UA和AA向电极表面的扩散;壳聚糖也可能在一定程度上抑制了这些物质的电化学反应,从而减小了这些电活性物质对葡萄糖测定的干扰。该传感器线性范围宽,灵敏度高,响应速度快,尿酸、抗坏血酸等血液中可能存在的电活性物质对葡萄糖的测定无干扰。
     第三章,在第二章报道的葡萄糖生物传感器制作方法基础上,研制了一种微型化的葡萄糖生物传感器。将葡萄糖生物传感器与毛细管电泳联用,探索了检测电位、分离电压、缓冲溶液pH值及浓度等条件的影响,该微型生物传感器表现出良好的灵敏度和重现性。膜中Nafion和壳聚糖的存在有效抑制了抗坏血酸和尿酸的干扰,减少了葡萄糖氧化酶的流失和高压对酶活性的影响,增大了传感器的重现性和寿命。成功检测了健康人和糖尿病患者血清中的葡萄糖。与葡萄糖检测中常用的铜电极相比,该传感器灵敏度高,抗干扰能力强,有望用做芯片毛细管电泳的工作电极,能显著提高测定的速率和效率。
     第四章,以金微盘电极和离子液体修饰单壁碳纳米管糊微盘电极作为毛细管电泳电化学工作电极,试验了两种电极对过氧化氢的响应情况。以金微盘电极与毛细管电泳联用,采用不易受溶液中氧干扰的正电位做为检测电势,实现了过氧化氢的定量检测。探讨了分离电压、缓冲溶液pH和工作电位等条件对H2O2检测的影响。该方法有望用于单细胞中H2O2的测定。
Carbon nanotubes (CNTs) have led to many new technical developments and applications such as being used for the modified electrodes due to their high chemical stability, high surface area, unique electronic properties, and relatively high mechanical strength. Such properties of carbon nanotubes make them also extremely attractive for the task of electrochemical detection. CNTs-modified electrodes have been shown useful for improving the electrochemical behavior of important analytes. Higher sensitivity and stability have thus been demonstrated in voltammetric analysis. Capillary electrophoresis (CE) with electrochemical detection (ECD) has already been applied to analyse many substances owing to its inherent high sensitivity, simplicity of instrumention needed, short analysis time, efficient separation capabilities, and minute consumption of sample. When CNTs-modified microelectrodes are used as detector of CE, the kinds of substance determined will increase greatly and the sensitivity and selectivity will enhance laargely.
     In this thesis, we develop a method to make a novel glucose biosensor, the concentration of glucose in human serum successfully. A simple and convenient method of H2O2 determination was developed by CE- ECD.
     In the first chapter, The carbon nanotubes modified electrode and its applications in the food chemistry, biologic chemistry, medicine chemistry, environmental chemistry test and capillary electrophoresis are reviewed. We mainly summarized the analytical applications and progresses of carbon nanotubes in chemical modified electrodes and electrochemical biosensors.
     In the second chapter, a new amperometric biosensor for the quantitative measurement of glucose was reported. The biosensor was based on the immobilization of single walled carbon nanotubes(SWNTs)–glucose oxidase–chitosan biocomposite at platinized Au electrode. The effect of Pt deposit time, the content of SWNTs and GOx, pH of the buffer and the operating potential was studied. The production mechanism was discussed. The experimental result illustrated that the biosensor has the properties of good reproducibility and stability, high sensitivity and rapid response to the determination of glucose. The experiment also showed that there was no interference from the electro-active interfering species such as ascorbic acid and uric acid when they are at endogenous level in serum. The biosensor was successfully used to detect the glucose in serum rapidly and accurately. The existence of SWNTs increased the number of glucose oxidase and the speed of electron delivery in biomembrane.
     In the third chapter, we made a kind of Au microelectrode and developed a novel method for the determination of glucose in human serum based on capillary electrophoresis coupled with novel glucose biosensor which was homemade and based on the immobilization of SWNTs–glucose oxidase–chitosan biocomposite at platinized Au electrode by one-step electrodeposition according to the method reported in the second chapter. Factors influencing the performance, including separation voltage, detection potential, pH value and the concentration of the buffer were studied. The biosensor exhibited good stability and durability in the analytical procedures. Finally, glucose in human serum from two healthy individuals and two diabetics was successfully determined. It proved that the method can be applied to the determination of glucose in human blood using CE-ECD. The reason of its good reproducibility and durability is probably that the immobilized enzyme was firmly retained on the biosensor surface as a result of the presense of chitosan and Nafion.
     In the fourth chapter, a method using capillary electrophoresis with amperometric detection was developed for the determination of hydrogen peroxide. Gold microelectrode and ionic liquid modified-SWNTs paste microelectrode made by ourselves were used as the detector of capillary zone electrophoresis with electrochemical end-column amperometric detection to determine hydrogen peroxide. Gold microelectrode showed higher sensitivity to H2O2 was used as the detector of capillary electrophoresis. Factors influencing the performance, including separation voltage, detection potential and pH value of the buffer were studied. Because of the higher sensitivity of this method, it was hopeful to determinate the concentration of H2O2 in single cell.
引文
[1] S Lijima. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56~58.
    [2] I Heller, J Kong, H A Heering, K A Williams, S G Lemay, C Dekker. Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry[J]. Nano Lett., 2005, 5:137~142.
    [3] M A Poggi, L A Bottomley, P T Lillehe. Scanning probe microscopy[J]. Anal. Chem., 2002, 74:2851~2862.
    [4]孙延一,吴康兵,胡胜水.阿霉素在多壁碳纳米管膜电极上的电化学行为及其分析研究[J].分析科学学报, 2004, 20(1):26~28.
    [5] B R Azamian, J J Davis, K S Coleman. Bioelectro-chemical Single-walled carbon nanotubes[J]. J Am Chem Soc., 2002, 124 (43):12664~12665.
    [6]蔡称心,陈静,陆天虹.碳纳米管修饰电极上葡萄糖氧化酶的直接电子转移[J].中国科学: B辑, 2003, 33(6):511~518.
    [7] D R Maria, A R Gustavo. Carbon nanotubes paste electrode[J]. Electrochem. Commun, 2003, 5(8):689~694.
    [8] V Federica, O Silvia, L T Maria, et al. Carbon nanotubes as electrode materials for the assembling of new electrochemical biosensors[J]. Sensors and Actuators B: Chemical, 2004, 100(1-2):117~125.
    [9] M Gao, L M Dai, G G Wallace. Biosensors based on alignedcarbon nanotubes coated with inherently conducting polymers[J]. Electroanalysis, 2003,15(13):1089~1094.
    [10] H Tang, J H Chen, S Z Yao, et al. Amperometric glucose biosensor based on adsorp tion of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode[J]. Anal Biochem., 2004, 331(1):89~97.
    [11] F Patolsky, Y Weizmann, I Willner. Longrange electrical contacting of redox enzymes by SWNTs connectors[J]. Angew. Chem. Int. Ed., 2004, 43(16):2113~2117.
    [12] J Q Liu, A Chou, W Rahmat, et al. Achieving direct elec-trical connection to glucose oxidase using aligned single walled carbon nanotube arrays[J]. Electroanalysis, 2005, 17(1):38~46.
    [13] H G Xue, W L Sun, B J He, et al. Single-wall carbon manotubes as immobilization material for glucose biosensor[J]. Synth. Met., 2003, 135-136: 831~832.
    [14] B R Azamian , J J Davis, K S Coleman, et al. Bioelectrochemical single-walled carbon nanotubes[J] . J. Am. Chem. Soc., 2002, 124(43):12664~12665.
    [15] T Gan, K Li, K B Wu. Multi–wall carbon nanotube–based electrochemical sensor for sensitive determination of Sudan I[J]. Sensors and Actuators B:Chemical, 2008, 132(1):134~139.
    [16]刘润,郝玉翠,康天放.碳纳米管修饰电极检测有机磷农药的生物传感器[J].分析试验室, 2007, 26(9):9~12.
    [17] Kanchan A. Joshi,Jason Tang,Robert Haddon,et al. A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode[J]. Electroanalysis, 2005, 17(1):54~58.
    [18]赵峥逸,周天舒,杨勤燕等.碳纳米管修饰传感器对农药敌草隆的快速测定方法研究[J].上海化工, 2008, 33(6):12~17.
    [19] P J Britto, K S V Santhanam, P M Ajayan. Carbon nanotube electrode for oxidation ofdopamine[J]. Bioelectrochem. Bioenerg., 1996, 41:121~125.
    [20]王宗花,刘军,颜流水,王义明,罗国安.羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸的电催化[J].分析化学, 2002, 30(9):1053~1057.
    [21] R S Chen, W H Huang, etal. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes[J]. Anal. Chem. 2003, 75:6341~6345.
    [22] F Valentini, S Orlanducci, M LTerranova, A Amine, G Palleschi. Carbon nanotubes as electrode materials for the assembling of new electrochemical biosensors[J]. Sensors and Actuators B, 2004, 100(1-2): 117~125.
    [23] Y F Zhao, Y Q Gao, D P Zhan, H Liu, Q Zhao, Y Kou, Y H Shao, M X Li, Q K Zhuang, Z W Zhu. Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode[J]. Talanta, 2005, 66:51~57.
    [24] S Jiao, M Li, C Wang, D Chen, B Fang. Fabrication of Fc-SWNTs modified glassy carbon electrode for selective and sensitive determination of dopamine in the presence of AA and UA[J]. Electrochim. Acta., 2007, 52:5939~5944.
    [25] S Shahrokhian, H R Zare-Mehrjardi. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid[J]. Electrochim. Acta, 2007, 52:6310~6317.
    [26] A H Liu, I Honma, H S Zhou. Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode[J]. Biosens. Bioelectron., 2007, 23(1):74~80.
    [27]杨怀成,魏万之,β-环糊精-碳纳米管/壳聚糖自组装膜修饰电极在过量抗坏血酸存在下测定多巴胺[J].分析试验室2009, 28(9):5~8.
    [28]马曾燕,李将渊,向伟.多巴胺在聚L-半胱氨酸/多壁碳纳米管修饰电极上的电化学行为及其伏安测定[J].应用化学, 2009, 26 (2):224~228.
    [29]朱丽娜,李兰芳,杨平,万其进.多巴胺在碳纳米管/普鲁士蓝复合膜修饰电极上的电化学行为及其选择性测定[J].化学与生物工程, 2009, 26(11):80~84.
    [30]郑娜,侯书荣,周霞,李向军,袁倬斌.聚磺基水杨酸/碳纳米管修饰电极在抗坏血酸共存时测定多巴胺[J].分析试验室, 2009, 28(5):11~15.
    [31] G C Zhao, Z Z Yin, L Zhang, X W Wei. Direct electrochemistry of cytochrome c on a multi-walled carbon nanotubes modified electrode and its electrocatalytic activity for the reduction of H2O2[J]. Electrochem. Commun., 2005, 7(3): 256~260.
    [32] J X Wang, M X Li, Z J Shi. Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes[J]. Anal Chem., 2002, 74(9):1993~1997.
    [33] C L Xiang, Y J Zou, L X Sun, F Xu. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes-modified electrode[J]. Talanta, 2007, 74(2):206~211. [34 ] C L Xiang, Y J Zou, L X Sun, F Xu. Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film[J]. Electrochem. Commun., 2008, 10:38~41.
    [35] M L Guo, J H Chen, D Y Liu,L H Nie, S Z Yao. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes [J]. Bioelectrochem., 2004, 62(1):29~35.
    [36] H Cai, Y Xu, P G He, Y Z Fang. Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode[J]. Electroanalysis, 2003, 15:1864~1870.
    [37] Y H Yang, Z J Wang, M H Yang. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes[J]. Anal. Chim. Acta., 2007, 584: 268~274.
    [38] Z H Wang, S F Xiao, Y Chen. Electrocatalytic and Analytical Response ofβ-Cyclodextrin Incorporated Carbon Nanotubes-Modified Electrodes Toward Guanine [J]. Electroanalysis, 2005, 17(22):2057~2061.
    [39] Z H Wang, S F Xiao, Y Chen.β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine [J]. Electroanal. Chem., 2006, 589(2):237~242.
    [40] A Erdem, P Papakonstantinou, H Murphy. Direct DNA Hybridization at Disposable Graphite Electrodes Modified with Carbon Nanotubes[J]. Anal. Chem., 2006, 78:6656~6659.
    [41] S Bollo, N F Ferreyra, G A Rivas. Electrooxidation of DNA at Glassy Carbon Electrodes Modified with Multiwall Carbon Nanotubes Dispersed in Chitosan[J]. Electroanalysis, 2007,19:833~840.
    [42] Y K Ye, H X Ju. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode[J]. Biosens. Bioelectron., 2005, 21(5):735~741.
    [43] A Merko?i, M Pumera, X Llopis. New materials for electrochemical sensing VI: Carbon nanotubes[J]. Trends Anal. Chem., 2005, 24(9):826~838.
    [44]张旭志,焦奎,单壁碳纳米管和室温离子液体胶修饰电极[J].物理化学学报,2008, 24(8):1439~1444.
    [45] J S Ye, Y Wen, W D Zhang, L M Gan, G Q Xu, F S Sheu. Selective Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at Well-Aligned Carbon Nanotube Electrode[J]. Electroanalysis, 2003, 15:1693~1698.
    [46] Q P Yan, F Q Zhao, G Z Li, B Z Zeng. Voltammetric determination of uric acid with a glassy carbon electrode coated by paste of multiwalled carbon nanotubes and ionic liquid[J]. Electroanalysis, 2006, 18(11):1075~1080.
    [47] M N Zhang, K Liu, L Xiang, Y Q Lin, L Su, L Q Mao. Carbon Nanotube-Modified Carbon Fiber Microelectrodes for In Vivo Voltammetric Measurement of Ascorbic Acid in Rat Brain[J]. Anal. Chem., 2007, 79:6559~6565.
    [48] A Salimi, RHallaj, G R Khayatian. Amperometric Detection of Morphine at Preheated Glassy Carbon Electrode Modified with Multiwall Carbon Nanotubes[J]. Electroanalysis, 2005, 17(10):873~879.
    [49] F H Wu, G C Zhao, X W Wei, Z S Yang. Electrocatalysis of tryptophan at multi-walled carbon nanotube modified electrode[J]. Microchimica Acta, 2004, 144(4):243~247.
    [50]吴芳辉,赵广超,魏先文.多壁碳纳米管修饰电极对对苯二酚的电催化作用[J].分析化学, 2004, 32(8):1057~1060.
    [51] Y P Ding, W L Liu, Q S Wu. Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry[J]. J. Electroanal Chem, 2005, 575(2):275~280.
    [52] J Wang, A N Kawde, M R Jan. Carbon-nanotube-modied electrodes foramplied enzyme-based electrical detection of DNA hybridization[J]. Biosens Bioelectron, 2004, 20(5):995~1000.
    [53] B Z Zeng, F Huang. Electrochemical behavior and determination of fluphenazine atmulti-walled carbon nanotubes/(3-mercaptopropyl)trimethoxysilane bilayer modified goldelectrodes[J]. Talanta, 64(2004):380~386.
    [54]吕少仿,多壁碳纳米管化学修饰电极测定替硝唑的研究[J].分析化学, 2004, 32(3)412.
    [55] N Zhu, Z Chang, P He, Y Fang. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes[J]. Anal. Chim. Acta, 2005, 545:21~26.
    [56]段连生,曾国平.对乙酰氨基酚在碳纳米管粉末微电极上的电化学行为[J].应用化学, 2008, 25(12):1464~1467.
    [57] H Yadegari, A Jabbari, H Heli, A A Moosavi-Movahedi, K Karimian, A Khodadadi. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube modified glassy carbon electrode[J]. Electrochim. Acta, 2008, 53:2907~2916.
    [58]马啸华,徐茂田,孔粉英,吡硫醇在单壁碳纳米管修饰电极上电化学行为的研究[J].分析试验室, 2009, 28(12):14~17.
    [59]任超超,犹卫,高作宁,更昔洛韦在碳纳米管-离子液体修饰电极上的电催化氧化及电分析方法[J].分析测试学报, 2009, 28(8):914~917.
    [60]徐茂田,孔粉英,张银堂,司帕沙星在单壁碳纳米管修饰电极上的电化学行为及其测定[J].理化检验-化学分册, 2009, 45(2):134~147.
    [61] K B Wu, S S Hu, J J Fei, Wbai. Mercury-free simultane-ous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes[J]. Anal. Chim. Acta, 2003, 489:215~219.
    [62]向伟,李将渊,王玉晋. MWNTs-石墨糊电极阳极溶出伏安法测定铅[J].西华师范大学学报(自然科学版), 2006, 27(2):209~213.
    [63]肖亦,潘献晓,晋玉秀等.碳纳米管修饰玻碳电极同时测定土壤中的铜和镉[J].商丘师范学院学报, 2006, 22(2):121~124.
    [64]明亮,习霞,陈婷婷,刘杰.多壁碳纳米管修饰电极测定水样中痕量镉[J].化学试剂, 2007, 29(12):724~726.
    [65]姜冉,狄晓威.碳纳米管修饰玻碳电极方波伏安阳极溶出法测定痕量铅[J].冶金分析, 2007, 27(3):25~28.
    [66] Y Zeng, Z P Zhu, G H Lu. Electrochemical determination of bromide at a multiwall carbon nanotubes-chitosan modified electrode[J]. Electrochimica Acta,2005, 51:649~653.
    [67]姜灵彦,刘蕾,牛俊玲,刘军坛,壳聚糖-羧基化多壁碳纳米管修饰电极对环境中亚硝酸根的测定[J].精细石油化工进展, 2009, 10(6):47~50.
    [68]李玉萍.硝基苯在碳纳米管修饰电极上的电化学行为及其分析应用[J].环境化学, 2005, 24(3):315~317.
    [69]瞿万云.α-萘胺在多壁碳纳米管-DHP膜修饰电极上的电化学行为及其测定[J].分析科学学报, 200, 22(1):55~59.
    [70]成玉萍,朱振中,孙唯.新型多壁碳纳米管/壳聚糖/离子液体修饰电极直接测量对苯二酚的研究[J].分析科学学报,2009, 25(5):567~570.
    [71] Nathan S Lawrence, Randhir P Deo, Joseph Wang. Electrochemical determination of hydrogen sulfide atcarbon nanotube modified electrodes[J]. Anal. Chim. Acta, 2004, 517(1-2):131~137.
    [72]王宗花,罗国安,肖素芳,王歌云.α-环糊精复合碳纳米管电极对异构体的电催化行为[J].高等学校化学学报, 2003, 24(5):811~813.
    [73] Y P Ding, W L Liu, Q S Wu, X G Wang. Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry[J]. J. Electroanal Chem, 2005, 575(2):275~280.
    [74]李明齐,何晓英.碳纳米管修饰电极对对苯二酚和邻苯二酚的电催化研究[J].分析科学学报, 2006, 22(3):299~302.
    [75]张卉,汪振辉,周漱萍.碳纳米管复合聚对氨基吡啶修饰电极伏安法同时测定硝基酚异构体的研究[J].中国科学(B辑化学), 2005, 35(1):17~21.
    [76] X G Wang, Q S Wu, Y P Ding. Direct Simultaneous Determination ofα- andβ-Naphthol Isomers at GC-Electrode Modified with CNTs Network Joined by Pt Nanoparticles Through Derivative Voltammetry[J]. Electroanalysis, 2006, 18(5): 517~520.
    [77] P P Joshi, S A Merchant, Y D Wang, D W Schmidtke. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites[J]. Anal. Chem., 2005, 77: 3183~3188.
    [78] Y D Wang, P P Joshi, K L Hobbs, M B Johnson, D W Schmidtke. Nanostructured biosensors built by layer-by-layer electrostatic assembly of enzyme-coated single-walled carbon nanotubes and redox polymer[J]. Langmuir 2006, 22(23):9776~9783.
    [79] M L Guo, J H Chen, J Li, B Tao, S H Yao. Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite[J]. Anal. Chim. Acta, 2005, 532(1):71~77.
    [80] M Umana, J Waller. Application of glutaraldehyde to amperometric determination of protein in dairy products[J]. Anal. Chem., 1986, 58:2979~2983.
    [81] X H Kang, Z B Mai, X Y Zou, P X Cai, J Y Mo. Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol–gel chitosan/silica hybrid[J].Talanta, 2008, 74:879~886.
    [82] C Malitesta, F Palmisano, L Torsi, P G Zambonin. Glucose Fast-Response Amperometric Sensor Based on Glucose Oxidase Immobilized in an Electropolymerized Poly (o-phenylenediamine) Film[J]. Anal. Chem., 1990, 62:2735~2740.
    [83] Z E Zhang, H Y Liu, J Q Deng. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode[J]. Anal. Chem., 1996, 68:1632~1638.
    [84] S. Hrspovic, Y.L. Liu, K.B. Male, J.H.T. Luong. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes[J]. Anal.Chem., 2004, 76:1083~1088.
    [85] Y Q Dai, K K Shiu. Glucose Biosensor based on Multi-Walled Carbon Nanotube Modified Glassy Carbon Electrode[J]. Electroanalysis 2004, 16(20):1697~1703.
    [86]黄加栋,宋昭,杨钰等.基于溶胶-凝胶技术结合多壁纳米碳管化学修饰电极的方法制备高灵敏葡萄糖生物传感器的研究[J].高技术通讯, 2006, 16(5):492~496.
    [87]王酉,徐惠,李光.基于碳纳米管修饰丝网印刷碳糊电极的葡萄糖和尿酸生物传感器[J].传感技术学报, 2006, 19(5):2077~2081.
    [88] B Y Wu, S H Hou, F Yin, J Li, Z X Zhao, J D Huang, Q Chen. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron[J]. Biosens. Bioelectron., 2007, 22:838~844.
    [89] X L Luo, J J Xu, J L Wang, H Y Chen. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application[J]. Chem.Commun., 2005, 76: 2169~2171.
    [90] M G Zhang, A Smith, W Gorski. Carbon nanotubechitosan system for electrochemical sensing based on dehydrogenase enzymes[J]. Anal.Chem., 2004, 76(17):5045~5050.
    [91] Q F Shi, Q B Li, D Shan, Q Fan, H G Xue. Biopolymer-clay nanoparticles composite system (Chitosan-laponite) for electrochemical sensing based on glucose oxidase[J]. Mate. Sci.Eng. C, 2008, 28(8):1372~1375.
    [92]姚慧,李楠,徐景忠,朱俊杰.一种基于壳聚糖固定葡萄糖氧化酶的葡萄糖生物传感器的研究[J].中国化学, 2005, 23(3):275~279.
    [93] R Shacham, D Avnir, D Mandler. Electrodeposition of Methylated Sol-Gel Films on Conducting Surfaces[J]. J. Adv. Mater. 1999, 11(5):384~388.
    [94] P N Deepa, M Kanungo, G Claycomb, P M A Sherwood, M Collinson. Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design[J]. Anal. Chem., 2003, 75: 5399~5405.
    [95] X L Luo, J J Xu, Y Du, H Y Chen. glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition[J]. Anal. Biochem., 2004, 334(2):251~256.
    [96]张燕,仲红波,程翠翠,王晓蕾.镀铂金电极上电沉积碳纳米管-葡萄糖氧化酶-壳聚糖的新型生物传感器[J].化学通报, 2009, 12:1116~1122.
    [97]秦霞,王艳艳,赵紫霞,王新胜,李莎,于敏,黄楠,苗智颖,陈强.层层自组装制备基于多壁碳纳米管的胆碱生物传感器[J].分析化学, 2008, 6:827~830.
    [98]蔡称心,陈静.碳纳米管电极上辣根过氧化物酶的直接电化学[J].化学学报, 2004, 62 (3):335~340.
    [99]明亮,习霞,刘杰.水中酚类物质碳纳米管酪氨酸酶传感器测定[J].中国公共卫生, 2009, 25(11):1304~1305.
    [100]宋昭,黄加栋,史海滨,吴宝艳,赵紫霞,陈强.纳米碳管修饰铂结合溶胶-凝胶固定酶制备高性能胆碱生物传感[J]. 2006, 34(7):910~914.
    [101]钟薇,秦培勇,刘长霞,谭天伟.辣根过氧化物酶修饰电极的电化学研究[J].北京化工大学学报, 2009, 36(2):18~22.
    [102] J Wang, G Chen, M P Chatrathi, M Musameh. Capillary Electrophoresis Microchip with a Carbon Nanotube-Modified Electrochemical Detector[J]. Anal. Chem. 2004, 76:298~302.
    [103] B Wei, J Wang, Z Chen, G Chen.Carbon-Nanotube-Alginate Composite Modified Electrode Fabricated by In Situ Gelation for Capillary Electrophoresis[J]. Chem. Eur. J., 2008,14 (31):9779~9785.
    [1] S J Updike, G P Hicks. The Enzyme Electrode [J]. Nature, 1967, 214:986~988.
    [2] P P Joshi, S A Merchant, Y D Wang, D W Schmidtke. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites [J]. Anal. Chem., 2005, 77:3183~3188.
    [3] Y D Wang, P P Joshi, K L Hobbs, M B Johnson, D W Schmidtke. Nanostructured Biosensors Built by Layer-by-Layer Electrostatic Assembly of Enzyme-Coated Single-Walled Carbon Nanotubes and Redox Polymers [J]. Langmuir, 2006, 22(23): 9776~9783.
    [4] Guo M L, J H Chen, Li J, B Tao, S H Yao. Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite [J]. Anal. Chim. Acta, 2005, 532(1):71~77.
    [5] M Umana, J Waller. Protein-modified electrodes. The glucose oxidase/polypyrrole system, [J]. Anal. Chem., 1986, 58(14):2979~2983.
    [6] X H Kang, Z B Mai, X Y Zou, P X Cai, J Y Mo. Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid [J]. Talanta, 2008, 74(4):879~886.
    [7] Y Miao, L S Chia, N K Goh, S N Tan. Amperometric Glucose Biosensor Based on Immobilization of Glucose Oxidase in Chitosan Matrix Cross-Linked with Glutaraldehyde [J]. Electroanalysis, 2001, 13(4):347~349.
    [8] R Shacham, D Avnir, D Mandler. Electrodeposition of Methylated Sol-Gel Films onConducting Surfaces [J]. J. Adv. Mater. 1999, 11(5):384~388.
    [9] P N Deepa, M Kanungo, G Claycomb, P M A Sherwood, M Collinson Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design [J]. Anal. Chem., 2003, 75:5399~5405.
    [10] X L Luo, J J Xu, J L Wang, H Y Chen. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application[J]. Chem.Commun, 2005, 16:2169~2171.
    [11] S Hrspovic, Y L Liu, K B Male, J H T Luong. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes [J]. Anal. Chem., 2004,76(4):1083~1088.
    [12] X L Luo, J J Xu, Y Du, H Y Chen. A glucose biosensor based on chitosan-glucose oxidase-gold nanoparticles biocomposite formed by one-step electrodeposition [J]. Anal. Biochem., 2004, 334(2):284~289.
    [13] C Malitesta, F Palmisano, L Torsi, P G Zambonin. Glucose Fast-Response Amperometric Sensor Based on Glucose Oxidase Immobilized in an Electropolymerized Poly (o-phenylenediamine) Film [J]. Anal. Chem., 1990, 62:2735~2740.
    [14] Z E Zhang, H Y Liu, J Q Deng. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode [J]. Anal. Chem., 1996, 68:1632~1638.
    [15] B Y Wu, S H Hou, F Yin, J Li, Z X Zhao, J D Huang, Q Chen. Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron [J]. Biosens. Bioelectron., 2007, 22:838~844.
    [16] M G Zhang, A Smith, W Gorski. Carbon nanotube–chitosan system for electrochemical sensing based on dehydrogenase enzymes[J]. Anal.Chem., 2004, 76(17):5045~5050.
    [17] Q F Shi, Q B Li, D Shan, Q Fan, H G Xue. Biopolymer-clay nanoparticles composite system (Chitosan-laponite) for electrochemical sensing based on glucose oxidase [J]. Mate. Sci. Eng. C, 2008, 28(8):1372~1375.
    [18] R S Martin, K L Ratziaf, B H Huyn. In-Channel Electrochemical Detection for Microchip Capillary Electrophoresis Using an Electrically Isolated Potentiostat [J]. Anal. Chem., 2002, 74:1136~1143.
    [19] S C Tsang, Y K Chen, M L H Green. A simple chemical method of opening and filling carbon nanotubes [J]. Nature, 1994, 372:159~162.
    [20] R M Lago, S C Tsang, M L H Green, et al. Filling carbon nanotubes with small palladium metal crystallites:the effect of surface acid groups[J]. Chem. Commu.,1995,13:1355-1356.
    [21] S Hrapovic, J H T Luong. Picoamperometric Detection of Glucose at Ultrasmall Platinum-Based Biosensors: Preparation and Characterization[J]. Anal. Chem., 2003, 75:3308~3315.
    [22] F R Shu, G S Wilson. Rotating ring-disk enzyme electrode for surface catalysis studies[J]. Anal.Chem., 1976, 48:1679~1689.
    [23]朱玉奴,彭图治,李建平.碳纳米管负载铂颗粒酶电极葡萄糖传感器[J].分析化学, 2004, 10:1299~1303.
    [1] N P Evmiridis, N K Thanasoulias, A G Vlessidis. Determination of glucose and fructose in mixtures by a kinetic method with chemiluminescence detection[J]. Anal. Chim. Acta. 1999, 398(2-3):191~203.
    [2] Z Jin, R Chen, L A Colon. Determination of Glucose in Submicroliter Samples by CE-LIFUsing Precolumn or On-Column Enzymatic Reactions [J]. Anal. Chem., 1997, 69:1326~133.
    [3] I Rzygalinski, E Pobozy, R Drewnowska, M Trojanowicz. Enzymatic in-capillary derivatization for glucose determination by electrophoresis with spectrophotometric detection[J]. Electrophoresis, 2008, 29:1741~1748.
    [4] X Y Wang, Y Chen. Determination of carbohydrates as their p-sulfophenylhydrazones by capillary zone electrophoresis[J]. Carbohydr. Res., 2001, 332:191~196.
    [5] Y. Lv, Z Zhang, F Chen. Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents[J]. Talanta 2003, 59:571~576.
    [6] X Y Wang, Q Wang, Y Chen, H W Han. Determination of carbohydrates as their 3-aminophthalhydrazide derivatives by capillary zone electrophoresis with on-line chemiluminescence detection[J]. J. Chromatogr. A., 2003, 992:181~191.
    [7] N E Hebert, W G Kuhr, S A Brazill. Microchip Capillary Electrophoresis Coupled to Sinusoidal Voltammetry for the Detection of Native Carbohydrates[J]. Electrophoresis, 2002, 23:3750~3759.
    [8] Y H Cao, Y Wang, X L Chen , J N Ye. Study on sugar profile of rice durng ageing by Capillary Electrophoresis with Electrochemical Detection[J]. Food Chem., 2004, 86:131~136.
    [9] H L Lee, S C Chen. Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum[J]. Talanta, 2004, 64:750~757.
    [10] Y Du, J L Yan, W H Zhou, X Y Yang, E K Wang. Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips [J]. Electrophoresis, 2004, 25:3853~3859.
    [11] H L Lee, S C Chen. Microchip capillary electrophoresis with amperometric detection for several carbohydrates [J]. Talanta 2004, 64:210~216.
    [12] R Wilke, S Büttgenbach. A micromachined capillary electrophoresis chip with fully integrated electrodes for separation and electrochemical detection[J]. Biosens. Bioelectron., 2003, 19:149~153.
    [13] J Wang, M P Chatrathi, G E Collins. Simultaneous microchip enzymatic measurements of blood lactate and glucose[J]. Anal. Chim. Acta, 2007, 585:11~16.
    [14] Z E Rassi, Y Mechref. Recent advances in capillary electrophoresis of carbohydrates [J]. Electrophoresis, 1996, 17:275~301.
    [15] Y Zhang, H B Zhong, C C Cui, X L Wang. Glucose Biosensor Based on SWNTs–Glucose Oxidase–Chitosan Biocomposite at Platinized Au Electrode [J]. Chem. Bull. 2009, 72:1116~1120.
    [16] C Niu, E K Sichel, R Hoch, D Moy, H Tennent. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Appl. Phys. Lett., 1997, 70(11):1480~1482.
    [17] Z E Zhang, H Y Liu, J Q Deng. A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode [J]. Anal. Chem., 1996, 68:1632~1638.
    [18] R Fernandes, L Q Wu, T H Chen, H Yi, G W Rubloff, R Ghodssi, W E Bentley, G F Payne, Electrochemically-Induced Deposition of a Polysaccharide Hydrogel onto a Patterned Surface [J]. Langmuir, 2003,19:4058~4062.
    [19] C Malitesta, F Palmisano, L Torsi, P G Zambonin. Glucose Fast-Response Amperometric Sensor Based on Glucose Oxidase Immobilized in an Electropolymerized Poly (o-phenylenediamine) Film[J]. Anal. Chem., 1990, 62:2735~2740.
    [20] M J O’Connell, P Boul, L M Ericson, C Huffman, Y Wang, E Haroz, C Kuper, J Tour, K D Ausman, R E Smalley. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping [J]. Chem. Phys. Lett. 2001, 342(3-4):265~271.
    [21] H Chen, Y L Yu, Z N Xia, S Y Tang, X J Mu, S Long. The fabrication and evaluation of inline coupling of microdialysis with capillary electrophoresis and its application in the determination of blood glucose[J]. Electrophoresis, 2006, 27:4182~4187.
    [22] Y Q Dai, K K Shiu. Glucose Biosensor based on Multi-Walled Carbon Nanotube Modified Glassy Carbon Electrode[J].Electroanalysis, 2004, 16(20):1697~1703.
    [23] S Hrapovic, J H T Luong. Picoamperometric Detection of Glucose at Ultrasmall Platinum-Based Biosensors: Preparation and Characterization [J]. Anal. Chem., 2003, 75:3308~3315.
    [24] S Hrspovic, Y L Liu, K B Male, J H T Luong. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes[J]. Anal.Chem., 2004, 76:1083~1088.
    [1] S Inoue, S Kawanishi. Hydroxyl Radical Production and Human DNA Damage Induced by Ferric Nitrilotracetate and Hydrogen Peroxide[J]. Cancer Res., 1987, 47:6522~6527.
    [2]赵保路.氧自由基和天然抗氧化剂[M ].北京:科学出版社, 1999: 9.
    [3]叶锦霞,王岚,杨滨,梁日欣.红花水提物对乳鼠心肌细胞H2O2所致损伤的保护作用及ESR谱研究[J].中国实验方剂学杂志, 2010, 16(2)56~59.
    [4] X C Gong, Q L Li, K H Xu, X Liu, H M Li, Z Z Chen, L L Tong, Btang, H B Zhong. A new route for simple and rapid determination of hydrogen peroxide in RAW264.7 macrophages by microchip electrophoresis[J]. Electrophoresis, 2009, 30(11):1983~1990.
    [5] A Radschuweit, H H Rüttinger, P Nuhn. Capillary zone electrophoresis with electrochemical detection-a simple and effective method to analyze oxygen-consuming and peroxide-forming processes[J]. J. Chromatogr. A, 2001, 937:127~134.
    [6] H H Rüttinger, A Radschuweit. Determination of peroxides by capillary zone electrophoresis with amperometric detection[J]. J. Chromatogr. A, 2000, 868(1):127~134.
    [7] J Wang, A Escarpa, M Pumera, J Feldman. Capillary electrophoresis- electrochemistry microfluidic system for the determination of organic peroxides[J]. J. Chromatogr.A, 2002, 952:249~254.
    [8] O Schmitz, S Gab. Separation of isomeric hydroperoxides of unsaturated fatty acids by CE[J]. J. Chromatogr. A 1997, 767:249~253.
    [9] O Schmitz, D Melchior, W Schuhmann, S Gab. Postcolun derivatisation for selective laser-inuced fluorescence detection in micellar electrokinetic chromatography of fatty acid hydroperoxides[J]. J. Chromatogr. A, 1998, 814:261~265.
    [10] H Engelhardt, W Beck, T Schmitt, Kapillarelektrophorese-Methoden. und Moglichkeiten, Vieweg verlag, Braunschweig/Wiesbaden, 1994, 94.
    [11] P A Tanner, A Y S Wong. Spectrophotometric determination of hydrogen peroxide in rainwater[J]. Anal. Chim. Acta., 1998, 370(1-2):279~287.
    [12] Y Hu, Z Zhang, C Yang. The determination of peroxides generated from cigarette smoke with an ultrasensitive and highly selective chemiluminescence method[J]. Anal. Chim., 2007, 601(1):95~100.
    [13] D Srikum, E W Miller, D W Domaille, et al. An ICT-Based Approach to Ratiometric Fluorescence Imaging of hydrogen peroxide in Living Cells[J]. J. Am. Chem. Soc., 2008, 130:4596~4597.
    [14] R Toniolo, P Geatti, G Bontempelli, G Schiavon. Amperometric monitoring of hydrogen peroxide in workplace atmospheres by electrodes supported on ion-exchange membranes[J]. Electroanal Chem, 2001, 514(1-2):123~128.
    [15] S Alpat, S K Alpat, Z Dursun, A Telefoncu. Development of a new biosensor for mediatorless voltammetric determination of hydrogen peroxide and its application in milk samples[J]. J. Appl. Electrochem., 2009, 39:971~977.
    [16] R T Kachoosangi, M M Musameh, I A Yousef, J M Yousef, S M. Kanan, L Xiao, S G. Davies, A Russell, R G Compton. Carbon Nanotube-Ionic Liquid Composite Sensors and Biosensors[J]. Anal. Chem. 2009, 81:435~442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700