基于氮杂并苯与氮杂石墨烯的光电材料的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕有机半导体材料的合成与器件应用开展。首先研究了在氮杂并苯类分子的合成与器件制备;在此基础上,将工作拓展到氮杂石墨烯及类似物的合成与表征,探讨了其在荧光标记与催化领域的应用。
     主要研究内容包括:
     1.在本组前期研究成果的基础上,设计并合成了一系列氮杂并苯衍生物,意在研究其电学性质(场效应迁移率)。由于分子热稳定性很差,无法通过常规方法进行真空镀膜,探索了溶液法制备有机薄膜的技术。
     2.将石墨烯材料制备成独立式的纸电极,将其作为MoS2的支撑材料,利用溶剂热法在其表面修饰MoS2,研究其在催化产氢方面的性能。同时,将三辛基磷(TOP)作为表面活性剂,对MoS2的形貌进行调控,比较不同形貌下催化活性的高低。
Organic acenes, composing of sp2carbon atoms, have attracted increasing attentions because of its cheapness and impressive performance. In recent years, it is found that the stacking mode can be modulated by introducing substituents into the skeleton of acenes, enhancing π-π interaction, resulting in increase of mobilities. The HOMO and LUMO level can also be lowered down by importing nitrogen atoms, improving the stability of the molecules.
     The first part of the thesis focuses on the design and synthesis a series of N-heteroacene derivatives. The aim is to study the electrical properties, ie. field effect mobility. Because vacuum coating cannot be carried out due to the poor thermal stability of the molecules, solution process for organic thin film was explored for these materials.
     Molybdenum disulphide (MoS2), possesses lamellar structure similar to graphene. It has been considered as an excellent catalyst for hydrogen evolution reaction (HER). Under the optimal morphology, the catalytic performance is comparable to that of platinum catalyst. At the same time, trioctylphosphine (TOP) was used as the surfactant to control the morphology to compare the catalytic performance under different morphology.
引文
[1]Horowitz G., Fichou D., Peng X. Z. and Gamier F., THIN-FILM TRANSISTORS BASED ON ALPHA-CONJUGATED OLIGOMERS, Synthetic Metals,1991(41):1127-1130.
    [2]Rang Z. L., Nathan M. I., RudenP. P., Podzorov V., Gershenson M. E., Newman C. R. and Frisbie C. D., Hydrostatic pressure dependence of charge carrier transport in single-crystal rubrene devices, Applied Physics Letters,2005(86):
    [3]Brown A. R., Pomp A., deLeeuw D. M., Klaassen D. B. M., Havinga E. E., Herwig P. and Mullen K., Precursor route pentacene metal-insulator-semiconductor field-effect transistors, Journal of Applied Physics,1996(79):2136-2138.
    [4]Brown A. R., Pomp A., Hart C. M. and Deleeuw D. M., LOGIC GATES MADE FROM POLYMER TRANSISTORS AND THEIR USE IN RING OSCILLATORS, Science,1995(270): 972-974.
    [5]Herwig P. T. and Mullen K., A soluble pentacene precursor:Synthesis, solid-state conversion into pentacene and application in a field-effect transistor, Advanced Materials, 1999(11):480-483.
    [6]Afzali A., Dimitrakopoulos C. D. and Breen T. L., High-performance, solution-processed organic thin film transistors from a novel pentacene precursor, Journal of the American Chemical Society,2002(124):8812-8813.
    [7]Payne M. M., Parkin S. R., Anthony J. E., Kuo C. C. and Jackson T. N., Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm2/Vs, Journal of the American Chemical Society,2005(127):4986-4987.
    [8]Horowitz G., Peng X. Z., Fichou D. and Gamier F., ROLE OF THE SEMICONDUCTOR INSULATOR INTERFACE IN THE CHARACTERISTICS OF PI-CONJUGATED-OLIGOMER-BASED THIN-FILM TRANSISTORS, Synthetic Metals, 1992(51):419-424.
    [9]Gamier F., Yassar A., Hajlaoui R., Horowitz G., Deloffre F., Servet B., Ries S. and Alnot P., MOLECULAR ENGINEERING OF ORGANIC SEMICONDUCTORS-DESIGN OF SELF-ASSEMBLY PROPERTIES IN CONJUGATED THIOPHENE OLIGOMERS, Journal of the American Chemical Society,1993(115):8716-8721.
    [10]Ichikawa M., Yanagi H., Shimizu Y., Hotta S., Suganuma N., Koyama T. and Taniguchi Y., Organic field-effect transistors made of epitaxially grown crystals of a thiophene/phenylene co-oligomer, Advanced Materials,2002(14):1272-1275.
    [11]McCullough R. D., The chemistry of conducting polythiophenes, Advanced Materials, 1998(10):93-116.
    [12]Facchetti A., Deng Y., Wang A. C., Koide Y., Sirringhaus H., Marks T. J. and Friend R. H., Tuning the semiconducting properties of sexithiophene by alpha,omega-substitution-alpha,omega-diperfluorohexylsexithiophene:The first n-type sexithiophene for thin-film transistors, Angewandte Chemie-International Edition,2000(39):4547-4551.
    [13]FacchettiA., Mushrush M., Yoon M. H., Hutchison G. R., Ratner M. A. and Marks T. J., Building blocks for n-type molecular and polymeric electronics. Perfluoroalkyl-versus alkyl-functionalized oligothiophenes (nT; n=2-6). Systematics of thin film microstructure, semiconductor performance, and modeling of majority charge injection in field-effect transistors, Journal of the American Chemical Society,2004(126):13859-13874.
    [14]Yoon M. H., DiBenedetto S. A., Facchetti A. and Marks T. J., Organic thin-film transistors based on carbonyl-functionalized quaterthiophenes:High mobility N-channel semiconductors and ambipolar transport, Journal of the American Chemical Society,2005(127): 1348-1349.
    [15]Ando S., Murakami R., Nishida J., Tada H., Inoue Y., Tokito S. and Yamashita Y., n-Type organic field-effect transistors with very high electron mobility based on thiazole oligomers with trifluoromethylphenyl groups, Journal of the American Chemical Society, 2005(127):14996-14997.
    [16]Rademacher A., Markle S. and Langhals H., SOLUBLE PERYLENE FLUORESCENT DYES WITH HIGH PHOTOSTABILITY, Chemische Berichte-Recueil,1982(115):2927-2934.
    [17]Katz H. E., Johnson J., Lovinger A. J. and Li W. J., Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors:Structural variation and thiol-enhanced gold contacts, Journal of the American Chemical Society,2000(122):7787-7792.
    [18]Katz H. E., Lovinger A. J., Johnson J., Kloc C., Siegrist T., Li W., Lin Y. Y. and Dodabalapur A., A soluble and air-stable organic semiconductor with high electron mobility, Nature,2000(404):478-481.
    [19]Gsanger M., Oh J. H., Konemann M., Hoffken H. W., Krause A. M., Bao Z. N. and Wurthner F., A Crystal-Engineered Hydrogen-Bonded Octachloroperylene Diimide with a Twisted Core:An n-Channel Organic Semiconductor, Angewandte Chemie-International Edition,2010(49): 740-743.
    [20]Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V. and Firsov A. A., Electric field effect in atomically thin carbon films, Science, 2004(306):666-669.
    [21]Brody H., GRAPHENE, Nature,2012(483):S29-S29.
    [22]Ponomarenko L. A., Schedin F., Katsnelson M. I., Yang R., Hill E. W., Novoselov K. S. and Geim A. K., Chaotic dirac billiard in graphene quantum dots, Science,2008(320):356-358.
    [23]Cai R., DuY. P., Zhang W. Y, Tan H. T., Zeng T., Huang X., Yang H. F., Chen C. P., Liu H., Zhu J. X., Peng S. J., Chen J., Zhao Y. L., Wu H. C., Huang Y. Z., Xu R., Lim T. M., Zhang Q. C., Zhang H. and Yan Q. Y., Synthesis of Porous Amorphous FePO4 Nanotubes and Their Lithium Storage Properties, Chemistry-a European Journal,2013(19): 1568-1572.
    [24]Zhou X. J., Zhang Y., Wang C., Wu X. C., YangY. Q., Zheng B., Wu H. X., Guo S. W. and Zhang J. Y., Photo-Fenton Reaction of Graphene Oxide:A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage, Acs Nano,2012(6):6592-6599.
    [25]Pan D. Y., Zhang J. C., Li Z. and Wu M. H., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots,Adv. Mater.,2010(22):734-738.
    [26]Dong Y. Q., Chen C. Q., Zheng X. T., Gao L. L., Cui Z. M., Yang H. B., Guo C. X., Chi Y. W. and Li C. M., One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black, J. Mater. Chem.,2012(22): 8764-8766.
    [27]Gupta V., Chaudhary N., Srivastava R., Sharma G. D., Bhardwaj R. and Chand S., Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices, J. Am. Chem. Soc., 2011(133):9960-9963.
    [28]Tang L. B., Ji R. B., Cao X. K., Lin J. Y., Jiang H. X., Li X. M., Teng K. S., Luk C. M., Zeng S. J., Hao J. H. and Lau S. P., Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots, Acs Nano,2012(6):5102-5110.
    [29]Zhao H. M., Chang Y. Y., Liu M., Gao S., Yu H. T. and Quan X., A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots, Chemical Communications,2013(49):234-236.
    [30]Zhu J. X., Lu Z. Y., Oo M. O., Hng H. H., Ma J., Zhang H. and Yan Q. Y., Synergetic approach to achieve enhanced lithium ion storage performance in ternary phased SnO2-Fe2O3/rGO composite nanostructures, Journal of Materials Chemistry,2011(21): 12770-12776.
    [31]Zhu J. X., Sun K., Sim D. H., Xu C., Zhang H., Hng H. H. and Yan Q., Nanohybridization of ferrocene clusters and reduced graphene oxides with enhanced lithium storage capability, Chemical Communications,2011(47):10383-10385.
    [32]Zhuo S. J., Shao M. W. and Lee S. T., Upconversion and Downconversion Fluorescent Graphene Quantum Dots:Ultrasonic Preparation and Photocatalysis, Acs Nano,2012(6): 1059-1064.
    [33]Xin G., Wang H., Kim N., Hwang W., Cho S. M. and Chae H., Investigation of charge-transfer complexes formation between photoluminescent graphene oxide and organic molecules, Nanoscale,2012(4):405-407.
    [34]Ju S. Y., Kopcha W. P. and Papadimitrakopoulos F., Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization, Science,2009(323): 1319-1323.
    [35]Welsher K., Liu Z., Sherlock S. P., Robinson J. T., Chen Z., Daranciang D. and Dai H. J., A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice, Nature Nanotechnology,2009(4):773-780.
    [36]Xu X. Y., Ray R., Gu Y.L., Ploehn H. J., Gearheart L., Raker K. and Scrivens W. A., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, Journal of the American Chemical Society.2004(126):12736-12737.
    [37]Li Y.. Hu Y., Zhao Y., Shi G. Q., Deng L. E., Hou Y. B. and Qu L. T., An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics, Adv. Mater.,2011(23):776-780.
    [38]Li L. L., Ji J., Fei R., Wang C. Z., Lu Q., Zhang J. R., Jiang L. P. and Zhu J. J., A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots, Adv. Funct. Mater.,2012(22):2971-2979.
    [39]Yan X., Li Q. Q. and Li L. S., Formation and Stabilization of Palladium Nanoparticles on Colloidal Graphene Quantum Dots, Journal of the American Chemical Society,2012(134): 16095-16098.
    [40]Yan X., Cui X., Li B. S. and Li L. S., Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics, Nano Letters,2010(10):1869-1873.
    [41]DongY. Q., Shao J. W., Chen C. Q., Li H., Wang R. X., Chi Y. W., Lin X. M. and Chen G. N., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon,2012(50):4738-4743.
    [42]DuY. P., Yin Z. Y., Rui X. H., Zeng Z. Y, Wu X. J., Liu J. Q., Zhu Y. Y, Zhu J. X., Huang X., Yan Q. Y. and Zhang H., A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries, Nanoscale,2013(5):1456-1459.
    [43]Liu R. L., Wu D. Q., Feng X. L. and Mullen K., Bottom-Up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology, J. Am. Chem. Soc, 2011(133):15221-15223.
    [44]Loh K. P., Bao Q. L., Eda G. and Chhowalla M., Graphene oxide as a chemically tunable platform for optical applications, Nature Chemistry,2010(2):1015-1024.
    [45]Peng J., Gao W, Gupta B. K., Liu Z., Romero-Aburto R., Ge L. H., Song L., Alemany L. B., Zhan X. B., Gao G. H., Vithayathil S. A., Kaipparettu B. A., Marti A. A., Hayashi T., Zhu J. J. and Ajayan P. M., Graphene Quantum Dots Derived from Carbon Fibers, Nano Letters,2012(12):844-849.
    [46]Lin L. X. and Zhang S. W., Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes, Chemical Communications,2012(48):10177-10179.
    [47]Shinde D. B. and Pillai V. K., Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes, Chemistry-a European Journal,2012(18): 12522-12528.
    [48]Chen W. F., Zhu Z. Y, Li S. R., Chen C. H. and Yan L. F., Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries, Nanoscale,2012(4):2124-2129.
    [49]Zhu Y. W., Murali S., Stoller M. D., Velamakanni A., Piner R. D. and Ruoff R. S., Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors, Carbon, 2010(48):2118-2122.
    [50]Lu J., Yang J. X., Wang J. Z., Lim A. L., Wang S. and Loh K. P., One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids, Acs Nano,2009(3):2367-2375.
    [51]Zheng L. Y, Chi Y. W., Dong Y. Q., Lin J. P. and Wang B. B., Electrochemiluminescence of Water-Soluble Carbon Nanocrystals Released Electrochemically from Graphite, Journal of the American Chemical Society,2009(131):4564-4565.
    [52]Zhou J. G., Booker C., Li R. Y., Zhou X. T., Sham T. K., Sun X. L. and Ding Z. F., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs), Journal of the American Chemical Society,2007(129):744-745.
    [53]Yan X., Cui X. and Li L. S., Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size, Journal of the American Chemical Society,2010(132):5944-5945.
    [54]Yan X.. Li B. S., Cui X., Wei Q. S., Tajima K. and Li L. S., Independent Tuning of the Band Gap and Redox Potential of Graphene Quantum Dots, Journal of Physical Chemistry Letters,2011(2):1119-1124.
    [55]Zhu S. J., Zhang J. H., Qiao C. Y., Tang S. J., Li Y. F., Yuan W. J., Li B., Tian L., Liu F., Hu R., Gao H. N., Wei H. T., Zhang H., Sun H. C. and Yang B., Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chemical Communications,2011(47):6858-6860.
    [56]Luo Z. T., Lu Y., Somers L. A. and Johnson A. T. C., High Yield Preparation of Macroscopic Graphene Oxide Membranes, Journal of the American Chemical Society,2009(131): 898-899.
    [57]Pappenfus T. M., Chesterfield R. J., Frisbie C. D., Mann K. R., Casado J., Raff J. D. and Miller L. L., A pi-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor, Journal of the American Chemical Society,2002(124):4184-4185.
    [58]Eda G., Lin Y. Y., Mattevi C., Yamaguchi H., Chen H. A., Chen I. S., Chen C. W. and Chhowalla M., Blue Photoluminescence from Chemically Derived Graphene Oxide, Advanced Materials,2010(22):505-509.
    [59]Liu H. P., Ye T. and Mao C. D., Fluorescent carbon nanoparticles derived from candle soot, Angewandte Chemie-International Edition,2007(46):6473-6475.
    [60]Tetsuka H., Asahi R., Nagoya A., Okamoto K., Tajima I., Ohta R. and Okamoto A., Optically Tunable Amino-Functionalized Graphene Quantum Dots, Advanced Materials,2012(24): 5333-5338.
    [61]Li Q. Q., Zhang S., Dai L. M. and Li L. S., Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction, J. Am. Chem. Soc.,2012(134):18932-18935.
    [62]Li M., Wu W. B., Ren W. C., Cheng H. M., Tang N. J., Zhong W. and Du Y. W., Synthesis and upconversion luminescence of N-doped graphene quantum dots, Applied Physics Letters,2012(101):
    [63]Qian Z. S., Zhou J., Chen J. R., Wang C., Chen C. C. and Feng H., Nanosized N-doped graphene oxide with visible fluorescence in water for metal ion sensing, Journal of Materials Chemistry,2011(21):17635-17637.
    [64]Wang D., Wang L., Dong X. Y., Shi Z. and Jin J., Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection, Carbon,2012(50):2147-2154.
    [65]Zhao J., Chen G. F., Zhu L. and Li G. X., Graphene quantum dots-based platform for the fabrication of electrochemical biosensors, Electrochemistry Communications,2011(13):31-33.
    [66]Vignais P. M., Billoud B. and Meyer J., Classification and phylogeny of hydrogenases, Fems Microbiology Reviews,2001(25):455-501.
    [67]Artero V. and Fontecave M., Some general principles for designing electrocatalysts with hydrogenase activity, Coordination Chemistry Reviews,2005(249):1518-1535.
    [68]Cook T. R., Dogutan D. K., Reece S. Y., Surendranath Y., Teets T. S. and Nocera D. G., Solar Energy Supply and Storage for the Legacy and Non legacy Worlds, Chemical Reviews, 2010(110):6474-6502.
    [69]DuBois M. R. and DuBois D. L., The roles of the first and second coordination spheres in the design of molecular catalysts for H2 production and oxidation, Chemical Society Reviews, 2009(38):62-72.
    [70]Tard C. and Pickett C. J., Structural and Functional Analogues of the Active Sites of the Fe-, NiFe-, and FeFe-Hydrogenases, Chemical Reviews,2009(109):2245-2274.
    [71]Appel A. M., DuBois D. L. and DuBois M. R., Molybdenum-sulfur dimers as electrocatalysts for the production of hydrogen at low overpotentials, Journal of the American Chemical Society,2005(127):12717-12726.
    [72]Spalvins T., A REVIEW OF RECENT ADVANCES IN SOLID FILM LUBRICATION, Journal of Vacuum Science & Technology α-Vacuum Surfaces and Films,1987(5):212-219.
    [73]Albertini L. B., Angelo A. C. D. and Gonzalez E. R., A NICKEL MOLYBDENITE CATHODE FOR THE HYDROGEN EVOLUTION REACTION IN ALKALINE MEDIA, Journal of Applied Electrochemistry,1992(22):888-892.
    [74]Jaegermann W. and Tributsch H., INTERFACIAL PROPERTIES OF SEMICONDUCTING TRANSITION-METAL CHALCOGENIDES, Progress in Surface Science, 1988(29):1-167.
    [75]Nidola A. and Schira R., NEW SULFIDE COATINGS FOR HYDROGEN EVOLUTION IN KOH ELECTROLYSIS, International Journal of Hydrogen Energy,1986(11):449-454.
    [76]Sobczynski A., Yildiz A., Bard A. J., Campion A., Fox M. A., Mallouk T., Webber S. E. and White J. M., TUNGSTEN DISULFIDE-A NOVEL HYDROGEN EVOLUTION CATALYST FOR WATER DECOMPOSITION, Journal of Physical Chemistry,1988(92): 2311-2315.
    [77]Helveg S., Lauritsen J. V., Laegsgaard E., Stensgaard I., Norskov J. K., Clausen B. S., Topsoe H. and Besenbacher F., Atomic-scale structure of single-layer MoS2 nanoclusters, Physical Review Letters,2000(84):951-954.
    [78]Jaramillo T. F., Jorgensen K. P., Bonde J., Nielsen J, H., Horch S. and Chorkendorff I., Identification of active edge sites for electrochemical H-2 evolution from MoS2 nanocatalysts, Science,2007(317):100-102.
    [79]Lauritsen J. V., Bollinger M. V., Laegsgaard E., Jacobsen K. W., Norskov J. K., Clausen B. S., Topsoe H. and Besenbacher F., Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts, Journal of Catalysis, 2004(221):510-522.
    [80]Daage M. and Chianelli R. R., STRUCTURE-FUNCTION RELATIONS IN MOLYBDENUM SULFIDE CATALYSTS-THE RIM-EDGE MODEL, Journal of Catalysis, 1994(149):414-427.
    [81]Bonde J., Moses P. G., Jaramillo T. F., Norskov J. K. and Chorkendorff I., Hydrogen evolution on nano-particulate transition metal sulfides, Faraday Discussions,2008(140):219-231.
    [82]Brorson M., Carlsson A. and Topsoe H., The morphology of MoS2, WS2, Co-Mo-S, Ni-Mo-S and Ni-W-S nanoclusters in hydrodesulfurization catalysts revealed, Catalysis Today, 2007(123):31-36.
    [83]Laperriere G., Marsan B. and Belanger D., PREPARATION AND CHARACTERIZATION OF ELECTRODEPOSITED AMORPHOUS MOLYBDENUM SULFIDE, Synthetic Metals,1989(29):F201-F206.
    [84]Belanger D., Laperriere G. and Marsan B., THE ELECTRODEPOSITION OF AMORPHOUS MOLYBDENUM SULFIDE, Journal of Electroanalytical Chemistry,1993(347): 165-183.
    [85]Ponomarev E. A. , NeumannSpallart M., Hodes G. and LevyClement C., Electrochemical deposition of MoS2 thin films by reduction of tetrathiomolybdate, Thin Solid Films,1996(280):86-89.
    [86]Albu-Yaron A., Levy-Clement C. and Hutchison J. L., A study on MoS2 thin films electrochemically deposited in ethylene glycol at 165 degrees C, Electrochemical and Solid State Letters,1999(2):627-630.
    [87]Ponomarev E. A., AlbuYaron A., Tenne R. and LevyClement C., Electrochemical deposition of quantized particle MoS2 thin films, Journal of the Electrochemical Society, 1997(144):L277-L279.
    [88]Roy P. and Srivastava S. K., Chemical bath deposition of MoS2 thin film using ammonium tetrathiomolybdate as a single source for molybdenum and sulphur, Thin Solid Films,2006(496): 293-298.
    [89]Merki D. and Hu X. L., Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts, Energy & Environmental Science,2011(4):3878-3888.
    [90]Byskov L. S., Norskov J. K., Clausen B. S. and Topsoe H., DFT calculations of unpromoted and promoted MoS(2)-based hydrodesulfurization catalysts, Journal of Catalysis, 1999(187):109-122.
    [91]Lauritsen J. V., Helveg S., Laegsgaard E., Stensgaard I., Clausen B. S., Topsoe H. and Besenbacher E., Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts, Journal of Catalysis,2001(197):1-5.
    [92]Hinnemann B., Moses P. G., Bonde J., Jorgensen K. P., Nielsen J. H., Horch S., Chorkendorff I. and Norskov J. K., Biornimetic hydrogen evolution:MoS2 nanoparticles as catalyst for hydrogen evolution, Journal of the American Chemical Society,2005(127): 5308-5309.
    [93]Geim A. K. and Novoselov K. S., The rise of graphene, Nat. Mater.,2007(6):183-191.
    [94]Li X. L., Wang X. R., Zhang L., Lee S. W. and Dai H. J., Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science,2008(319):1229-1232.
    [95]Sun X. M., Liu Z., Welsher K., Robinson J. T., Goodwin A., Zaric S. and Dai H. J., Nano-Graphene Oxide for Cellular Imaging and Drug Delivery, Nano Res.,2008(1):203-212.
    [96]Liu Z., Robinson J. T., Sun X. M. and Dai H. J., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs, J. Am. Chem. Soc.,2008(130):10876-10877.
    [97]Shen J. H., Zhu Y. H., Yang X. L., Zong J., Zhang J. M. and Li C. Z., One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light, New J. Chem.,2012(36):97-101.
    [98]Lee S. U., Belosludov R. V., Mizuseki H. and Kawazoe Y., Designing Nanogadgetry for Nanoelectronic Devices with Nitrogen-Doped Capped Carbon Nanotubes, Small,2009(5): 1769-1775.
    [99]Liu H. T., Liu Y. Q. and Zhu D. B., Chemical doping of graphene, J. Mater. Chem., 2011(21):3335-3345.
    [100]Li Y. F., Zhou Z., Shen P. W. and Chen Z. F., Spin Gapless Semiconductor-Metal-Half-Metal Properties in Nitrogen-Doped Zigzag Graphene Nanoribbons, Acs Nano,2009(3):1952-1958.
    [101]Zhang J. S., Sun J. H., Maeda K., Domen K., Liu P., Antonietti M., Fu X. Z. and Wang X. C., Sulfur-mediated synthesis of carbon nitride:Band-gap engineering and improved functions for photocatalysis, Engerg. Environ. Sci.,2011(4):675-678.
    [102]YangY. H., Cui J. H., Zheng M. T., Hu C. F., Tan S. Z., Xiao Y., Yang Q. and Liu Y. L., One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan, Chem. Commun.,2012(48):380-382.
    [103]Li N., Liang X. F., Wang L. L., Li Z. H., Li P. Y., Zhu Y. H. and Song J., Biodistribution study of carbogenic dots in cells and in vivo for optical imaging, J. Nanopart. Res., 2012(14,1177-1186.):
    [104]Huang X., Zeng Z. Y. and Zhang H., Metal dichalcogenide nanosheets:preparation, properties and applications, Chemical Society Reviews,2013(42):1934-1946.
    [105]LuoY. S., Luo J. S., Jiang J., Zhou W.W., Yang H. P., Qi X.Y., Zhang H., Fan H. J., Yu D. Y. W., Li C. M. and Yu T., Seed-assisted synthesis of highly ordered TiO2@alpha-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications, Energy & Environmental Science,2012(5):6559-6566.
    [106]LuoY. S., Luo J. S., Zhou W.W., QiX.Y, Zhang H., Yu D.Y. W., Li C.M., Fan H. J. and Yu T., Controlled synthesis of hierarchical graphene-wrapped TiO2@Co3O4 coaxial nanobelt arrays for high-performance lithium storage, Journal of Materials Chemistry A,2013(1): 273-281.
    [107]Pumera M., Graphene-based nanomaterials for energy storage, Energy & Environmental Science,2011(4):668-674.
    [108]Zhu J. X., Yin Z. Y, Yang D., Sun T., Yu H., Hoster H. E., Hng H. H., Zhang H. and Yan Q. Y, Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation, Energy Environ. Sci.,2013(6):987-993.
    [109]Zhu J. X., Zhu T., Zhou X. Z., Zhang Y. Y, Lou X. W., Chen X. D., Zhang H., Hng H. H. and Yan Q. Y, Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability, Nanoscale,2011(3):1084-1089.
    [110]Vrubel H., Merki D. and Hu X. L., Hydrogen evolution catalyzed by MoS3 and MoS2 particles, Energy & Environmental Science,2012(5):6136-6144.
    [111]Yin Z. Y, Wang Z., Du Y. P., QiX.Y, Huang Y. Z., Xue C. and Zhang H., Full Solution-Processed Synthesis of All Metal Oxide-Based Tree-like Heterostructures on Fluorine-Doped Tin Oxide for Water Splitting, Advanced Materials,2012(24):5374-5378.
    [112]Hu K. H., Hu X. G., Xu Y. F. and Sun J. D., Synthesis of nano-MoS2/Ti02 composite and its catalytic degradation effect on methyl orange, Journal of Materials Science,2010(45): 2640-2648.
    [113]Nogueira A., Znaiguia R., Uzio D., Afanasiev P. and Berhault G., Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts:Synthesis and HDS catalytic properties, Applied Catalysis a-General,2012(429):92-105.
    [114]Li D. B., Yang C., Zhao N., Qi H. J., Li W. H., Sun Y. H. and Zhong B., The performances of higher alcohol synthesis over nickel modified K2CO3/MoS2 catalyst, Fuel Processing Technology,2007(88):125-127.
    [115]Munoz L. D., Bergel A., Feron D. and Basseguy R., Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode, International Journal of Hydrogen Energy,2010(35):8561-8568.
    [116]Tokash J. C. and Logan B. E., Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells, International Journal of Hydrogen Energy,2011(36):9439-9445.
    [117]Li X. L. and Li Y. D., MoS2 nanostructures:Synthesis and electrochemical Mg2+ intercalation, Journal of Physical Chemistry B,2004(108):13893-13900.
    [118]Wilcoxon J. P., Newcomer P. P. and Samara G. A., Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime, Journal of Applied Physics,1997(81):7934-7944.
    [119]Feldman Y., Wasserman E., Srolovitz D. J. and Tenne R., HIGH-RATE, GAS-PHASE GROWTH OF MoS2 NESTED INORGANIC FULLERENES AND NANOTUBES, Science, 1995(267):222-225.
    [120]Zeng Z. Y., Yin Z. Y., Huang X., Li H., He Q. Y., Lu G., Boey F. and Zhang H., Single-Layer Semiconducting Nanosheets:High-Yield Preparation and Device Fabrication, Angewandte Chemie-International Edition,2011(50):11093-11097.
    [121]He Q. Y., Wu S. X., Yin Z. Y. and Zhang H., Graphene-based electronic sensors, Chemical Science,2012(3):1764-1772.
    [122]Huang X., Qi X. Y., Boey F. and Zhang H., Graphene-based composites, Chemical Society Reviews,2012(41):666-686.
    [123]Huang X., Yin Z. Y., Wu S. X., Qi X. Y., He Q. Y., Zhang Q. C., Yan Q. Y., Boey F. and Zhang H., Graphene-Based Materials:Synthesis, Characterization, Properties, and Applications, Small,2011(7):1876-1902.
    [124]Huang X., Zeng Z. Y., Fan Z. X., Liu J. Q. and Zhang H., Graphene-Based Electrodes, Advanced Materials,2012(24):5979-6004.
    [125]Qi X. Y., Tan C. L., Wei J. and Zhang H., Synthesis of graphene-conjugated polymer nanocomposites for electronic device applications, Nanoscale,2013(5):1440-1451.
    [126]Li Y. G., Wang H. L., Xie L. M., Liang Y. Y., Hong G. S. and Dai H. J., MoS2 Nanoparticles Grown on Graphene:An Advanced Catalyst for the Hydrogen Evolution Reaction, Journal of the American Chemical Society,2011(133):7296-7299.
    [127]Jaramillo T. F., Bonde J., Zhang J. D., Ooi B. L., Andersson K., Ulstrup J. and Chorkendorff I., Hydrogen Evolution on Supported Incomplete Cubane-type Mo3S4 (4+) Electrocatalysts, Journal of Physical Chemistry C,2008(112):17492-17498.
    [128]Chen C.M., Yang Q. H., Yang Y. G., Lv W., Wen Y. F., Hou P. X., Wang M. Z. and Cheng H. M., Self-Assembled Free-Standing Graphite Oxide Membrane, Advanced Materials, 2009(21):3007-3011.
    [129]Abouimrane A., Compton O. C., Amine K. and Nguyen S. T., Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries, Journal of Physical Chemistry C,2010(114):12800-12804.
    [130]Wang C. Y., Li D., Too C. O. and Wallace G. G., Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries, Chemistry of Materials,2009(21): 2604-2606.
    [131]Zhou X. Z., Huang X., Qi X. Y., Wu S. X., Xue C., Boey F. Y. C., Yan Q. Y, Chen P. and Zhang H., In Situ Synthesis of Metal Nanoparticles on Single-Layer Graphene Oxide and Reduced Graphene Oxide Surfaces, Journal of Physical Chemistry C,2009(113): 10842-10846.
    [132]Xiao F., Li Y. Q., Zan X. L., Liao K., Xu R. and Duan H. W., Growth of Metal-Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors, Advanced Functional Materials,2012(22):2487-2494.
    [133]Romero-Rivera R., Camacho A. G., Del Valle M., Alonso G., Fuentes S. and Cruz-Reyes J., HDS of DBT with Molybdenum Disulfide Catalysts Prepared by In Situ Decomposition of Alkyltrimethylammonium Thiomolybdates, Topics in Catalysis,2011(54): 561-567.
    [134]Chang K. and Chen W. X., L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries, Acs Nano, 2011(5):4720-4728.
    [135]Behzadian B., Piron D. L., Fan C. L. and Lessard J., ELECTROCATALYTIC EFFECT ON HYDROGEN EVOLUTION FROM COPPER MATERIALS PLATED FROM A CHLORIDE-CONTAINING BATH, International Journal of Hydrogen Energy,1991(16): 791-796.
    [136]Firmiano E. G. S., Cordeiro M. A. L., Rabelo A. C., Dalmaschio C. J., Pinheiro A. N., Pereira E. C. and Leite E. R., Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst, Chemical Communications,2012(48):7687-7689.
    [137]Kim M. H., Gupta G. and Kim J., Facile solution routes for the syntheses of GeTe nanocrystals, Rsc Advances,2013(3):288-292.
    [138]Chang K. and Chen W. X., In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries, Chemical Communications,2011(47):4252-4254.
    [139]Ma Y.D., Dai Y, Guo M., Niu C. W. and Huang B. B., Graphene adhesion on MoS2 monolayer:An ab initio study, Nanoscale,2011(3):3883-3887.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700