胰高血糖素样多肽-2的重组表达及其对肠道保护作用机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的意义:严重烧伤后造成肠粘膜血流量下降,肠粘膜组织损伤及通透性增加,使肠道屏障功能障碍,造成肠道细菌移位,引发多器官功能障碍,是导致伤后高代谢的重要原因。因此促进严重烧伤后肠道修复,能减轻脏器炎症反应,防止肠源性感染,改善代谢障碍,加快创面愈合,是临床救治重要措施之一。肠道作为人体最大的内分泌器官,其自身分泌许多肠道激素对肠道结构功能起着重要的保护作用,随着近年来对胰高血糖素样多肽-2(Glucagons like peptide 2,GLP-2)认识的不断深入,发现其对肠道有特异性保护作用。且有广泛临床应用前景。
     本研究利用基因重组技术设计构建了GLP-2原核表达载体并诱导表达,初步观察其对烧伤后大鼠肠道及肠上皮细胞的保护作用,利用体外细胞模型,探讨GLP-2促细胞增殖的作用机制及调控因素,为今后临床应用提供理论依据。
     材料与方法:
     1.利用pET31b(+)表达载体,对GLP-2序列进行重组设计,构建表达质粒进行原核表达,优化条件后表达并进行亲和层析纯化、脱盐。溴化氰裂解后行western blot(WB)鉴定,并低温干燥保存。
     2.采用30%TBSAⅢ度烧伤大鼠模型作为体内实验模型,随机分为正常对照组(N);烧伤对照组(C);重组GLP-2治疗组(Gr)及化学合成GLP-2治疗组(G)。检测大鼠伤后第7天肠粘膜通透性,肠粘膜湿重与肠段及躯壳重比,肠粘膜蛋白及肠道病理形态学的变化。RT-PCR及WB检测GLP-2R的表达,利用脂质体基因转染构建稳定表达GLP-2R的Caco-2/GLP-2R(+)细胞作为体外研究模型,随机分为正常对照组(N);缺氧对照组(C);缺氧后重组GLP-2处理组(Gr)及缺氧后化学合成GLP-2处理组(G)。观察不同GLP-2对缺氧后细胞增殖、乳酸脱氢酶及蔗糖酶活性的影响,并检测细胞CDK4及ZO1蛋白表达的变化。
     3.构建caveolin-1/pEGFPN2质粒及体外合成caveolin-1 siRNA后瞬时转染Caco-2/GLP-2R(+)细胞,将细胞分为正常对照组(AN)、缺氧对照组(AC)、缺氧后GLP-2处理组(AG)、caveolin-1上调细胞缺氧后GLP-2处理组(CG)、caveolin-1下调细胞缺氧后GLP-2处理组(EG),检测细胞cAMP浓度,GRK2(ser280)磷酸化蛋白变化及细胞增殖,同时应用信号通路抑制剂观察GLP-2信号转导,WB检测ERK信号转导通路中相关蛋白及Akt(ser473)蛋白磷酸化表达的变化,免疫共沉淀检测caveolin-1与GLP-2R的作用,。观察GLP—2对缺氧后细胞增殖信号转导途径的影响以及caveolin-1对GLP-2R跨膜信号的调控
     结果:
     1.成功设计构建GLP-2/pET31b(+)质粒质粒,测序正确;在BLR(DE3)感受态大肠杆菌种诱导表达最佳条件为1mMIPTG诱导表达4h,通过亲和层析纯化及溴化氰裂解法获得单体GLP-2约100mg,重组得率5mg/100ml。
     2.给予重组GLP-2及合成GLP-2后,烧伤后第7天,与烧伤对照组相比,大鼠的肠粘膜通透性明显降低,肠粘膜蛋白含量、肠粘膜与肠段重及与躯壳重之比均明显升高(P<0.05),而两种GLP-2之间差异无显著性意义(P>0.05)。形态学观察两种GLP-2均能减轻烧伤后肠粘膜病理损伤。体外实验结果显示,细胞严重缺氧8h立即加入1000nM的GLP-2,24、72h后能够明显增加Caco-2/GLP-2R(+)细胞的细胞增殖(P<0.05),重组GLP-2与合成GLP-2效果无明显差别(P>0.05)。而GLP-2处理72小时后,细胞乳酸脱氢酶及蔗糖酶活性无明显变化(P>0.05)。CDK4及ZO1蛋白表达较缺氧对照组增强。
     缺氧后立即给予1000nM的GLP-2处理,24h后,缺氧对照组cAMP含量明显降低(P<0.01),而GLP-2处理组的cAMP却维持在一个较高水平。CG组细胞的cAMP明显增加,而EG组cAMP含量下调。GLP-2处理24h后,能够明显增加缺氧细胞的增殖(P<0.05),在CG组细胞增殖更加明显(P<0.05),EG组增殖作用下降。GLP-2处理后30min,磷酸化GRK2蛋白表达较缺氧对照组增强,无论上调或下调caveolin-1后,磷酸化GRK-2表达下降。给予不同信号通路抑制剂后发现,MEK1/2特异性抑制剂U0126及PI3特异抑制剂LY294002能够明显抑制GLP-2的促增殖作用(P<0.05),而P38特异性抑制剂SB203580却不能抑制GLP-2促增殖作用。。缺氧后给予GLP-2能增强ERK信号途径中c-Raf、MEK1/2、ERK1/2及核内p90RSK磷酸化蛋白的表达,也能增强PI3信号途径中Akt磷酸化蛋白的表达。caveolin-1上调后ERK信号通路中相关磷酸化蛋白的表达增强增强,caveolin-1下调后相关磷酸化蛋白的表达减弱。
     结论:
     1.构建GLP-2原核表达载体。诱导表达纯化,为GLP-2获得提供了一种新的方法。
     2.重组GLP-2及化学合成GLP-2能够降低严重烧伤后大鼠肠粘膜通透性,增加粘膜重量及蛋白含量,减轻肠粘膜的损伤程度。对Caco2/GLP-2R(+)细胞具有明显的促增殖作用,但对细胞无明显毒性,对蔗糖酶活性没有明显的影响,能够增强缺氧后细胞CDK4及ZO1蛋白表达,可能参与了细胞分裂及细胞间紧密连接的调控机制。
     3.GLP-2对细胞的促增殖作用伴有cAMP的增加,而磷酸化GRK2蛋白负反馈机制可能参与了对cAMP的调控。GLP-2对细胞增殖的作用依赖于ERK及PI3途径,其可以引起c-Raf,MEK1/2,ERK1/2及P90RSK磷酸化蛋白表达增强,也使Akt磷酸化蛋白表达增强。而可能不依赖于P38信号途径。Caveolin-1对GLP-2R信号转导可能有调控作用,本实验中,其可促进GLP-2介导的细胞增殖及激活ERK,PI3信号途径。
Introduction:It is well known that the dysfunction of intestinal mucosal barrier is the key to initiating bacterial translocation,MODS and enterogenous hypermetabolism after severe burn injury.Maintaining the structure and function of intestinal mucosa and promoting the recovery of injuried intestine can lower enterogenic infection,inflammatory response and enterogenous hypermetabolism.The hormones secreted from intestifial endocrine cells are the most important messengers that regulate intestinal function, including cytoprotection,nutrition and cell proliferation.Among these is the intestinotrophic peptide glucagon-like peptide-2(GLP-2),which plays a significant role in the adaptive regulation of bowel mass and mucosal integrity.However,the mechanism of GLP-2 has not yet been elucidated.
     Objectives:This study was intended to design prokaryotic expression vector,induce GLP-2 expression in E.coli BLR(DE3),and investigate the protective effects of recombinant GLP-2 on intestinal mucosa of burned rats in vivo and on hypoxic intestinal epithelial cells in vitro.The intestinal epithelial cell line stably expressing GLP-2 receptor (GLP-2R) was constructed to explore the mechanisms of enteroprotection of GLP-2 and the regulation of transmembrane signal transduction of GLP-2R by caveolin-1.
     Material and Methods:
     1.AlwN I-digested and dephosphorylated pET-31b(+) DNA was used.The second amino acid,alanine,of GLP-2 coding sequences was replaced by glycine.The new sequences were cloned as tandem repeats interspersed with single methionine residues and placed downstream of a 125aa ketosteroid isomerase(KSI) gene and upstream of a His·Tag. The recombinant vector,GLP-2/pET31b(+),was transfected into the BLR(DE3) expression cells,and the target peptide production was induced by adding IPTG to the culture media. The purified GLP-2 with affinity chromatograph and CNBr cleavage was stored after cryodrying.
     2.Rats of either sex infliced with 30%TBSAⅢ°burns were randomly divided into 4 groups:normal group(N),burn control group(C),recombinant GLP-2 group(Gr,treated with recombinant GLP-2,100nM.kg~(-1).d~(-1) subcutaneously for 7 days) and synthesized GLP-2 treated group(G,treatment with synthesized GLP-2,100nM.kg~(-1).d~(-1)subcutaneously for 7 days).The rats were killed on 7d postburn and the following indexes were measured, including mucosal pathological examination,mucosa permeability,the ratio of mucosa wet weight and bowel mass or carcase weight,and the content of intestinal mucosal protein. For in vitro study,the GLP-2R/PCDNA3.1(+) was transfected into Caco-2 with Lipofectamine2000,and the stably transfected cells were selected and maintained by growth in G418.Individual cell clones were obtained by limited dilution cloning,verified by determining the GLP-2R protein expression with Western blot method,expanded for further studies,and named Caco2/GLP-2R(+).The cells were divided into 4 groups: normal group(N),hypoxia control group(C),recombinant GLP-2 group(Gr.treatment with recombinant GLP-2 after hypoxia for 8h,1000nM for 30min,4,24,72h) and synthesized GLP-2 treated group(G,treatment with synthesized GLP-2 after hypoxia for 8h,1000nM for 30min,4,24,72h),The following indexes were measured including cell proliferation. activities of lactate dehydrogenase and sucrase,the protein expressions of CDK4 and ZO1.
     3.The caveolin-1/pEGFPN2 plasmid was constructed.The small interference RNA of caveolin-1 obtained from an in vitro transcription reaction was transiently transfected into Caco2/GLP-2R(+).The cells were divided into 5 groups:normal group(AN),hypoxia control group(AC),GLP-2 group(AG,treatment with synthesis GLP-2 after hypoxia 8h, 1000nM for 30min,24h),caveolin-1 up-regulation group(CG,treatment with synthesized GLP-2 after hypoxia 8h,1000nM for 30min,24h);caveolin-1 down-regulation group(EG, treatment with synthesized GLP-2 after hypoxia for 8h,1000nM for 30min,24h).The kinase inhibitors including U0126,LY294002,SB203580 were uesed to explore the GLP-2 signal transduction pathway.The cAMP content and cell proliferation were detected.The phosphorylation of c-Raf,MEK1/2,ERK1/2,Akt and p90RSK were analysized to investigate the mechanism of enteroprotection of GLP-2 and regulation of transmembrane signal transduction of GLP-2 receptor by caveolin-1.
     Results:
     1.The sequence of GLP-2/pET31b(+) is confirmed by DNA sequencing,and the expressed GLP-2 peptide was verified by Western Blot.Approximate 100mg of the GLP-2 monomer were obtained in the current expression system.
     2.Histologically,the structure of intestinal mucosa was damaged as evidenced by the thinning of mucosa,shortening of villus,and decreasing of villus surface area in burn group on 7d postburn,while both recombinant GLP-2 and synthesis GLP-2 could alleviate intestinal mucosa injury obviously.Compared with those in burn group,the mucosa permeability significantly decreased in both GLP-2 groups.The ratio of mucosa wet weight and bowel mass or carcase weight,the content of intestinal mucosal protein were more significantly increased in both GLP-2 groups than those in burn control group.The in vitro results showed that GLP-2 directly stimulated proliferation of the hypoxic Caco2/GLP-2R(+) cells at 24,72h after GLP-2 treatment.There was no significant difference between recombinant GLP-2 and synthesized GLP-2.The activities of lactate dehydrogenase and sucrase had no significant changes at 72h after GLP-2 treatment.The protein expressions of CDK4 and ZO1 were increased in hypoxic Caco2/GLP-2R(+) cells at 72h after GLP-2 treatment.
     3.The data also showed that the cAMP content were increased and maintained at high level in cells treated with GLP-2.The phosphorylated GRK2 level increased after treated with 1000nM GLP-2.The effect of GLP-2 on stimulating cells proliferation was blocked by the kinase inhibitors U0126 and LY294002,but not SB203580.Western blot analysis of hypoxic Caco2/GLP-2R(+) cell treated with GLP-2 showed that ERK1/2 was activated,the expressions of phosphorylated c-Raf,MEK1/2,ERK1/2 and p90RSK of cellular nucleus were increased.The expression of phosphorylated Akt was enhanced too. Our results showed that caveolin-1 ehanced the phosphorylation of ERK and PI3 pathway and promoted cell proliferation.Meanwhile,the phosphorylation of cell signal transduction was weakened after knocking down the caveolin-1 by transfecting caveolin-1 siRNA into Caco2/GLP-2R(+) cell
     Conlusions:
     1.The prokaryotic expression is a new approach to product the GLP-2. 2.Both the recombinant GLP-2 and synthesized GLP-2 could alleviate intestinal mucosa injury in burn rats and promote proliferation of the hypoxic Caco2/GLP-2R(+) cells
     3.The GLP-2 stimulate proliferation of the hypoxic Caco2/GLP-2R(+) cells by activating ERK/PI3- but not P38-dependent pathway.
     4.The transduction of transmembrane signal of GLP-2 receptor is regulated by caveolin-1
引文
1.Willmore DW,Smith RJ,O'Dwyer ST,et al.The gut:a central organ after surgical stress.Surgery,1988,104:917-923.
    2.Hassoun HT,Kone BC,Mercer DW,Moody FG,Weisbrodt NW,Moore FA Post-injury multiple organ failure:the role of the gut.Shock.2001 Jan;15:1
    3.汪仕良,黎鳌.肠源性高代谢与早期肠道营养研究之一:烧伤引发肠源性高代谢.肠外与肠内营养,1996,3:1-6.
    4.汪仕良.黎鳘.烧伤后肠源性高代谢.中华烧伤杂志,2001,18:200-202
    5.DC Heimburger.Enteral feeding.If the gut works,use it.Ala J Med Sci,1982;19:387-91.
    6.黎介寿.加强对肠屏障功能障碍的研究。中华医学杂志,1999,79:8.
    7.Huang KF,Chung DH,Herndon DN.Insulinlike growth factor 1(IGF-1) reduces gut atrophy and bacterial translocation after severe burn injury.Arch Surg.1993.128:47-53.
    8.Estivariz CF.Jonal CR,GU LH,et.al.Gut-trophic effects of keratinocyte growth factor in rat small intestine and colon during enteral refeedingo JPEN,1998,22:259-67.
    9.Drucker D J,Erlich P,Asa SL,et.al.Induction of intestinal epithelial proliferation by glucagon-like peptide 2.Proc Natl Acad Sci1996,93:7911-7916
    10.Benjamin MA,McKay DM,Yang PC,et.al.Glucagon-ike peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse.Gut,2000,47:112-119
    11.Jeppesen PB,Hartmann B,Thulesen J,et.al.Glucagonlike peptide 2 improves nutrient absorption and nutritional status in shortbowel patients with no colon.Gastroenterology,2001,120:806-815
    12.Burrin DG,Stoll B,Jiang R,et.al.GLP-2 stimulates intestinal growth inprelnature TPN-fed pigs by suppressing proteolysis and apoptosis.Am J Physiol(Gastrointest Liver Physiol),2000,279:G1249-G1256
    13.Bernard.N.,MacNaughton.W.,Scott.R.,et.al.Glucagon-like peptide-2(GLP-2)accelerates healing of indomethacin-induced enteritis.Gasteroenterology,1999,116:A122
    14.Burrin DG,Stoll B,Guan X,et.al.Glucagon-like peptide 2 dose-dependently activates intestinal cell survival and proliferation in neonatal piglets.Endocrinology,2005,146:22-32
    15.赵云,王凤君,王裴,等。胰高血糖素样肽2对大鼠烧伤后肠粘膜上皮细胞凋亡的影响。第三军医大学学报,2003,24:764-766
    16.赵云,王凤君,王裴,等。胰高血糖素样肽-2(GLP-2)对烧伤后大鼠肠粘膜细胞增殖的影响。中华烧伤杂志,2003,19:209-211
    17.Drucker DJ,Shi Q,Crivici A,et.al.Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase Ⅳ.Nat Biotechnol,1997,15:673-977
    18.Hartmann B,Harr MB,Jeppesen PB,et.al.In vivo and in vitro degradation of glucagon-like peptide-2 in humans.J Clin Endocrinol Metab,2000,85:2884-2888
    19.Latham PW.Therapeutic peptides revisited.Nat Biotechnol,1999,17:755-757
    20.朱振洪.国内外基因工程制药综述。《生物技术》2001,11,6:36-38
    21..J.萨姆布鲁克;E.F.弗里奇;T.曼尼阿蒂斯.《分子克隆实验指南》第三版.金冬雁;黎孟枫等译。科学出版社,北京,2002
    22.D.R.马歇克,M.W.克努特,R.R.亨格,等。《蛋白质纯化与鉴定实验指南》.朱泽厚等译。科学出版社,北京,1999
    23.N.休厄德,H.D.甲库布克。《肽:化学与生物学》.刘克良,何军林等译。科学出版社,北京,2005
    24.Jae H.Lee,I1 Minn,Chan B.Park,and Sun C.Kim Acidic Peptide-Mediated Expression of the Antimicrobial Peptide Buforin Ⅱ as Tandem Repeats in Escherichia coli.PROTEIN EXPRESSION AND PURIFICATION,1998,12,53-60
    25.Brubaker PL,Crivici A,Izzo A,et al.Circulating and tissue forms of the intestinal growth factor,glucagon-like peptide 2.Endocrinology,1997,138:4837-4843.
    26.DaCambra M.P.,Yusta B,Martin S.S.et.al.Structural Determinants for Activity of Glucagon-like Peptide-2.Biochemistry,2000,39:8888-8894
    27.Drucker DJ,Yusta B,Boushey RP,et al.Human[GIy2]GLP-2 reduces the severity of colonic injury in a murine model of experimental colitis.Am J Physiol,1999,276:G79-G91
    28.Estall.JL,Drucker DJ.Tales beyond the Crypt:Glucagon-Like Peptide-2 and Cytoprotection in the Intestinal Mucosa.Endocrinology,2005,146:19-21
    29.ERIC D.SHIN,JENNIFER L.ESTALL,ANGELO IZZO,et.al.Mucosal Adaptation to Enteral Nutrients Is Dependent on the Physiologic Actions of Glucagon-Like Peptide-2in Mice.Gasteroenterology 2005,128:1340-1353
    30.PALLE BEKKER JEPPESEN.Glucagon-Like Peptide-2:Update of the Recent Clinical Trials.Gasteroenterology,2006,130:S127-S131
    31.王凤君 赵云 王裴等。胰高血糖素样肽-2 对严重烧伤大鼠肠粘膜屏障功能的影响。世界华人消化杂志,2002,10,7:796-799
    32.黎鳌、杨宗城、肖光夏,等主编.实验烧伤外科学.重庆:重庆大学出版社,1997:204-206
    33.Gleeson MH,Bloom SR,Polak JM,Endocrine tumour in kidney affecting small bowel structure,motility,and absorptive function.Gut,1971 12:773-82
    34.Jones B,Fishman EK,Bayless TM,et.al.Villous hypertrophy of the small bowel in a patient with glucagonoma.J Comput Assist Tomogr.1983,7:334-337.
    35.Stevens FM,Flanagan RW.O'Gorman D.et.al.Glucagonoma syndrome demonstrating giant duodenal villi.Gut,1984,25:784-791
    36.Scott R.B..Kirk D.,MacNaughton W.K.et.al.GLP-2 augments the adaptive response to massive intestinal resection in rat Am J Physiol Gastrointest Liver Physiol,1998,275:911-921
    37.Martin G.R.,Wallace L.E.,Sigalet D.L.Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome.Am J Pbysiol Gastrointest Liver Physiol 2004,286:G964-G972,.
    38.MUNROE D.G.,GUPTA A.K.,KOOSHESH F.et.al.Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2.Proc.Natl.Acad.Sci.1999,96:1569-1573.
    39.JASLEEN JASLEEN,ASHLEY S.W.,SHIMODA N.et.al.Glucagon-Like Peptide 2Stimulates Intestinal Epithelial Proliferation In Vitro.Digestive Diseases and Sciences.2002,47:1135-1140
    40.Esther Velazquez,Juan M.Ruiz-Albusac Enrique Blazquez.et.al.Glucagon-like peptide-2 stimulates the proliferation of cultured rat astrocytes.Eur.J.Biochem.2003,270:3001-3009
    41.Flavio G.Rocha,K.Robert Shen,Jasleen Jasleen,et.al.Glucagon-Like Peptide-2: Divergent Signaling Pathways . Journal of Surgical Research , 2004,121:5-12 .
    42. Yusta, B., Huang, L., Munroe, D.,et.al. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology .2000.119:744-755.
    43.Anette Sams, Sven Hastrup, Marie Andersen,et.al.Naturally occurring glucagon-like peptide-2 (GLP-2)receptors in human intestinal cell lines. European Journal of Pharmacology. 2006,532 : 18-23
    44.PETERSEN Y. SCHMIDT J.E, SANGILD P T.Glucagon-Like Peptide 2 Enhances Maltase-Glucoamylase and Sucrase-Isomaltase Gene Expression and Activity in Parenterally Fed Premature Neonatal Piglets PEDIATRIC RESEARCH. 2002,52:498-503
    45.Berkes J, Viswanathan VK, Savkovic SD, Hecht G. Intestinal epithelial responses to enteric pathogens:effects on the tight junction barrier, ion transport, and inflammation. Gut 2003;52:439-451
    46. Alex W. Cohen, Robert Hnasko, William Schubert, et al. Role of Caveolae and Caveolins in Health and Disease. Physiol. Rev. 2004; 84(5): 1341-1379,
    47.Enzo Spisni , Vittorio Tomasi , Alessandro Cestaro, et al. Structural insights into the function of human caveolin 1. Biochemical and Biophysical Research Communications. 2005 ;338(7):1383-1390
    48.Shujun Ge and Joel S. Pachter.Caveolin-1 Knockdown by Small Interfering RNA SuppressesResponses to the Chemokine Monocyte Chemoattractant Protein-1 by Human Astrocytes. J.B.C, 2004,279:32217-32225
    49. P B Jeppesen, E L Sanguinetti, A Buchman, L Howard, J S Scolapio, T R Ziegler, J Gregory, K A Tappenden, J Hoist, and P B Mortensen Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients Gut, Sep 2005; 54: 1224 - 1231
    50.Cathrine arskova , Bolette Hartmanna, Steen Seier Poulsen.et. al. GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regulatory Peptides 124 (2005) 105- 112
    51.Jasleen Jasleen, M.D., Naoshi Shimoda, M.D., E. Robert Shen,et.al. Signaling Mechanisms of Glucagon-like Peptide 2-Induced Intestinal Epithelial Cell Proliferation. Journal of Surgical Research, 2000, 90, 13-18
    52. J. A. Koehler, B. Yusta, and D. J. Drucker .The HeLa Cell Glucagon-Like Peptide-2 Receptor Is Coupled to Regulation of Apoptosis and ERK1/2 Activation through Divergent Signaling Pathways.olecular Endocrinology,2005, 19(2):459—473
    53.Petronila Penelal, Catalina Ribasl, Federico Mayor Jr .Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cellular Signalling, 2003, 15: 973-981
    54. Julie A. Pitcher , John J. G. Tesmer, Jennifer L. R. Freeman et.al . Feedback Inhibition of G Protein-coupled Receptor Kinase 2 (GRK2) Activity by Extracellular Signal-regulated Kinases. J Cell Biol ,1999, 274:4531-34534
    55. Bernardo Yusta, Robin P. Boushey , Daniel J. Drucker. The Glucagon-like Peptide-2 Receptor Mediates Direct Inhibition of Cellular Apoptosis via a cAMP-dependent Protein Kinase-independent Pathway. J Cell Biol,2000, 275: 35345-35352
    56. Simionescu, N. Cellular aspects of transcapillary exchange. Physiol Rev. 1983. 63: 1536-1560
    57. Linda J. Pike Growth factor receptors, lipid rafts and caveolae: An evolving storyBiochimica et Biophysica Acta.2005, 14: 1-14
    58. Glenney, J.R., Jr and Soppet, D. Sequence and expression of caveolin, a protein component of caveolae plasma-membrane domains phosphorylated on tyrosine in Rous-sarcoma-virus-transformed fibroblasts. Proc Natl Acad Sci. USA. 1992, 89: 10517-10521
    59.Krajewska W.M., Owska I.M. Caveolins: Structure and function in signal transduction. Cellular & Molecular Biology Letters. 2004, 9: 195 - 220
    60. Sargiacomo, M., Scherer, P. E., Tang, Z., Kubler, E., Song, K. S., Sanders, M. C. and Lisanti, M. P. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci. U. S. A. 1995, 92: 9407-9411
    61. J. Couet, S. Li, T. Okamoto, T. Ikezu, M.P. Lisanti, Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins, J. Biol. Chem. 1997, 272: 6525-6533.
    62. B. Razani, A. Schlegel, M.P. Lisanti, Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy, J. Cell. Sci. 2000, 113: 2103-2109.
    63. J.A. Engelman, C. Chu, A. Lin, H. Jo, T. Ikezu, T. Okamoto, D.S. Kohtz, M.P. Lisanti, Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain, FEBS Lett. 1998, 428: 205-211.
    64. F. Galbiati, D. Volonte, J.A. Engelman, G. Watanabe, R. Burk, R.G. Pestell, M.P. Lisanti, Targeted down regulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade, EMBO J. 1998, 17: 6633-6648
    65. J. Gustavsson, S. Parpal, M. Karlsson, C. Ramsing, H. Thorn, M. Borg, M. Lindroth, K.H. Peterson, K.E. Magnusson, P. Stralfors, Localization of the insulin receptor in caveolae of adipocyte plasma membrane, FASEB J. 1999, 13: 1961-1971.
    66.63. F.H. Nystrom, H. Chen, L.N. Cong, Y. Li, M.J. Quon, Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos7 cells and rat adipose cells, Mol. Endocrinol. 1999, 13: 2013-2024
    67.Lidiya Orlichenko, Bing Huang, Eugene Krueger,et al. Epithelial Growth Factor-induced Phosphorylation of Caveolin 1 at Tyrosine 14 Stimulates Caveolae Formation in Epithelial Cells. J. Biol. Chem, 2006; 281: 4570 - 4579.
    68. DG Sedding , RC Braun-Dullaeus. Caveolin-1: dual role for proliferation of vascular smooth muscle cells. Trends Cardiovasc Med, 2006; 16(2): 50-55.
    1.Arthur SGraham B.Biology and pathology of non-amidated gastrins.Scand J Lab Invest,2001,234:123-128.
    2.Takeuchi Y,Yamada J Yanada Tet al.Functional role of extra cellular signal regulated protein kinase in gastric acid secretion.Am J Physiol Gastrointest Liver Physiol,1997,273:G1263-G1272.
    3.Urushidani TForte J G.Signal transduction and activation of acid secretion in the parietal cell.J Member Biol,1997,159:99-111.
    4.Kirton CMWang TDockray GJ.Regulation of parietal cell mi-gration by gastrin in the mouse.AmJ Physiol Gastrointest Liver Physiol,2002.283:G787-G793.
    5.Bordi CAdda TAzzoni C.et al.Pathogenesis of ECL cell tu2 mor in humans.J Biol Med1998,7!:273-284.
    6.Ohning GVWong HCLlotd KCK,et al.Gastrin mediates the gastric mucosal proliferative response to feeding[J].Am J Physiol Gastrointest Liver Physiol 1996,271:G470-G476.
    7.Thorburn CMFriedman GDDickinson CJet al.Gastrin and co12 orectal cancer:a prospective study.Gastroenterology,1998,114,275-280.
    8.Singh PVelasco M Given Ret al.Progastrin expression predis2 poses mice to development of colon carcinomas and adenomas in response to AOM.Gastroenterology2000,119:162-171.
    9.Todisco ATakeuchi Y,Seva Cet al.Gastrin and glycine extended progastrin processing intermediates induce different programs of early gene activation.J Biol Chem ,1995 ,270 : 28337 - 28341.
    10.Dockray GJ ,Varro A ,Dimaline R ,et al. The gastrin :their produc2 tion and activities . Ann Rev Physiol ,2001 ,63 :119 - 123.
    11.Todisco A , Takeuchi Y, Seva C ,et al. Gastrin and glycine - ex2 tended progastrin processing intermediates induce different pro2 grams of early gene activation . J Biol Chem ,1995 ,270 :28337 - 28341.
    12.Naoki Kanda, Hiroshi Seno, Mayumi Kawada ,et al. Involvement of cyclooxygenase-2 in gastric mucosal hypertrophy in gastrin transgenic mice. Am J Physiol Gastrointest Liver Physiol, 290: G519-G527
    13.Schmitz F ,Goke MN ,Otte JM ,et al. Cellular expression of CCK2 A and CCK2B/ gastrin receptors in human gastric mucosa . Regul Pept, 2001 ,102 :101 - 110.
    14. Duckworth CA, Varro A, Dimaline R,et al. Pritchard Gastrin increases murine intestinal crypt regeneration following injury.PD Ottewell. Gastroenterology, 2006; 130: 1169-80.
    15. Wiley LM,Adamson ED, Tsark EC, et al. Epidermal growth factor receptor function in early mammalian development. Bio Essays, 1995, 17: 839 - 846.
    16.FagbemiAO,WrightN,Lakhoo K, et al. Immunoreactive epidermal growth factor receptors are p resent in gastrointestinal ep ithelial cells of p reterm infants with necrotising enterocolitis. Early Hum Dev, 2001, 65: 1 - 9.
    17. Clark JA,Lane RH,MacLennan NK, et al. Ep idermal growth factor reduces intestinal apoptosis in an experimental model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol, 2005, 288: 755 - 762.
    18.Nakai K, Hamada Y, Kato Y, et al. Further evidence that epidermal growth factor enhances the intestinal adaptation following small bowel transp lantation. Life Sci,2004, 75:2091 -2102.
    19. Shen MM, Schier AF. The EGF-CFC gene family in vertebrate development. Trends Genet, 2000; 16:303-9.
    20.Troyer KL, Luetteke NC, Saxon ML,et.al. Growth retardation, duodenal lesions, and aberrant ileum architecture in triple null mice lacking EGF, amphiregulin, and TGF-alpha. Gastroenterology, 2001; 121: 68-78.
    21. M Kashimata, S Sayeed, A Ka, A Onetti-Muda, et.al. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF.Dev Biol, 2000; 220: 183-96.
    22.Andrzej Dabrowski, Guy E. Groblewski, Claus Schafer, et.al. Cholecystokinin and EGF activate a MAPK cascade by different mechanisms in rat pancreatic acinar cells. Am J Physiol Cell Physiol, 1997; 273: C1472 - C1479.
    23. A. Banan, J. Z. Fields, Y. Zhang, a Key role of PKC and Ca~(2+) in EGF protection of microtubules and intestinal barrier against oxidants.Am J Physiol Gastrointest Liver Physiol, 2001:280:828.
    24.E1-Assal ON , Besner GE.HB-EGF enhances restitution after intestinal ischemia/reperfusion via PI3K/Akt and MEK/ERK1/2 activation. Gastroenterology, 2005; 129: 609-25
    25. Mark R. Frey. Anastasia Golovin, D. Brent Polk. Epidermal Growth Factor-stimulated Intestinal Epithelial Cell Migration Requires Src Family Kinase-dependent p38 MAPK Signaling.J. Biol. Chem.. 2004; 279: 44513 - 44521.
    26. Sergey Chupreta, Ming Du, Andrea Todisco, EGF stimulates gastrin promoter through activation of Sp1 kinase activity.Am J Physiol Cell Physiol, 2000; 278: C697 - C708
    27. NE Avissar, HT Wang, JH Miller.Epidermal growth factor receptor is increased in rabbit intestinal brush border membrane after small bowel resection. Dig Dis Sci. Jun 2000: 45: 1145-52.
    28. C Cellini, J Xu, and T Buchmiller-Crair Effect of epidermal growth factor on small intestinal sodium/glucose cotransporter-1 expression in a rabbit model of intrauterine growth retardation.J Pediatr Surg, 2005; 40: 1892-7.
    29. HE Abud, N Watson, and JK Heath. Growth of intestinal epithelium in organ culture is dependent on EGF signalling. Exp Cell Res, 2005; 303: 252-62
    30.Masahiro Iizuka, Kenji Sasaki, Yohei Hirai Morphogenic protein epimorphin protects intestinal epithelial cells from oxidative stress by the activation of EGF receptor and MEK/ERK, PI3 kinase/Akt signals. Am J Physiol Gastrointest Liver Physiol , 2006. 10.1152-1158.
    31. PW Finch, JS Rubin, T Miki, D Ron, and SA Aaronson Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science, 1989; 245: 752 - 755.
    32. Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop, Science, 1991; 251: 72 - 75.
    33.DP Bottaro, E Fortney, JS Rubin .A keratinocyte growth factor receptor-derived peptide antagonist identifies part of the ligand binding site, J. Biol. Chem., 1993; 268: 9180 - 9183.
    34.Zeeh JM, Procaccino F, Hoffmann P, et.al. Keratinocyte growth factor ameliorates mucosal injury in an experimental model of colitis in rats. Gastroenterology, 1996; 110: 1077-1083
    35.Playford RJ, Marchbank T, Mandir N, Higham A, Meeran K,Ghatei MA, Bloom SR, Goodlad RA. Effects of keratinocyte growth factor (KGF) on gut growth and repair. J Pathology,998; 184:316-322
    36. Danilenko DM. Preclinical and early clinical development of keratinocyte growth factor, an epithelial-specific tissue growth factor. Toxicol Pathol, 1999;27:64-71
    37.Farrell CL, Bready JV, Rex KL, et.al. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 1998;58:933-939
    38.Farrell CL, Rex KL, Chen JN, et.al. The effects of keratinocyte growth factor in preclinical models of mucositis. Cell Prolif, 2002;35:78-85
    39. Dorr W, Noack R, Spekl K.et.al. Modification of oral mucositis by keratinocyte growth factor: single radiation exposure. Int J Radiat Biol, 2001 ;77:341-347
    40. H Yang, B Wildhaber, Y Tazuke, and DH Teitelbaum Keratinocyte growth factor stimulates the recovery of epithelial structure and function in a mouse model of total parenteral nutrition. JPEN ,2002; 26: 333 - 340
    41. BE Wildhaber, H Yang, and DH Teitelbaum. Total parenteral nutrition-induced apoptosis in mouse intestinal epithelium: modulation by keratinocyte growth factor.J Surg Res, 2003; 112: 144-51.
    42. H Yang, BE Wildhaber, and DH Teitelbaum. Keratinocyte growth factor improves epithelial function after massive small bowel resection. Journal of Parenteral and Enteral Nutrition, 2003 ,27: 198-206
    43. WB Khan, C Shui, S Ning, et.al. Enhancement of murine intestinal stem cell survival after irradiation by keratinocyte growth factor.Radiat Res, 1997; 148: 248-53.
    44. JA Winkles, GF Alberts, M Chedid, et.al. Differential expression of the keratinocyte growth factor (KGF) and KGF receptor genes in human vascular smooth muscle cells and arteries.J Cell Physiol, 1997; 173: 380-6.
    45. C Orskov, B Hartmann, SS Poulsen, et.al.GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors.Regul Pept, 2005; 124: 105-12.
    46. E Gohda Nippon, Yakurigaku Zasshi .et.al. Function and regulation of production of hepatocyte growth factor (HGF) .2002; 119: 287-294
    47. Mary E. Gerritsen HGF and VEGF: A Dynamic Duo. Circ. Res.2005; 96: 272 - 273.
    48. L.E. Heathcote, I. Grierson, P. Hiscott, et.al. Hepatocyte Growth Factor (HGF) and Proliferative Vitreoretinal Disease. Invest. Ophthalmol. Vis. Sci., 2003; 44: 2970.
    49. C Parr, S Hiscox, T Nakamura, et.al. Nk4, a new HGF/SF variant, is an antagonist to the influence of HGF/SF on the motility and invasion of colon cancer cells.Int J Cancer, 2000; 85:563-70.
    50.Di-Renzo MF,Narsimhan RP,Olivero M et al. Expression of the Met/HGF receptor in normal and neoplastic human tissues.Oncogen. 1991.6:1997 —2003.
    51.Amano O,Matsumoto K,Nakamura T et al. Expression and localization of hepatocyte growth factor in rat submandibular grand. Growth Factor, 1994,10:145 — 151.
    52. Dignass AU, Lynch-Devaney K. Podolsky DK et al.Hepatoocyte growth factor/scatter factor stimulates intestinal epithelial cell proliferation and migration. Biochem Biophys Res Commun,1994,202:701-709.
    53.Kato Y.Yu DXukish JR et al. Influence of luminal hepatocyte growth factor on small intestine mucosa mass in vivo.J Surg Res, 1997,71: 49—53.
    54.Kato Y,Yu YD,Schwartz MZ et al.Hepatocyte growth factor up-regulates SGLT1 and GLUT5 gene expression after massive small bowel resection. J Pediatr Surg. 1998, 33: 13-15.
    
    55. Bamba H, Ota S, Kato A et al. Nonsteroidal anti-inflammatory drugs may delay the repair of gastric mucosa by suppressing prostaglandin-mediated increase of hepatocyte growth factor production. Biochem Biophys Res Commun, 1998, 245: 567—571.
    
    56. Fosslien E. Adverse effects of nonsteroidal anti-inflammatory drugs on the gastrointestinal system. Ann Clin Lab Sci, 1998,28: 67 — 81.
    
    57. Kitamura S, Kondo S, Shimomura Y, et al. Expression of hepatocyte growth factor and c-met in ulcerative colitis. Inflamm Res 2000;49:320-4.
    58.Itoh H, Naganuma S, Takeda N, et al. Regeneration of injured intestinal mucosa is impaired in hepatocyte growth factor activator-deficient mice.Gastroenterology 2004;127:1423-35
    59. Marc G. Jeschke.Ulrich Bolder, Celeste C. Finnerty. The effect of hepatocyte growth factor on gut mucosal apoptosis and proliferation, and cellular mediators after severe trauma Surgery 2005; 138:482-9
    60.YOSHIO OHDA, KAZUTOSHI HORI, TOSHIHIKO TOMITA,et.al. Effects of Hepatocyte Growth Factor on Rat Inflammatory Bowel Disease Models. Digestive Diseases and Sciences, 2005,50, ,5 : 914-921
    61.Akio Idol, Masatsugu Numata, Mayumi Kodama. Mucosal repair and growth factors: recombinant human hepatocyte growth factor as an innovative therapy for inflammatory bowel disease. J Gastroenterol 2005; 40:925-931
    62. Patrice Delafontaine, Yao-Hua Song, Yangxin Li. Expression, Regulation, and Function of IGF-1, IGF-1R, and IGF-1 Binding Proteins in Blood Vessels Arterioscler. Thromb. Vasc. Biol.2004; 24: 435.
    63.J-G Scharf, F Dombrowski, and G Ramadori. The IGF axis and hepatocarcinogenesis Mol. Pathol., 2001; 54: 138 - 144.
    
    64. B Valentinis and R Baserga IGF-I receptor signalling in transformation and differentiation Mol. Pathol., 2001; 54: 133 - 137.
    
    65. Jun Nakae, Yoshiaki Kido, and Domenico Accili Distinct and Overlapping Functions of Insulin and IGF-I Receptors Endocr. Rev., 2001; 22: 818.
    
    66. UH Jansson, B Kristiansson, P Magnusson,et.al. The decrease of IGF-I, IGF-binding protein-3 and bone alkaline phosphatase isoforms during gluten challenge correlates with small intestinal inflammation in children with coeliac diseaseEur. J. Endocrinol., 2001; 144:417-423.
    
    67. Viktor J. Horvath, Harsha Vittal, Tamas Ordog .Reduced Insulin and IGF-I Signaling, not Hyperglycemia, Underlies the Diabetes-Associated Depletion of Interstitial Cells of Cajal in the Murine Stomach.Diabetes, 2005; 54: 1528 - 1533.
    
    68. Phillip V. G, Jessica B. P, Andrew C. et.al. IGF-I Accelerates Ileal Epithelial Cell Migration in Culture and Newborn Mice and May Be a Mediator of Steroid-Induced Maturation.ediatr. Res., 2004; 55: 34.
    69. KT Nguyen, WJ Wang, JL Chan, et.al.Differential requirements of the MAP kinase and PI3 kinase signaling pathways in Src- versus insulin and IGF-1 receptors-induced growth and transformation of rat intestinal epithelial cells, ncogene. 2000; 19: 5385-97.
    70. Burrin DG. Is milk-borne insulin-like growth factor-I essential for neonatal development? J Nutr 1997;127:975S-979S
    71. Houle VM, Schroeder EA, Odle J, Donovan SM. Small intestinal disaccharidase activity and ileal villus height are increased in piglets consuming formula containing recombinant human insulin-like growth factor-I. Pediatr Res 1997;42:78-86
    72. T Tashiro, T Sugiura, Y Morishima, et.al. Effect of IGF-1 on protein metabolism in burned rats.JPEN, 1999; 23: S93-7.
    73.Naira Baregamian, Jun Song, Marc G. Jeschke, et.al. IGF-1 Protects Intestinal Epithelial Cells From OxidativeStress-Induced ApoptosisJournal of Surgical Research 2006,136:31-37.
    74. UH Jansson. B Kristiansson, P Magnusson. et.al. The decrease of IGF-I. IGF-binding protein-3 and bone alkaline phosphatase isoforms during gluten challenge correlates with small intestinal inflammation in children with coeliac disease. Eur. J. Endocrinol., 2001; 144:417-423.
    75. GS Howarth, JC Cool, AJ Bourne, FJ Ballard, and LC Read Insulin-like growth factor-I (IGF-I) stimulates regrowth of the damaged intestine in rats, when administered following, but not concurrent with, methotrexate. Growth Factors, 1998; 15: 279-92.
    76. Burrin DG, Stoll B,Guan X . Glucagon-like peptide 2 function in domestic animals. Domest Anim Endocrinol, 2003, 24:103-122.
    77. Brubaker PL, Drucker DJ . Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels, 2002, 8:179-188.
    78. Drucker DJ. Glucagon-like peptide 2. J Clin Endocrinol Metab, 2001, 86:1759-1764.
    79.Hartmann B, Thulesen J, Kissow H, et al. Dipeptidyl peptidase IV inhibition enhances the intestinotrophic effect of glucagon-like peptide-2 in rats and mice. Endocrinology, 2000, 141:4013-4020.
    80. Hussain MA. A biological function for glucagon-like peptide-2. Eur J Endocrinol, 1998, 139:265-267.
    81.Drucker DJ, Shi Q, Crivici A, et al. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol, 1997, 15:673-677.
    82.Drucker DJ, Erlich P, Asa SL, et al. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A, 1996, 93:7911-7916.
    83. Benjamin MA, McKay DM, Yang PC, et al. Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut, 2000, 47:112-119.
    84. Brubaker PL, Izzo A, Hill M, et al. Intestinal function in mice with small bowel growth induced by glucagon-like peptide-2. Am J Physiol, 1997, 272:E1050-E1058.
    85. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab, 2001,86:3717-3723.
    86. Chance WT, Foley-Nelson T, Thomas I, et al. Prevention of parenteral nutrition-induced gut hypoplasia by coinfusion of glucagon-like peptide-2. Am J Physiol, 1997, 273:G559-G563.
    87. Scott RB, Kirk D, MacNaughton WK, et al. GLP-2 augments the adaptive response to massive intestinal resection in rat. Am J Physiol, 1998, 275:G911-G921.
    88.Prasad R, Alavi K,Schwartz MZ . Glucagonlike peptide-2 analogue enhances intestinal mucosal mass after ischemia and reperfusion. J Pediatr Surg, 2000, 35:357-359.
    89.Munroe DG, Gupta AK, Kooshesh F, et al. Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc Natl Acad Sci U S A, 1999, 96:1569-1573.
    90. Yusta B, Huang L, Munroe D, et al. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology, 2000, 119:744-755.
    91. Yusta B, Boushey RP,Drucker DJ . The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway. J Biol Chem, 2000, 275:35345-35352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700