Ti-6Al-4V/QAl10-3-1.5异种材料扩散连接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扩散连接是压力焊重要方法之一,广泛应用于航空航天等国防领域,新材料和异种材料的连接始终是该领域研究的前沿和热点。研究开发钛合金和其他材料的连接是充分开发钛合金优良特性,推广钛合金应用的有效途径。但是在理化性能相差较大的钛合金与铜合金扩散连接研究上却遇到很大困难,尤其是多元精密摩擦付类套筒结构件(先进战机航空发动机恒速装置)至今尚未获得成功。本文深入系统地研究了Ti-6Al-4V/QAl10-3-1.5直接或填加金属中间层的扩散连接工艺参数优化、接头界面组织结构以及对接头力学性能的影响等;提出了钛合金与铜合金套筒结构件膨胀压差法扩散连接新工艺,采用有限元方法模拟了Ti-6Al-4V环/QAl10-3-1.5柱套筒结构件膨胀压差法扩散连接时接头界面的应力应变以及焊后残余应力的分布规律,为膨胀压差法的工艺拟定提供依据,并通过工艺试验实现了Ti-6Al-4V环/QAl10-3-1.5柱套筒结构件的扩散连接。
Diffusion bonding is one of pressure welding, used wildly in national defensesfield such as navigation and spaceflight etc. The bonding of new materials anddissimilar is foreland and hot point in this field. It is effective way to extendtitanium application at large and that bonding of titanium and other materials isresearched and developed, but a certain difficult is encountered when titanium andcopper alloys with different physical chemical properties is bonded, especiallywhen sleeve structure such as complex precise friction pieces (constant speeddevice in advantaged fighter plane aero engine) is bonded, and it is failed to thisday. Diffusion bonding of Ti-6Al-4V/QAl10-3-1.5 with and without interlayer iscarried out, and the technological parameter optimized, interface structure of thejoint and the influence on mechanical properties for joint are studied deeply in thisarticle. The new technics named ‘differential pressure expanded techniquediffusion bonding' is put forward used to bond titanium and copper alloy, Theinterface stressstrain field and residual stress distribution of joint is simulated usingfinite element method when Ti-6Al-4V/QAl10-3-1.5 sleeve structure is bonded,which offers the base for technics of differential pressure expanded techniquediffusion bonding, At last, the diffusion bonding of Ti-6Al-4V/QAl10-3-1.5 sleevestructure is carried out successfully.
    As an old and new type of press welding, Diffusion bonding is used wildly inmilitary, national defence, aviation and aerospace etc. fields. Titanium alloy andcopper alloy are two strategic metals of national economy, and it is very importantto study on their weldability. If the titanium alloy and copper alloy can beconnected together to fabricate a kind of sleeve structure plunger rotor used inaviation engine, which can has a wild application prospect in national aircraftmanufacture. Study on diffusion bonding of Ti-6Al-4V/QAl10-3-1.5 with nointerlayer or metal interlayers has been carried out in order to find out a kind of
    optimal diffusion bonding technics. The analyses of reaction product on theinterface of all kinds of joints provide theory foundation for interface reaction andgrown behavior mechanism of interface. The finite element method is used tosimulate the stress and plastic field and residual field on the interface of the jointswhen Ti-6Al-4V loop and QAl10-3-1.5 pole sleeve structure diffusion bonding isperformed by differential pressure expanded technique, which proves a basis forcraftwork design of differential pressure expanded technique. At last, TheTi-6Al-4V loop and QAl10-3-1.5 pole diffusion bonding has carried out throughtechnological tests. Through all of these aspects, several conclusions are achieved.Direct diffusion bonding of has been performed and the result indicates thatdiffusion bonding can bond Ti-6Al-4V and QAl10-3-1.5 together and Cu3Ti isproduced on the interface under the best technique condition of850℃/10MPa/60min, and lower tensile strength of 179MPa of joint is achieved.Fracture microstructure of the joints is analyzed, and fracture occurres on theintermetallics compound interlayer. When the diffusion temperature is 830-850℃,the fracture appearance is irregular strip or polyhedral grain, and the size ofintermetallics compound increases with the rise of temperature, yet when bondingtemperature ascends to 870℃, local melted phenomenon happens on the fracture,and the range of this phenomenon increases with the diffusion temperature, whichperhaps relates to the clustering of Al element.Diffusion bonding of Ti-6Al-4V/QAl10-3-1.5 with Cu interlayer is carried outand the tension strength of joint is a little better than that of direct joint under thebest technique condition of 850℃/10MPa/60min, The diffusion bonding joint iscomposed of Ti (ss.Cu)、CuTi3 and Cu(ss.Ti) and the fracture appearance is mixedtype fracture on which not only running water shape brittle fracture figure but alsodimple plastic fracture figure has been found.Ni interlayer can increase evidently the tensile strength ofTi-6Al-4V/QAl10-3-1.5 diffusion bonding joint and The tensile strength of jointcan reach to 325MPa under the best technique condition of 870℃/10MPa/60min,which is 52% of QAl10-3-1.5. The tensile strength of Ti-6Al-4V/Ni/QAl10-3-1.5joint is depended on Ti-6Al-4V/Ni interface, and NiTi and Ni3Ti are found out on
    the fracture interface of joint. The fracture mode is belong to brittle fracture andsmall and compact grains are shown on the fracture interface, and grains vary fromsmall and homogeneous strip to inhomogeneous size irregular polygonal grain withthe raise of diffusion temperature, and that the remelting phenomenon and secondgrown of grain occurs on local area.Diffusion bonding of Ti-6Al-4V/QAl10-3-1.5 with combined metal interlayerNi/Cu can utilize comprehensively both physical function of Cu and Ni, so that thetensile strength of joints increases greatly, which reaches 345MPa (55.2% ofQAl10-3-1.5.) under the best technique condition of 870℃/10MPa/60min. Thefacture occurs on the interface of Ti-6Al-4V/Ni. Because existence of interlayer Cucan improve the stress condition of joint, the tensile strength with Ni/Cu interlayeris a little bigger than that with only Ni interlayer, and the joint interface iscomposed of NiTi and CuTi3. The fracture mode is quasi-cleavage fracture, and thejoint has a little toughness.Study on diffusion bonding of Ti-6Al-4V/QAl10-3-1.5 with different kinds ofmetal interlayers reaches a conclusion that the joint performance varies from goodto bad is Ta    At the same time, the residual stress distribution of the joint is simulated, andresult shows that the radial stress on the interface is tensile stress.The press stress isnot varied on QAl10-3-1.5, and the stress value on the Ti-6Al-4V increases withthe increasing of radius. Mises residual stress distribution indicates that the biggestvalue of residual stress exists on the Ti-6Al-4V of outside of joint interface, whichdecreases with increasing radius.The technological test shows that Differential pressure expanded techniquediffusion bonding can realize the diffusion bonding of Ti-6Al-4V loop andQAl10-3-1.5 pole, and there are caves and microcrack on the interface of the jointthrough microstructure analysis.The isolation effectiveness of the diffusion bonding technology with metalisolation layer are studied, and the principles for the selecting crystalstructure,atomic radius and atomic electronegatedfor the layer are found by virtueof the bondibality of materials. The interface diffusion models of createing a solidsolution on interface with and without interlayers and that of sleeve structure areestablished which can been utilized to anlysis the element diffusionquantificationally.At last, the dynamics of element diffusion indicates that there is a latent periodin interface growth under the condition of no interlayer and Ni interlayer, andrelation between the thickness of intermetallics compound and diffusion timeconforms to parabola rule.
引文
[1] 莫畏,钛冶金,冶金工业出版社,1998, 70-71
    [2] 西本和俊,材料科学の成果と展望.日本金属学会会报,1997, (9)36: 933-936
    [3] 字野, 航空宇宙产业新展开.熔接学会志,1990, (8)59: 47-52
    [4] B.F.Kuvin, Dissimilar-alloy welding. weld Des Fabr, 1997, (8)70: 16-20
    [5] 于家兴,21世纪台工业复苏.钛工业进展,1995, (2) : 53-58
    [6] L.S.Kireev, Mentals science of diffusion welding of titanium. Weld surf. Rev. 1996, (2)5: 109-111
    [7] J.Pilling, Solid state bonding in superplastic Ti-6Al-4V. Metal Sci.1994, (18)117: 131-142
    [8] Hamiltn C H., Titanium Science and Technology. Ed. Jaffee R. I, et. al, New York Plenum: 1973, Vol.1
    [9] H.Φ.卡扎苛夫, 材料的真空扩散焊. 国防工业出版社, 1982
    [10] 中国机械工程学会焊接学会, 焊接手册(第一卷). 机械工业出版社, 1992
    [11] A.hasui, Friction welding of titanium and carbon steel. Transaction of the Japan Welding Society,1985, (1): 64-69
    [12] P. He, J. H. Zhang, R. Zhou. Diffusion Bonding Technology of Titanium Alloy to a Stainless Steel Web With an Ni Interlayer. Mater. Charact., 1999, 43: 287-292
    [13] N. Orhan, T. I. Khan, M. Eroglu, Diffusion bonding of a microduplex stainless steel to Ti-6Al-4V. Scripta Mater., 2001, 45: 441-446
    [14] Zhou RongLin, The effect thermal cycle on joint of Ti/stainless steel phase transformation diffusion bonding. China Welding, 2001, (1)10: 14-18
    [15] 周荣林等,相变扩散连接工艺参数对钛与不锈钢接头强度的影响. 中国有色金属学报, 1997, (4)12: 663-667
    [16] C.C.chen, An Investigation of Diffusion Bonding of Titanium to Stainless Steel. Titanium, 1980, (4)80: 2379-2388
    [17] 顾怡红,万菊林, Ti6Al4V/Al2O3的扩散连接基界面问题的初步研究.机械工程材料, 1996, (1)20: 14-17
    [18] Naka M.et.al, Phase reaction and diffusion Path at the SiC/Ti system. Metall. Mater.Trans.,1997, 28A:1385-1390
    [19] R.Wenzel, F.Goesmann, R.Schmid-Fetzer, Bulk diffusion studies of metallizations on titanium-based contacts at 600℃ . Mater. Sci. Eng. B, 1998, 52: 175-179
    [20] T.Shimoo, K.Okamura, S.Adachi, Interaction of Si3N4 with Titanium at Elevated Temperatures. J. Mater. Sci. 1997, 32: 3031-3036
    [21] Naka M.et.al., Phase reaction and diffusion Path at theSiC/Ti system. Metall. Mater.Trans,1997, 28A:1385-1390
    [22] H.A.Wickman, E. S. C. Chin, Diffusion Bonding of Titanium-Titanium Aluminide-AluminaSandwich. Proceedings of the TMS'95 Annual Meeting on Gamma Titanium Aluminides, Nevada, USA, 1995: 499-505
    [23] M. J. R. barboza, C. Moura Nebo, C. R. M. Silva, Creep mechanisms and physical modeling for Ti-6Al-4V. Mater. Sci. Eng. A, 2004, 369: 201-209
    [24] Zheng Chen, M. S. Cao ,Q. Z. Zhao, J. S. Zou, Interfacial microstructure and strength of partial transient liquid-phase bonding of silicon nitride with Ti/Ni multi-interlayer. Mater. Sci. Eng. A 2004, 380: 394-401
    [25] A. M. Kliauga, D. Travessa, M. Ferrante, Al2O3/Ti interlayer AISI 304 diffusion bonded joint Microstructural characteristic of the twe interfaces, Mater. Charact. 2001, 46: 65-74
    [26] Byeong-Joo Lee, Predictive analysis of Ti/AIN interfacial reactive using diffusion simulation. Scripta. Mater., 1998, 3(38): 499-507
    [27] B.Aleman, I.Gutierrez, I.J.Urcola, The use of kirkendall effect for calculating intrinsic diffusion coefficients in a 316L/Ti6242 diffusion bonding couple, Scripta Mater., 1997, 5(36): 509-515
    [28] Wolfgang Glatz, Helmut Clement, Diffusion bonding of intermetallic Ti-47Al-2Cr-0.2Si sheet material and mechanical properties of joints at room temperature and elevated temperatures, Intermetallics, 1997, 5: 415-423
    [29] 李小强,李元元,邵明, 加镍过渡层钛合金/不锈钢网的扩散连接技术. 华南理工大学学报(自然科学板), 2003, (6)31 : 51-55
    [30] 有年雅敏,冲田更三,Friction welding of copper-tungstern sinter ed Alloy to pure Titanium, 溶接学会论文集,1991, 4
    [31] P. He, J. C. Feng, B. G. Zhang, Y. Y. Qian, A new technology for diffusion bonding intermetallic TiAl to steel with composite barrier layers, Mater. Charact., 2003, 50: 87-92
    [32] M. F. Isiam, N.Ridley, Characterazation of titanium bonds Formed between Ti-6Al-4V and Titanium Aluminide Super Alpha-2. Mater. Sci. Tech., 1996, 8(12): 623-627
    [33] Hidetoshi Somekawa, Hiroyukei Hosokawa, Hiroyuki Watanabe, Kenji Higashi, Diffusion bonding in superplastic magnesium alloys, Mater. Sci. Eng. A , 2003, 339: 328-333
    [34] L. M. Peng, J. H. Wang, H. Li, J. H. Zhao, L. H. He, Synthesis and microstructural characterization of Ti-TiAl3 mental-intermetallic laminate (MIL) composites, Scripta. Mater. , 2005, 52 : 243-248
    [35] Juan Wang, Yajiang Li, Peng Li, XRD and TEM analysis on the Fe3Al/18-8 Stainless steel diffusion bonding interface, Mater. Lett., 2003, 57: 4323-4327
    [36] 葛志明,钛的二元系相图,国防工业出版社,22
    [37] 石出孝, 溶接·结合技术は 进む か. 溶接技术,1996, (1)44: 124-128
    [38] 孙荣禄,杨文杰,张九海. 钛合金与不锈钢扩散焊接头的组织和性能. 焊接技术, 1997, (4): 4-6
    [39] 周荣林,何鹏,李小强, 钛合金/不锈钢网的扩散连接.宇航材料工艺, 1999, (1): 46-50
    [40] 孙荣禄,杨文杰,张九海,钛合金与不锈钢真空扩散焊接的研究. 佳木斯工学院学报, 1997, (1)15: 46-50
    [41] 孙荣禄,张九海, 钛及钛合金与钢焊接的问题及研究现状. 宇航材料与工艺, 1997, (2): 7-11
    [42] 周荣林,张九海,田锡唐,钛/不锈钢相变扩散连接工艺研究.哈尔滨工业大学,焊接,1999, (2): 9-12
    [43] Jiuhai Zhang, Peng He, Diffusion bonding Technology of Titanium Alloy to Stainless Web, EMS1999, Germany, Oct 1999
    [44] 周荣林,郭德伦,张银根,相变扩散连接工艺参数对钛与不锈钢接头强度的影响. 中国有色金属学报,2002, 12(4): 663-667
    [45] Zhou Ronglin. The effect thermal cycle on joint of Ti/stainless steel phase transformation diffusion bonding. China Welding, 2001, (1)10: 14-18
    [46] K.Bhanomurthy, G. B. Kale, Reactive diffusion between titanium and stainless steel. J. Mater. Sci.Lett. 1993, (12):1879-1881
    [47] B.Aleman, Interface microstructure in diffusion bonding of titanium alloys to stainless and low alloy steels. Mater.Sci.Technol., 1993, (9): 633-641
    [48] M. Ghosh, K. bhanumurthy, G. B. Kale, J. Krishnan, S. Chatterjee, Diffusion bonding of titanium to 304 stainless steel, J. Nucl. Mater., 2003, 322: 235-241
    [49] N. Orhan, T. I. Khan, M.Erolgu, Diffusion bonding of a microduplex stainless steel to Ti-6Al-4V. Scripta. Materialia. 2001, 45: 441-446
    [50] M. Ghost, S. Chatterjee, B. Mishbra, The effect of intermetallics on the strength properties of diffusion bonds formed between Ti-5.5Al-2.4V and 304 stainless steel. Mater. Sci. Eng, A, 2003, 363: 268-274
    [51] M. Ghost, S. Chatterjee, Diffusion bonded transition joints of titanium to stainless steel with improved properties. Mater. Sci. Eng. A 2003, 358:152-158
    [52] M. Ghost, Samar Das, P. S. Banarjee, S. Chatterjee, Variation in the reaction zone and its effects on the strength of diffusion bonded titanium-stainless steel couple. Mater. Sci. Eng. A, 2005, 390: 217-226
    [53] B. Qin, G. M. Sheng, J. W. Huang, B. Zhou, S. Y. Qiu, C. Li, Phase transformation diffusion bonding of titanium alloy with stainless steel, Mater. Charact. , 2006, 56: 32-38.
    [54] U. Kamachi Mudali, B. M. Ananda Rao, K. Shanmugam, R. Nataraian, Raldev Raj , Corrosion and microstructural aspects of dissimilar joints of titanium and type 304L stainless steel, J. Nucl. Mater. , 2003, 321: 40-48
    [55] M. Ghost, S. Chatterjee, Characterization of transition joints of commercially pure titanium to 304 stainless steel. Mater. Charact. 2002, 48: 393-399.
    [56] 邹茉莲,钛合金TC4与1Cr18Ni9Ti不锈钢的扩散工艺探索.北京航空航天大学学报,1995, (3)21: 45-50
    [57] K. Bhanomurthy, Reactive diffusion between titanium and stainless steel. J. Mater. Sci. Lett. , 1993, (12):1879-1881.
    [58] T. H. Chuang, Ti-6Al-4V/SUS304/ Ti-6Al-4V of SPF/DB. Acta Mater., 1990, 3(5): 661-666
    [59] Y. Mishin, Chr. Herzig, Diffusion on the Ti-Al System, Acta. Mater. 2000, 48: 589-623
    [60] Woong H. Sohn, Ha H. Bong, Soon H. Hong, Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal. Mater. Sci. Eng. A, 2003, 355: 231-240
    [61] Ren Jiang Wei, Li Yajiang, Feng Tao, Microstructure characteristics in the interface zone of Ti/Al diffusion bonding. Mater. Lett. 2002, 56: 647-652
    [62] G. J. Fan, W. N. Gao, M. X. Quan, Z. Q. Hu, Preparation and thermal stability of supersaturated nanocrystalline Al-Ti alloys. Mater. Lett. 1995, 23: 33-37
    [63] J. G. Luo, V.L. ACOFF, Interfacial reactions of titanium and aluminum during diffusion welding. Welding Research supplement to Welding Journal, 2000, (9): 240
    [64] Pearl Lee-Sullivan,HIP processing of Ti-Al intermetallic using blended elemental powders. J. Mater. Proc. Tech., 1993, (1): 38: 1-13.
    [65] W. A. Owezarski, D. F. Paulonis, Application of diffusion welding in the USA, Welding Journal, 1981, (2) 60: 22-33
    [66] D. J. Goda, N. L. Richards, W. F. Caley, M. C.Chaturvedi, The effect of processing variables on the structure and chemistry of Ti-Aluminide based LMCS. Mater. Sci. Eng. A, 2002, 334: 280-290
    [67] Ling Pan, David E. Luzzi, A study on diffusion couple of Ti and polysynthetically twinned (PST) Ti-Al: I. Microstructure characterization, Intermetallics 2006, 14: 61-67
    [68] Y. Mishin, Chr. Herzig, Diffusion in the Ti-Al system. Acta Mater., 2000, 48: 589-623
    [69] 徐国庆,曾岗,耿雪霏,牛济泰,Al/Ti的扩散焊工艺.焊接,2003,(3):21-23
    [70] H. Horn , Investigates of Friction Welding Ti Aluminizes. Proc Euro. 1, November 1991, Strasbourg, France 441-448.
    [71] Y. C. Lu, S. L. Sass, Q. Bal, D. L. Kohlstedt, W. W. Gerberich, The Influence of interfacial reactions on the fracture toughness of Ti-Al2O3 interfaces. Acta Metal. Mater., 1995 (1)43: 31-41.
    [72] S. J. Lee, R. Y. Lin, Infrared Joining of TiAl intermetallics using Ti-15Cu-15Ni foil-I, The microstructure morphologies of joint interfaces. Acta Mater., 1998, (4)46: 1283-1295
    [73] S. J. Lee, R. Y. Lin, Infrared Joining of TiAl intermetallics using Ti-15Cu-15Ni foil-II, The microstructure morphologies of joint interfaces Acta Mater., 1998, (4)46: 1297-1305
    [74] Yashikuni Nakao, Kenji Shinbozaki, Masahoko Hamada, Diffusion bonding of intermetallic compound TiAl, ISIJ international 1991, (10)31: 1260-1266
    [75] C. A. Blue, R. Y. Lin, Microstructural Evolution in joining of TiAl with a liquid Ti Alloy. Scripta Metallurgica Materllia, 1995, (1)32: 127-132
    [76] 中尾嘉邦,金属间化合物γ-TiAl の扩散结合性と继手强度 .溶接学会论文集,1993, (4)11: 538-544.
    [77] Keisuke Uenishi, Hiroyuki Sumi, Kojiro F. Kobayashi, Joining of intermetallic compound TiAl by using Al Filler Metal. Z. Metallkd, 1995, 86: 270-274
    [78] Wisbey, C. M. Mard, Wear resistance surfaces on high temperature titanium alloy and titanium aluminide by diffusion bonding, Mater. Sci. Tech., 1994, (4)13: 349-355.
    [79] W. A. Baeslack III, T. F. Broderick, Characterization of solid-phase welds between Ti-6Al-2Sn-4Zr-2Mo-0.1Si and Ti-13.5Al-21.5Nb titanium aluminide. Mater. Charact., 1994, 33: 357-367
    [80] M. F. Isiam, N. Ridley, Characterization of diffusion bonds formed between Ti-6Al-4V and Titanium Aluminide super Alpha-2, Mater. Sci. Tech., 1996, 8 (12): 623-627.
    [81] Liu Hui Jie, Feng JiCai, Interface structure and formation and formation mechanism of diffusion-bonded joints of TiAl-based alloy to titanium alloy. China Welding, 2000, (9)2: 116-120.
    [82] Paiva O C et al, Bonding Strength and electrochemical behavior of commercially Pure Ti/Al2O3 brazing joints. J. Mater. Sci., 1997, 32: 653-659
    [83] Barbier et al, Microstructural study of the brazed joint between alumina and Ti-6Al-4V alloy. J.Am. Ceram. Soc. 1990, (6)73: 1582-1586.
    [84] Bank et al, Interfacial reaction between alumina and Cu-Ti filler metal during reaction metal brazing. Weld Journal, 1994, (3)73: 54
    [85] Shinji Fukumoto, Akio Hirose, Kojiro F. Kobayshi, An effective joint of continuous SiC/Ti-6Al-4V composites by diffusion bonding. Composites Engineering, 1995, 8(5): 1081-1089
    [86] Wei W, Interfacial properties of a SiC fiber-reinforced Ti alloy after long-term high temperature exposure. J. Mater.Sci., 1992, 27: 1801-1810
    [87] Whatley, W.J., Wawner, F.E., Kinetics of the reaction between SiC (SCS-6) filament and Ti (6Al-4V) matrix. J. Mater. Sci. Lett. 1985, 4: 173-175
    [88] FuKumoto. S., Hirose. A., Kobayashi. K. F., Diffusion bonding of SiC/Ti-6Al-4V composite to Ti-6Al-4V alloy and fracture behavior of joint. Mater. Sci. Tech. 1993, 9: 520-527
    [89] Hirose. A., Kotoh. M., Fukumoto. S., Kobayashi. K. F., Diffusion bonding of SiC fibre reinforced Ti-6Al-4V alloy. Mater.Sci. Tech.1992, 8: 811-815
    [90] Blue C. A., Lin R. Y., Microstructure evolution in jointing of TiAl with a liquid Ti Alloy, Scripta Metall. Mater 1995, 32: 127-132
    [91] 高文柱, 钛/不锈钢爆炸复合板的结合界面.稀有金属材料与工程,1993, (2)22: 39-43
    [92] 裴大荣, 钛/不锈钢爆炸焊过渡接头的疲劳性能.稀有金属, 1991, (1): 212-216
    [93] 李炎, 钛合金/20G钢爆炸复合界面分析.材料开发与应用,1993, 8(6): 28-32
    [94] 大桥 修, 异种金属の爆发压接. 溶接技术,1989, (9): 130-134
    [95] 施春正,潘春旭, Al/Ti/Steel覆板爆炸焊接界面的显微组织特征.金属学报, 1998, (11)34: 1301-1309
    [96] 杨杨, 热处理后钛/钢爆炸复合界面显微组织结构. 中南工业大学学报,1995, (1)26: 105-107
    [97] 孔宪平,高文柱,周金波,张卫国,汪洋,爆炸复合钛/铜复合棒的孔型扎制.钛工业发展, 2003, (2): 25-27
    [98] A. Milosavljevic, M. SreCKovic, S. Bojanic, M. Dinulovic, B. Ljubisavijevic, Laser beam effects on Cu and Ti in vacuum and in the air, Vacuum, 1996, 47: 1413-1417
    [99] A. A. SHIRZAD, E. R. WALLACH, Analytical modeling of transient liquid phase (TLP) diffusion bonding when a temperature gradient is imposed., Acta. mater., 1999,(13)47: 3551-3560
    [100] Hidetoshi Somekawa, Hiroyuki Hosokawa, Hiroyuki Watanabe, Kenji Higashi, Diffusion bonding in superplastic magnesium alloys., Mater. Sci. Eng.A, 2003, 339: 328-333
    [101] H. Nishi , T. Araki , M. Eto, Diffusion bonding of alumina dispersion-strengthened copper to 316 stainless steel with interlayer metals., Fusion Engineering and Design, 1998, 39–40: 505-511
    [102] Y. Huang, N. Ridley, F. J. Humphreys, J. Z. Cui, Diffusion bonding of superplastic 7075 aluminium alloy., Mater. Sci. Eng. A, 1999, 266: 295-302
    [103] A. S. Zuruzi , H. Li , G. Dong, Effects of surface roughness on the diffusion bonding of Al alloy 6061 in air Mater. Sci. Eng. A, 1999, 270: 244-248
    [104] C.S. Lee, H. Li, R.S. Chandel, Stimulation model for the vacuum-free diffusion bonding of aluminium metal-matrix composite., J. Mater. Proc. Tech. 1999, 89-90: 344-349
    [105] S, H. Lu, J. B. Yun, Theoretical Model of the transformation superplastic diffusion bonding of eutectoid steel., 2002, J. Mater. Proc. Tech., 2002,129:458-462
    [106] H. Assadi, A. A. Shirzadi, E.R. Wallach, Transient liquid phase diffusion bonding under a temperature gradient modelling of the interface morphology, Acta mater. , 2001, 49: 31–39
    [107] Hidetoshi Somekawa, Tsutomu Tanaka , Hiroyuki Sasaki , Kazuhiko Kita ,Akihisa Inoue, Kenji Higashi, Diffusion bonding in ultra fine-grained Al–Fe alloy indicating high-strain-rate superplasticity., Acta Materialia, 2004, 52: 1051–1059
    [108] Woong H. Sohn, Ha H. Bong, Soon H. Hong, Microstructure and bonding mechanism of Al/Ti bonded joint using Al_/10Si_/1Mg filler metal., Mater. Sci. Eng. A, 2003, 355: 231-240
    [109] N. Orhan , M. Aksoy, M. Eroglu, A new model for diffusion bonding and its application to duplexalloys., Mater. Sci. Eng. A , 1999, 271: 458–468
    [110] W. Hu, D. Ponge, G. Gottstein, Origin of grain boundary motion during diffusion bonding by hot pressing., Mater. Sci. Eng. A, 1995, 160: 223-229
    [111] Liu Liming , Zhu Meili , Pan Longxiu, Wu Lin, Studying of micro-bonding in diffusion welding joint for composite., Mater. Sci. Eng. A, 2001, 315: 103-107
    [112] Z.F. Li, G.Q. Wu, Z. Huang, Z.J. Ruan, Diffusion bonding of laser surface modified TiAl alloy/Ni alloy., Mater.Lett., 2004, 58: 3470–3473
    [113] P. Mogilevsky, E.Y. Gutmanas, Experimental study of reactive diffusion of metals on SiC and B4C surface, Mater. Lett., 1996, 28: 457-461
    [114] Juan Wang, Yajiang Lia, Peng Liu, XRD and TEM analysis on the Fe3Al/18-8 stainless steel diffusion bonded interface., Mater.Lett., 2003,57: 4323– 4327
    [115] H. Nishi, T. Araki, Low cycle fatigue strength of di.usion bonded joints of alumina dispersion-strengthened copper to stainless steel., J. Nucl. Mater., 2000,283-287: 1234-1237
    [116] I.S. Batra, G.B. Kale, T.K. Saha , A.K. Rayb, J. Derose, J. Krishnan, Diffusion bonding of a Cu–Cr–Zr alloy to stainless steel and tungsten using nickel as an interlayer., Mater. Sci. Eng. A, 2004, 369: 119–123
    [117] Zheng Chen, M.S. Cao, Q.Z. Zhao, J.S. Zou, Interfacial microstructure and strength of partial transient liquid-phase bonding of silicon nitride with Ti/Ni multi-interlayer., Mater. Sci. Eng. A, 2004, 380: 394–401
    [118] Liu Liming, Zhu Meili, Pan Longxiu, Wu Lin, Studying of micro-bonding in diffusion welding joint for composite Mater. Sci. Eng. A, 2001, 315: 103-107
    [119] A. Wisbey, C.M. Ward-close, I.C. Wallis, The effect of interlayer on the diffusion bonding cobalt-base wear-resistant surface on titanium alloy., Mater. Sci. Eng. A, 1996, 208: 93-100
    [120] K.A. Peterson, I. Dutta, M. Chen, Processing and characterization of diffusion-bonded Al–Si interfaces., J. Mater. Proc. Tech. 2004, 145: 99-108
    [121] πHπαPHKOB,不同形变方法下钛-铜扩散焊接头组织.ABTOMAT CBAPKA(俄),1982, (6)
    [122] 钛与铁、镍、铜扩散焊时由于反应而生成相的增长和显微组织,[日],住友金属,1990, (4)
    [123] F. J. Zanner, Diffusion welding of commercial Bronze to a titanium alloy. Welding Journal, 1975, (4)
    [124] 赵熹华,韩立军,赵蕾,钛合金-铜合金套筒扩散焊配合间隙选择研究.材料科学与工艺,1999, (7): 166-169
    [125] 赵熹华,韩立军,杨泉,钛合金和铜合金扩散焊接接合区形貌研究. 焊接学报, 1997, (12): 12-16
    [126] 韩立军,钛合金-铜合金复杂构件精密焊接基础研究. 硕士论文,1998
    [127] Hamilton C. H., Ed. Jaffee, R. I, et al, Titanium Science and Technology. New York Plenum, 1973, (1): 625-648
    [128] Garmong G, etal. Attainment of full interfacial contact during diffusion bonding. Metallurgical Trans. A, 1975, 6(7): 1268-1279
    [129] Derby B, et al. Theoretical Model for Diffusion Bonding. Metal Science, 1982, (1)16: 49-56
    [130] Derby B, et al. Diffusion bolding: Development of Theoretical Model. Metal Science, 1984, (1)18: 427-431
    [131] Pilling J, et al. Solid state bonding in Superplastic Ti-6Al-4V. 1984, (3)18: 117-122
    [132] Pilling J, et al. The Kinetics of Isostatic Diffusion Bonding in Superplastic Materials. Mater.Sci. Eng. A , 1988, 100: 137-144
    [133] D. S. Wilkinson, M. F. Ashby, Pressure sintering by power law creep. Acta. Metall.,1975, 23: 1277-1285
    [134] I-W Chen, and Argon A S., Diffusive growth of grain-boundary cavities, Acta. Metall., 1981, 10(29): 1759-1768
    [135] Handcock J W, Metal. Sci., 1976, 10: 319-325
    [136] Hill et al., Modeling solid-state Diffusion Bonding. Acta Metall. 1989, (3) 18: 2425-2437
    [137] 西口共之,高桥康夫,小口力,结合机构领域による固相结合过程の检讨.溶接学会论文集,1986, (2)4: 311-316
    [138] 西口共之,高桥康夫,基本的な结合机构に基づく 固相结合过程の定量的检讨,结合过程のモヂル化モその数值计算による检讨. 溶接学会论文集,1985, (2)3: 303-308.
    [139] 高桥康夫,井上胜敬,高温固相结合加工中のモデリングとシミェレ 一 シヨン粘塑性变形机构による结合界面上の孔隙收缩(第一报).高温学会志,1997, (4)23: 136-144
    [140] 高桥康夫,井上胜敬,高温固相结合加工中のモデリングとシミェレ 一 シヨン粘塑性变形机构による结合界面上の孔隙收缩(第二报) ,高温学会志,1997, (5)23: 180-189.
    [141] 高桥康夫,表面-界面における空孔孳动.溶接学会志,1995, (4)64:79-84.
    [142] 张九海,何鹏,扩散连接接头行为数值模拟的发展现状.焊接学报,2000, (4)21: 84-91
    [143] Kalin M., Vizintin. J., Vleugel. J. etal, Influence of mechanical pressure and temperature on the chemical interaction between steel and silicon nitride ceramic. Journal of Materials Research, 2000, (6)15: 1367-1376
    [144] Tinsley, D. N. etal, The reduction of residual stress generated in metal-ceramic joining. Materials and Manufacturing process, 1998, (4)13: 491-504
    [145] Monahan R.W., Zhang Bi, etal, Residual stress and damage effect on integrity of ground silicon nitride. J. Mater. Sci., 2000, (5)35: 1154-1124
    [146] 杨敏,王春青,陈茂爱,热循环载荷下SMT含气孔焊点应力应变的数值模拟. 焊接技术,2001, (5)30: 10-11
    [147] Kovalev, Serguei , Miranzo, Pilar, Osendi, Maria, Isabel, Finite element simulation of thermal residual stress in joining ceramics with thin metal interlayer. Journal of the American Ceramic Society,1998, (9)81: 2342-2348
    [148] 何鹏,冯吉才,钱亿余,异种材料扩散连接接头残余应力的分布特征及中间层的作用. 焊接学报,2002, (1): 76-80
    [149] 张丽霞. 冯吉才. 李卓然. 刘会杰,连接温度对TiC陶瓷/铸铁钎缝处剪应力的影响. 焊接学报,2002, (4)23: 6-8
    [150] 张丽霞, 冯吉才, 李卓然, 刘会杰,钎料对TiC陶瓷/铸铁钎缝处剪应力的影响. 焊接学报,2003, (5)24: 10-12
    [151] Munz D, Sekehr M A, Yang Y Y. Thermal stresses in ceramic-metal joints with an interlayer, Journal of the American Ceramic Society. 1995, (2)78: 285-290
    [152] Frisch A, Kayaser WA, Zhang W, etal, Stress relation and bonding in Si3N4/MA6000 Joints by reactive interlayers. Acta Metallur., 1992, 40(Supplement):361-368
    [153] Y. C. Kim, et.al, Generation and reduction of residual stresses in ceramic/mental joint, Trans. JWRI,1992, (2)21: 145-151
    [154] R. kussmaul, DMunz, Residual stress in brazed ceramic-mental joints of various interface geometry and their mechanical behaviour, in:H.Krappitz, H.A. Schaeffer(Eds), Joining Ceramics,Glass and Metal, Verlag der DGG, Frankfurt, 1993, 152-159
    [155] Snejana Raevska, Reduction of the stresses introduced during the diffusion bonding of dissimilar materials. J. Mater. Proc. Tech., 1998, 77: 50-53
    [156] S. Kundu, M. Ghosh, A Laik, K. Bhanumurthy, G. B. Kale, S. Chatterjee, Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer. Mater. Sci. Eng. A, 2005, 407: 154-160
    [157] Soo Chan lee, Yong Hwan kim, Yong Deuk Lee, Analysis of creep deformation behaviors of type 2205 duplex stainless steel under continuous annealing conditions. J. Mater. Proc. Tech., 2002, 123: 185-189
    [158] 李亚江,王娟,尹衍升,马海军,Fe3Al/18-8不锈钢扩散焊界面附近的元素扩散.金属学报,2005, (2): 150-156
    [159] W. A. Soffa, D. E. Laughlin, High-strengthage hardening copper-titanium alloys: redivivus. Progress in Materials Science, 2004, 49: 347-366
    [160] 严宗达,王洪礼,热应力.高等教育出版社,1993, 76-90
    [161] 孟凡中,弹-塑性有限变形理论和有限元方法. 清华大学出版社,1985
    [162] Tz. D. Uzunov, S. I. Lambov, ST. P. Stojanov, Kinetics of solid-phase interactions in thin-film Cu/Ti system with an excess of Ti. Vacuum, 1995, (11)46: 1347-1350
    [163] Tz. D. Uzunov, S. I. Lambov, ST. P. Stojanov, Kinetics of solid-phase interactions in thin-film Cu/Ti system with an excess of Cu. Vacuum, 1996, (1)47: 61-65
    [164] H. S. Carslaw, J. C. Jaeger, Conduct Heat Solids. 1959, 207-332
    [165] I. B. Huang, S. K. Yenn in hollow cylinders for some boundary conditions I. Mathematical treatment. Materials Chemistry and Physics 2002, 74: 289-299
    [166] 黄继华, 金属及合金中的扩散. 冶金工业出版社,1996
    [167] 戚正风, 固态金属中的扩散与相变. 机械工业出版社,1998
    [168] Y. M. Sung, Determination of interdiffusion coefficient of mullite formation reaction via kinetics analysis. J. Mater. Sci. Lett. 2001, (15)20: 1433-1434
    [169] S. Dorfman, D. Fuks, Methrer., Methodological aspect of calculations of the thermodynamic factor in interdiffusion. Physical Journal, 1998, (2)3: 175-178
    [170] 徐祖耀,金属材料热力学. 科学出版社,1981
    [171] Oriani R A, et. al, Zeitschrift fur physikalische chemic neue folge, 1966, 49. 271
    [172] K.L. Johnson, K. kendall, A.D. Roberts, Surface energy and the contact of elastic solids, Proc. Roy. Soc., 1971, A 324:301-313
    [173] 何康生,曹雄夫, 异种金属焊接. 机械工业出版社,1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700