铈离子改性的钛酸盐的制备及其光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括两方面的内容,重点对铈离子改性的钛酸盐的制备及其光催化活性进行了研究。
     第一部分采用离子交换和煅烧处理复合方法制备了铈离子交换的钛酸盐。考察了离子交换溶液pH值、铈离子的插入量和煅烧处理对钛酸盐的影响。铈离子交换后,钛酸盐层间距减小,晶胞体积收缩,主体层状结构发生断裂。铈离子以[CeO]2+的形式存在于钛酸盐层间。煅烧处理后,层间Ce3+含量略微增加;另外,钛酸盐的主体层内部晶格结构发生重组,使其在离子交换反应中出现的主体层结构断裂减少乃至慢慢消失。采用上述复合方法制备的钛酸盐的光催化活性明显高于离子交换法制备的钛酸盐。在影响钛酸盐光催化活性的因素中,由于离子交换反应导致的钛酸盐主体层状结构的断裂效应相比铈离子价态的变化有更重要的作用。
     论文第二部分分别采用固相合成法和共聚络合法制备了铈离子掺杂的钛酸盐,Na4Ce3Ti6O20。所制备样品的光催化活性都明显低于第一部分中制备的钛酸盐。铈离子的存在形式是影响钛酸盐光催化活性的非常重要的因素,铈离子插入到钛酸盐层间比掺杂到钛酸盐主体层状结构中更有利于光生电子和空穴的分离。另外,样品的比表面积也是影响钛酸盐光催化活性的一个重要因素。
This thesis mainly includes two aspects, both of which study the preparation and photocatalytic performance of the Ce-modified layered titanate (CeTO).
     The first part is the preparation of CeTO via a hybrid method based on ion-exchange and thermal treatment. The impacts of pH value, cerium ion intercalation dosage and calcinaton treatment on the products were studied. The interlayer shrinkage, lattice cell contraction and lattice dislocations occur during the ion-exchange. The intercalated cerium ions were suggested as [CeO]2+ in the titanate, while thermal treatment seems promoting the recovering of some Ce3+ions. In addition, calcination treatment reduces the lattice dislocations from the ion-exchange via lattice restructuration, so the photocatalytic reactivities were enhanced after calcinaton treatment. It is lattice dislocation more than the chemical valence of cerium plays an important role in determining the photocatalytic reactivity of CeTOs.
     The second part of the thesis is the preparation of cerium doped sodium titanates with solid-state reaction and polymeric complex method. The as-prepared products are identified as a hexatitanate-like phase of Na4Ce3Ti6O20.The photocatalytic reactivities of the products are significantly lower than that of CeTOs prepared in the first part. It seems that the existence form of cerium ion in the titanates plays a very important role in determining the photocatalytic reactivity of Ce-modified titanate. Cerium ion intercalated into the interlayer but not doped into the host layer seems better for the separation of photogenerated electrons and holes. The BET surface area of the samples is another important factor which can influence photocatalytic reactivity.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38
    [2]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder [J]. J. Am. Chem. Soc.,1977,99:303-304
    [3]Stafford U, Gray K A, Kamat P V. Photochemistry on nonreactive and reactive semiconductor surfaces [J]. Chem. Rev.,1993,93:267-300
    [4]Fox M A, Dulay M T. Heterogeneous photocatalysis [J]. Chem. Rev.,1993,93:341-357
    [5]Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces:srinciples, mechanisms, and selected results [J]. Chem. Rev.,1995,95:735-758
    [6]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J]. J. Photochem. Photobio. C:Photochem. Rev.,2000,1:1-21
    [7]张金龙,陈锋,何斌.光催化[M].上海:华东理工大学出版社.2004
    [8]Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts [J]. Environ. Sci. Technol.,1998,32:726-728
    [9]Bokhimi X, Morales A, Aguilar M, et al. Local order in titania polymorphs [J]. Int. J. Hydrogen. Energ.,2001,26:1279-1287
    [10]Diebold U. The surface science of titanium dioxide [J]. Surf. Sci. Rep.,2003,48:53-229
    [11]University of colorado mineral structure and property data:TiO2 group. www.colorado.edu.am
    [12]Murasawa S, Hashimoto K, Fujishima A. Highly efficient TiO2 film photocatalyst. degradation of gaseous acetaldehyde [J]. Chem. Lett.,1994,723-726
    [13]Bickley R I, Gonzalez-Carreno T, Lees J S, et al. A structural investigation of titanium dioxide photocatalysts [J]. J. Solid. State. Chem.,1991,92:178-190
    [14]Zhang Q, Gao L, Guo J. Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 ssolution [J]. Nano. Mater.,1999,8:1293-1300
    [15]Ding Z, Lu G Q, Greenfield P F. Role of the crystallite phase of TiO2 in heterogeneous photocatalysis for phenol oxidation in water [J]. J. Phys. Chem. B.,2000,104: 4815-4820
    [16]Skubal L R, Meshkov N K. Reduction and removal of mercury from water using arginine-modified TiO2 [J]. J. Photochem. Photobiol.,2002,148:211-214
    [17]Sykes E, Tikhov M, Lambert R M. Surface composition, morphology, and catalytic activity of model polycrystalline titania surfaces [J]. J. Phys. Chem. B.,2002,106: 7290-7294
    [18]Anpo M. Photocatalysis on small particle titanium dioxide catalysts:reaction intermediates and reaction mechanisms [J]. Res. Chem. Intermed.,1989,11:67-106
    [19]Zhang Z, Wang C C, Rama Z, et al. Role of particle size in nanocrystalline TiO2-based photocatalysts [J]. J Phys. Chem. B.,1998,102:10871-10878
    [20]Zhuang J, Rusu C N, Yates J T. Adsorption and photooxidation of CH3CN on TiO2 [J]. J. Phys. Chem. B:Environ.,1999,103:6957-6967
    [21]岳林海,水淼,徐铸德.二氧化钛微晶结构和光催化性能关联性研究[J].化学学报,1999,57:1219-1225
    [22]Salvador P, Gonzalez M L G, Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-TiO2 rutile [J]. J. Phys. Chem.,1992,96: 10349-10353
    [23]Hoffman M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev.,1995,95:69-96
    [24]Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region [J]. Chem. Phys. Lett.,1986,123:126-128
    [25]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium dioxide [J]. Science,2001,293:269-271
    [26]吴雪松,唐星华,张波.Ti02光催化剂非金属掺杂的机理研究进展[J].化工技术与开发,2009,38:33-39
    [27]Wang J W, Zhu W, Zhang Y Q, et al. An efficient two-step technique for nitrogen-doped titanium dioxide synthesizing:visible-light-induced photodecomposition of methylene blue [J]. J. Phys. Chem. C.,2007,111:1010-1014
    [28]Lindgren T, Mwabora J M, Avendano E, et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering [J]. J. Phys. Chem. B.,2003,107:5709-5716
    [29]Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light [J]. J. Phys. Chem. B.,2004,108:6004-6008
    [30]Dong F, Wang H Q, Wu Z B. One-step "green" synthetic approach for mesoporous C-doped titanium dioxide with efficient visible light photocatalytic activity [J]. J. Phys. Chem. C.,2009,113:16717-16723
    [31]Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angew. Chem. Int. Ed.,2003,42:4908-4911
    [32]Nagaveni K, Hegde M S, Ravishankar N, et al. Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity [J]. Langmuir,2004,20: 2900-2907
    [33]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light [J]. Chem. Lett.,2003,32:364-365
    [34]Yamamoto A, Imai H. Preparation of titania foams having an open cellular structure and their application to phtocatalysis [J]. J. Catal.,2004,226:462-465
    [35]Wang H Y, Xu P, Wang T M. Doping of Nb2O5 in photccatalytic nanoporous WO3 films [J]. Thin Solid Films,2001,388:68-72
    [36]Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J]. Environ. Sci. Technol.,2005,39:1175-1179
    [37]Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chem. Mater.,2002,14:3808-3816
    [38]Luo H, Takata T, Lee Y, et al. Photocatalytic activity enhancing for titanium dioxide by xo-doping with bromine and chlorine [J]. Chem. Mater.,2004,16:846-849
    [39]Yamaki T, Umebayashi T, Sumita T. Fluorine-doping titanium dioxide by ion implantation technique [J]. Nucl. Instrum. Meth. B.,2003,206:254-258
    [40]Yamanaka S, Kunii K, Xu Z L. Preparation and adsorption properties of microporous manganese titanate pillared with silica [J]. Chem. Mater.,1998,10:1931-1936
    [41]Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem.,1994,98:13669
    [42]Wang J Y, Liu Z H, Cai R X. A new role for Fe3+in TiO2 hydrosol:accelerated photodegradation of dyes under visible light [J]. Environ. Sci. Technol.,2008,42: 5759-5764
    [43]Zhou J K, Zhang Y X, Zhao X S, et al. Photodegradation of benzoic acid over metal-doped TiO2 [J]. Ind. Eng. Chem. Res.,2006,45:3503-3511
    [44]Smith B W, Luzzi D E. Formation mechanism of fullerene peapods and coaxial tubes-a path to large scale synthesis [J]. Chem. Phys. Lett.,2000,321:169-174
    [45]Chen F, Deng Z G, Li X P, et al. Visible light detoxification by 2,9,16,23-tetracarboxyl phthalocyanine copper modified amorphous titania [J]. Chem. Phys. Lett.,2005,415: 85-88
    [46]Chatterjee D, Mahata A. Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system [J]. Catal. Commun.,2001,2:1-3
    [47]Iliev V. Phthalocyanine-modified titania-catalyst for photooxidation of phenols by irradiation with visible light [J]. J. Photochem. Photobiol. A.,2002,151:195-199
    [48]Kobasa I M. Photocatalytic properties of titanium dioxide heterostructures with cyanine dyes and polyepoxy propylcarbazole [J]. Theor. Exp. Chem.,2003,39:46-49
    [49]Wang F, Min S X. TiO2/polyaniline composites:an efficient photocatalyst for the degradation of methylene blue under natural light [J]. Chin. Chem. Lett.,2007,18: 1273-1277
    [50]Senadeera G K R, Kitamura T, Wada Y, et al. Deposition of polyaniline via molecular self-assembly on TiO2 and its uses as a sensitiser in solid-state solar cells [J]. J. Photochem. Photobiol. A:Chem.,2004,164:61-66
    [51]Yanagida S, Senadeera G K R, Nakamura K, et al. Polythiophene-sensitized TiO2 solar cells [J]. J. Photochem. Photobiol. A:Chem.,2004,166:75-80
    [52]尤先锋,陈锋,张金龙等.银促进的Ti02光催化降解甲基橙[J].催化学报,2006,27:270-274
    [53]Bae E, Choi W Y. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light [J]. Environ. S.ci. Technol., 2003,37:147-152
    [54]Tian B, Zhang J, Tong T, et al. Preparation of Au/TiO2 catalysts from Au(Ⅰ)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange [J]. Appl. Catal. B:Environ.,2008,79:394-401
    [55]Tian B, Tong T, Chen F, et al. Effect of water washing treatment on the photocatalytic activity of Au/TiO2 catalysts [J]. Acta. Phys. Chem.,2007,23:978-982
    [56]Chatterjee D, Mahata A. Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system [J]. Catal. Commun.,2001,2:1-3
    [57]王世敏,许祖勋,傅晶.纳米材料制备技术[M].化学工业出版社,2002
    [58]Chon J W M, Gu M, Bullen C, et al. Three-photon excited band edge and trap emission of CdS semiconductor nanocrystals [J]. Appl. Phys. Lett.,2004,84:4472-4474
    [59]Emeline A V, Kataeva G V, Ryabchuk V K, et al. Photostimulated generation of defects and surface reactions on a series of wide band gap metal-oxide solids [J]. J. Phys. Chem. B:Environ.,1999,103:9190-9199
    [60]Gopidas K R, Bohorquez M, Kamat P V. Photophysical and photochemical aspects of couple semiconductors:charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver iodide systems [J]. J. Phys. Chem.,1990,94:6435-6440
    [61]Lo S C, Lin C F, Wu C H, et al. Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chlorophenol [J]. J. Hazard. Mater.,2004,114:183-190
    [62]Kuo C Y, Lin H Y. Effect of coupled semiconductor system treating aqueous 4-nitrophenol [J]. J. Environ. Sci. Health. Part A.,2004,39:2113-2127
    [63]Hsiao C. Y, Lee C L, Ollis D F. Heterogeneous photocatalysis:degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst [J]. J. Catal.,1983,82:418-423
    [64]Domen K, Kondo J N, Hara M, et al. Photo-and machano-catalytic overall water splitting reactions to form H2 and O2 on heterogeneous catalyst [J]. Bull. Chem. Soc. Jpn.,2000,73:1307-1324.
    [65]Clearfield A, Lehto J. Preparation, structure, and ion-exchange properties of Na4Ti9O20 XH2O [J]. J. Solid State Chem.,1988,73:98-106
    [66]Sun X M, Chen X, Li Y D. Large-scale synthesis of sodium and potassium titanate nanobelts [J]. Inorg. Chem.,2002,41:4996-4998
    [67]Lan Y, Gao X P, Zhu H Y, et al. Titanate nanotubes and nanorods prepared from rutile powder [J]. Adv. Funct. Mater.,2005,15:1310-1318
    [68]Meng X D, Wang D Z, Liu J H, et al. Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites [J]. Mater. Res. Bull.,2004,39:2163-2170
    [69]Zhang Y X, Li G H, Jin Y X, et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires [J]. Chem. Phys. Lett.,2002,365:300-304
    [70]Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes [J]. Chem. Eur. J.,2003,9:2229-2238
    [71]Zhang M, Jin Z S, Zhang J W, et al. Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2 [J]. J. Mol. Catal. A: Chem.,2004,217:203-210
    [72]Bavykin D V, Friedrich J M, Lapkin A A, et al. Stability of aqueous suspensions of titanate nanotubes [J]. Chem. Mater.,2006,18:1124-1129
    [73]Portehault D, Giordano C, Sanchez C, et al. Nonaqueous route toward a nanostructured hybrid titanate [J]. Chem. Mater.,2010,22:2125-2131
    [74]Peng C W, Ke T Y, Brohan L, et al. (101)-exposed anatase TiO2 nanosheets [J]. Chem. Mater.,2008,20:2426-2428
    [75]Ma R Z, Sasaki T, Bando Y. Alkali metal cation intercalation properties of titanate nanotubes [J]. Chem. Commun.,2005,948-950
    [76]Gerischer H, Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles [J]. J. Phys. Chem.,1991,95:5261
    [77]Jang J S, Choi S H, Kim D H, et al. Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube [J]. J. Phys. Chem. C.,2009,113:8990-8996
    [78]Han W Q, Wen W, Yi D, et al. Fe-doped trititanate nanotubes:formation, optical and magnetic properties, and catalytic applications [J]. J. Phys. Chem. C.,2007,111: 14339-14342
    [79]Morgado E, Marinkovic B A, Paula M, et al. Characterization and thermal stability of cobalt-modified 1-D nanostructured trititanates [J]. J. Solid. State. Chem.,2009,182: 172-181
    [80]Martos M, Julian-Lopez B, Folgado J V, et al. Sol-gel synthesis of tunable cerium titanate materials [J]. Eur. J. Inorg. Chem.,2008,3163-3171
    [81]Liu G, Wang L Z, Sun C H, et al. Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates [J]. Chem. Mater.,2009,21:1266-1274
    [82]Kim T W, Hwang S J. Chemical bonding character and physicochemical properties of mesoporous zinc oxide-layered titanate nanocomposites [J]. J. Phys. Chem. C.,2007, 111:1658-1664
    [83]Kim T W, Ha H W, Paek M J, et al. Mesoporous iron oxide-layered titanate nanohybrids: soft-chemical synthesis, characterization, and photocatalyst application [J]. J. Phys. Chem. C.,2008,112:14853-14862
    [84]Liu A H, Wei M D, Honma I, et al. Direct electrochemistry of myoglobin in titanate nanotubes film [J]. Anal. Chem.,2005,77:8068-8074
    [85]傅希贤,桑丽霞,王俊珍等.钙钛矿(Al3O3)化合物的光催化活性及其影响因素[J].天津大学学报,2001,34:229-231
    [86]傅希贤,单志兴,肖坤林等.掺杂对PbTiO3光催化活性的影响[J].应用化学,1996,13:58-60
    [87]蒋正静,戴洁,张志兰等.锌、镉掺杂纳米级钛酸铅的制备及对活性翠兰的光催化降解[J].应用化学,2001,18:552-555
    [88]Wang D, Kako T, Ye J H. Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ago.75Sro.25)(Nbo.75Tio.25)03 under visible-light irradiation [J]. J. Am. Chem. Soc.2008,130:2724-2725
    [89]Yu X F, Peng Z F. Review of china high technology enterprises [J].2000,6:36-37
    [90]Feng S H, Xu R R. Progress in chemistry [J].2000,12:445-457
    [91]Inoue Y, Assai Y, Sato K. Photocatalysts with tunnel structures for decomposition of water. Pard-BaTi4O9, a pentagonal prism tunnel structure and its combination with various promoters [J]. J. Chem. Soc. Faraday. Trans.,1994,90:797-802
    [92]Kohno M, Kaneko T, Ogura S. Dispersion of ruthenium oxide on barium titanates (B6Ti17O40, Ba4Ti303o, BaTi4O9 and Ba2Ti9O20) and photocatalytic activity for water decomposition [J]. J. Chem. Soc. Faraday. Trans.,1998,94:89-94
    [93]Ogura S, Kohno M, Sato K, et al. Photocatalytic activity for water decomposition of Ru-combined M2Ti60,3(M:Na, K, Rb, Cs) [J]. Appl. Surf. Sci.,1997,121-122:521-524
    [94]Wu D, Chen Y F, Liu J, et al. Co-doped titanate nanotubes [J]. Appl. Phys. Lett.,2005, 87:112501
    [95]Matsumoto Y, Unal U, Kimura Y, et al. Synthesis and photoluminescent properties of titanate layered oxides intercalated with lanthanide cations by electrostatic self-assembly methods [J]. J. Phys. Chem. B.,2005,109:12748-12754
    [96]Ida S, Araki K, Unal U, et al. Photoluminescence properties of multilayer oxide films intercalated with rare earth ions by the layer-by-layer technique [J]. Chem. Commun., 2006,3619-3621
    [97]Viana B C, Ferreira O P, Filho A G S, et al. Decorating titanate nanotubes with CeO2 nanoparticles [J]. J. Phys. Chem. C.,2009,113:20234-20239
    [98]Neiner D, Spinu L, Golub V, et al. Ferromagnetism in topochemically prepared layered perovskite Lio.3Ni0.85La2Ti3O10 [J]. Chem. Mater.,2006,18:518-524
    [99]Li Z H, Xue H, Wang X X, et al. Characterizations and photocatalytic activity of nanocrystalline La1.5Ln0.5Ti2O7 (Ln=Pr, Gd, Er) solid solutions prepared via a polymeric complex method [J]. J. Mol. Catal. A:Chem.,2006,260:56-61
    [100]Kim H G, Hwang D W, Bae S W, et al. Photocatalytic water splitting over La2Ti207 synthesized by the polymerizable complex method [J]. Catal. Lett.,2003,91:193-198
    [101]周文君.钛酸钾晶须的研究及应用[J].杭州师范学院学报,2004,3:69-72
    [102]Kochkar H, Turki A, Bergaoui L, et al. Study of Pd(II) adsorption over titanate nanotubes of different diameters [J]. J. Colloid. Interface. Sci.,2009,331:27-31
    [103]Tong S F, Wang W, Li X, et al. Electrochemical preparation of copper-based/titanate intercalation electrode material [J]. J. Phys. Chem. C.,2009,113:6832-6838
    [104]Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95:49-68
    [105]Vippola S A M, Vuoristo P, et al. Modified thick thermal barrier coatings: microstructural characterization [J]. J. Eur. Ceram. Soc.,2004,24:2277-2258
    [106]Yanagisawa M, Uchida S, Sato T. Synthesis and photochemical properties of Cu2+ doped layered hydrogen titanate [J]. Int. J. Inorg. Mater.,2000,2:339-346
    [107]El-Naggar I M, Mowafy E A, Ali I M, et al. Synthesis and sorption behaviour of some radioactive nuclides on sodium titanate as cation exchanger [J]. Adsorption.2002,8: 225-234
    [108]Choy J H, Han Y S, Park N G, et al. N-alkylammonium intercalated 2-d hydrous titanates and their thermotropic phase transition [J]. Synth. Met.,1995,71:2053-2054
    [109]Lagaly G, Beneke K. Intercalation and exchange reactions of clay minerals and non-clay layer compounds [J]. Colloid. Polym. Sci.,1991,269:1198-1211
    [110]Ogawa M, Kuroda K. Preparation of inorganic-organic nanocomposites through intercalation of organoammonium ions into layered silicates [J]. Bull. Chem. Soc. Jpn., 1997,70:2593-2618
    [111]Xiao Q, Si Z C, Zhang J, et al. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline [J]. J. Hazard. Mater.,2008,150:62-27
    [112]张俊平,王艳,戚慧心.铕、铈、钇离子对Ti02催化剂的改性作用[J].中国稀土学报,2002,20:478-480
    [113]张天永,李祥忠.国产二氧化钛在光催化降解染料废水中的应用[J].催化学报,1999,20:356-358
    [114]Nunes L M, Souza A G, Farias R F. Synthesis of new compounds involving layered titanates and niobates with copper(II) [J]. J.Alloys. Compd.,2001,319:94-99
    [115]岳林海,郑遗凡.稀土掺杂二氧化钛的相变和光催化活性[J].浙江大学学报(理学版),2000,27:69-74
    [116]张小丽,毛健,涂铭旌.稀土铈掺杂对纳米Ti02结构和性能影响[J].化工新型材料,2005,33:12-14
    [117]Kudo A, Sakata T. Luminescent properties of nondoped and rare earth metal ion-doped K2La2Ti3O10 with layered perovskite structures:importance of the hole trap process [J]. J. Phys. Chem.,1995,99:15963-15967
    [118]Unal U, Matsumoto Y, Tanaka N, et al. Electrostatic self-assembly deposition of titanate(IV) layered oxides intercalated with transition metal complexes and their electrochemical properties [J]. J. Phys. Chem. B.,2003,107:12680-12689
    [119]Fang M M, Kaschak D M, Sutorik A C, et al. A "mix and match" ionic-covalent strategy for self-assembly of inorganic multilayer films [J]. J. Am. Chem. Soc.,1997, 119:12184-12191
    [120]Wang L Z, Omomo Y, Sakai N, et al. Fabrication and characterization of multilayer ultrathin films of exfoliated MnO2 nanosheets and polycations [J]. Chem. Mater.,2003, 15:2873-2878
    [121]Umek P, Pregelj M, Gloter A, et al. Coordination of intercalated Cu2+sites in copper doped sodium titanate nanotubes and nanoribbons [J]. J. Phys. Chem. C.,2008,112: 15311-15319
    [122]Basu S, Verma A, Agrawal D C, et al. Effect of uniform and periodic doping by Ce on the properties of barium strontium titanate thin films [J]. J. Electroceram.,2007,19: 229-236
    [123]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of Titanium Oxide Nanotube [J]. Langmuir,1998,14:3160-3163
    [124]Tang C C, Bando Y, Liu B D, et al. Cerium oxide nanotubes prepared from cerium hydroxide nanotubes [J]. Adv. Mater.,2005,17:3005-3009
    [125]Han Z H, Zhong C, Cao J, et al. Hydrothermal synthesis and characterization of La1-xCexOHSO4 phosphors [J]. J. Cryst. Growth.,2001,222:528-533
    [126]Wright C S, Walton R I, Thompsett D, et al. Investigation of hydrothermal routes to mixed-metal cerium titanium oxides and metal oxidation state assignment using XANES [J]. Inorg. Chem.,2004,43:2189-2196
    [127]Wright C S, Fisher J, Thompsett D, et al. Hydrothermal synthesis of a cerium(iv) pyrochlore with low-temperature redox properties [J]. Angew. Chem. Int. Ed.,2006,45: 2442-2446
    [128]Wang S Y, Cheng B L, Wang C, et al. Influence of Ce doping on leakage current in Bao.5Sro.5Ti03 films [J]. J. Phys. D:Appl. Phys.,2005,38:2253-2257
    [129]Otsuka-Yao-Matsuo S, Omata T, Yoshimura M. Photocatalytic behavior of cerium titanates, CeTiO4 and CeTi2O6 and their composite powders with SrTiO3 [J]. J. Alloys. Compd.,2004,376:262-267
    [130]Xu J H, Harmer J, Li G Q, et al. Size dependent oxygen buffering capacity of ceria nanocrystals [J]. Chem. Commun.,2010,46:1887-1889
    [131]Cai W D, Chen F, Shen X X, et al. Enhanced catalytic degradation of AO7 in the CeO2-H2O2 system with Fe3+ doping [J]. Appl. Catal., B:Environ.,2010,101:160-168
    [132]Canevali C, Mattoni M, Morazzoni F, et al. Stability of luminescent trivalent cerium in silica host glasses modified by boron and phosphorus [J]. J. Am. Chem. Soc.,2005,127: 14681-14691
    [133]Zhao B, Chen F, Qu W W, et al. The evolvement of pits and dislocations on TiO2-B nanowires via oriented attachment growth [J]. J. Solid State Chem.,2009,182: 2225-2230
    [134]Sasaki T, Kooli F, Iida M, et al. Mixed alkali metal titanate with the lepidocrocite-like layered structure. preparation, crystal structure, protonic form, and acid-base intercalation properties [J]. Chem. Mater.,1998,10:4123-4128
    [135]Neiner D, Spinu L, Golub V, et al. Ferromagnetism in topochemically prepared layered perovskite Li0.3Ni0.85La2Ti3O10 [J]. Chem. Mater.,2006,18:518-524
    [136]Tickoo R, Tandon R P, Mehra N C, et al. Dielectric and ferroelectric properties of lanthanum modified lead titanate ceramics [J]. Mater. Sci. Eng., B.,2002,94:1-7
    [137]Rachna S, Bhattacharyya S, Gupta S M. Correlating structure, dielectric and impedance studies with lanthanum-ion substitution in bismuth titanate [J]. Mater. Sci. Eng., B.,2010, 175:207-212
    [138]Toda K, Watanabe J, Sato M. Crystal structure determination of ion-exchangeable layered perovskite compounds, K2La2Ti3O10 and Li2La2Ti3O10 [J]. Mater. Res. Bull., 1996,31:1427-1435
    [139]Papp S, Korosi L, Meynen V, et al. The influence of temperature on the structural behaviour of sodium tri-and hexa-titanates and their protonated forms [J]. J. Solid State Chem.,2005,178:1614-1619

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700