异化铁还原对水稻土中苯系物降解的强化作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异化Fe(III)还原过程对厌氧环境中有机物的代谢及一些无机物的形态转化具有显著的影响。多数异化Fe(III)还原微生物可通过利用H2和有机电子供体使Fe(III)还原,并从中获得能量进行生长。在受污染的含水土层中,异化Fe(III)还原过程通过作为污染物氧化的电子受体而使得有机污染物降解。纯培养研究进一步证实,一些异化Fe(III)还原微生物可以利用芳香化合物作为电子供体,促进芳香族碳水化合物的氧化过程。因此,异化Fe(III)还原过程在促进厌氧环境中有机污染物的降解,强化污染环境的微生物原位修复方面具有广阔的应用前景,已逐渐受到国内外学者的重视。
     本文选择我国典型的水稻土为供试材料,采用土壤泥浆厌氧恒温培养及微生物接种液混合培养的研究方法,初步探讨了厌氧微生物利用甲苯、苯胺、苯酚和苯甲酸以及作为唯一碳源时对微生物Fe(III)还原过程的影响,比较了不同浓度苯系物对Fe(III)还原过程影响的差异,以及电子穿梭体(AQDS)对Fe(III)—苯系物氧化还原体系的调节作用。通过对自然水稻土与有机质耗竭性水稻土的比较,研究了水稻土中Fe(III)还原过程对不同苯系物的利用潜力。采用模拟苯酚污染的土壤,探索了微生物Fe(III)还原过程对强化苯酚降解的可能性。主要得到以下结论:
     (1)由水稻土中提取的微生物可以利用苯系物作为唯一碳源,在厌氧降解的同时将电子转移给Fe(III),促使氧化铁还原为Fe(II),但利用不同苯系物的铁还原难易程度有所差异,铁还原率表现为苯甲酸最高(53.99 %),甲苯为最低(19.55 %)。4种苯系物作为碳源时的铁还原率均低于以葡萄糖为碳源时的铁还原率(71.16 %)。
     (2)混合培养过程中,不同浓度苯系物对氧化铁还原过程有不同程度影响。在所设置的浓度范围内,苯胺、苯酚、苯甲酸浓度为1.0~2.0 mmol/L时,促进铁还原过程;甲苯浓度为2.0~4.0 mmol/L时,促进铁还原过程。以2.0 mmol/L苯系物作为碳源时,蒽醌-2,6-二磺酸盐(AQDS)可明显地促进苯系物与氧化铁之间的电子传递。
     (3)土壤厌氧培养过程中,添加苯系物后抑制了土壤中铁还原反应,不同苯系物的抑制程度不同。苯酚、苯甲酸抑制程度较大,培养过程中基本上没有Fe(II)生成,甲苯、苯胺抑制程度较小,铁还原在一定程度上可以进行。添加外源氧化铁后,不同苯系物处理中铁还原程度都有增加,但增大程度不同,其中苯甲酸处理中Fe(II)累积量增加最多,甲苯、苯胺处理中也有一定程度增加,苯酚处理中增加程度最小。
     (4)采用耗竭性水稻土的厌氧培养过程中,添加苯系物后强烈地抑制了土壤中铁还原反应。苯酚和苯甲酸处理的抑制程度大,而甲苯和苯胺处理的抑制程度较小。和自然水稻土进行比较,有机质耗竭性水稻土中添加氧化铁后,各处理中Fe(II)累积量增加程度减小。
Dissimilatory Fe(III) reduction significantly influences the metabolize of organic compounds and the fate of inorganic compounds in anaerobic environment. Most of microbes of dissimilatory Fe(III) reduction can utilize H2 and organic electron donors so as to cause Fe(III) reduction and gain energy for growth. In the contaminated aquifers, dissimilatory Fe(III) reduction serves as the electron acceptor to oxidate the contaminants. The study of pure culture illuminate that some microbes of Fe(III) reduction can utilize aromatic compounds as electron donors, and stimulate the oxidation of aromatic compounds. So, using Fe(III) reduction to stimulate the degeneration of organic compounds in aquifers, and to strengthen the bioremediation of contaminated environments have expansive foreground, and this was gradually regarded by more and more researchers.
     In this paper, the typical paddy soils in our country were used, and the soil solutions were incubated under anoxic atmosphere. The effects of benzene analogs (toluene, aniline, phenol, benzoic acid) serve as sole electron donors and different concentrations of benzene analogs on dissimilatory iron reduction were studied, and determine if AQDS can adjust the effects; The potential of utilization of Fe(III) reduction on benzene analogs were also studied in nature soils and exhausted soils. Adopt the soil contaminated by phenol, the possibility of strengthen the degeneration of phenol by microbic Fe(III) reduction were investigated. Some conclusive results were obtained as following.
     (1) Microbes in the inoculum can utilize benzene analogs with different extent; different concentrations of benzene analogs have different effect on iron reduction, Fe(III) reaction rate of benzene acid was highest (53.99%), which of toluene was lowest (19.55%), and the Fe(III) reaction rate of different benzene analogs were lower than when glucose served as carbon source.
     (2) Different concentrations of benzene analogs have different effect on iron reduction. when the concentrations of aniline, phenol, and benzoic acid are between 1.0 and 2.0mmol/L, and the concentration of toluene is between 2.0 and 4.0mmol/L, dissimilatory iron reduction that depends upon the microorganism activities can be strengthened, and anthraquione-2,6 -disulfonate obviously promoted electrons transferred from the benzene analogs to
引文
[1] Balashova VV, Zavarzin GA. Anaerobic reduction of ferric iron by hydrogen bacteria[J]. Microbiology. 1980, 48: 635-639.
    [2] Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Advances in Microbial Physiology. 2004, 49: 219-286.
    [3] 刘志丹,周良,杜竹玮等.异化金属还原菌的研究进展[J].微生物学通报,2005, 32(5): 156-159.
    [4] 王银善,曹志方,肖华胜等.异养微生物还原氧化铁的研究[J].微生物学通报,1997, 24(3): 156-158.
    [5] 洪义国,许玫英,郭俊等.细菌的 Fe(III)还原[J].微生物学报,2005, 45(4): 653-656.
    [6] 贾国东,钟佐.铁的环境地球化学综述[J].环境科学进展,1998, 7(5): 74-84.
    [7] Lovley DR. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Microbiol Rev, 1991, 55: 259-287.
    [8] Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Adv Microb Physiol, 2004, 49:219-286.
    [9] Childers SE, Ciufo S, Lovley DR. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis[J]. Nature, 2002, 416: 767-769.
    [10] Nevin KP, Lovley DR. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens[J]. Appl Environ Microbiol 2000, 66:2248-2251.
    [11] Nevin KP, Lovley DR. Mechanisms for Fe(III) oxide reduction in sedimentary environments[J]. Geomicrobiol J, 2002, 19:141-159.
    [12] Nevin KP, Lovley DR. Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans[J]. Appl Environ Microbiol 2002, 68:2294-2299.
    [13] Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes[J]. Appl Environ Microbiol, 2003, 69:1548-1555.
    [14] Bond DR, Holmes DE, Tender LM, et al., Electrode-reducing microorganisms that harvest energy from marine sediments. Science, 2002, 295: 483-485.
    [15] Childers SE, Ciufo S, Lovley DR. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis[J]. Nature, 2002, 416:767-769.
    [16] Reguera G, McCarthy KD, Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435:1098-1101.
    [17] Newman DK, Kolter R. A role for excreted quinones in extracellular electron transfer[J]. Nature 2000, 405:94-97.
    [18] Hernandez ME, Newman DK. Extracellular electron transfer[J]. Cell. Mol. Life Sci, 2001, 58: 1562-1571.
    [19] Saffarini DA, Blumerman SL, Mansoorabadi K J. Role of menaquinones in Fe (Ⅲ ) reduction by membrane fractions of Shewanella putrefaciens [J]. J Bacterio, 2002, 184: 846 – 8481.
    [20] Myers CR, Myers JM. Cloning and sequence of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron (Ⅲ ), fumarate, and nitrate by Shewanella putrefaciens MR-1[J]. J Bacteriol, 1997, 179: 1143 – 11521.
    [21] Myers JM, Myers CR. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone[J]. J Bacteriol, 2000, 182:67-75.
    [22] Dobbin PS, Butt JN, Powell AK, et al. Characterization of a flavocytochrome that is induced during the anaerobic respiration of Fe(Ⅲ ) by Shewanella f rigidimarina NCIMB 400[J]. Biochem J, 1999, 342: 439-4481.
    [23] Reyes-Ramirez F, Dobbin P, Sawers G, et al. Characterization of transcriptional regulation of Shewanella frigidimarina Fe (Ⅲ )-induced flavocytochrome c reveals a novel iron2responsive gene regulation system[J]. J Bacteriol, 2003, 185: 4561-4571.
    [24] Gordon EJ, Pike AD, Hill AE, et al. Identification and characterization of a novel cytochrome c3 from Shewanella frigidimarina that is involved in Fe (Ⅲ ) respiration[J]. Biochem J, 2000, 349: 153-1501.
    [25] Myers JM, Myers CR. MtrB is required for proper incorporation of the cytochromes omcA and omcB into the outer membrane of Shewanella putrefaciens MR-1[J].Appl Environ Microbiol, 2002, 68: 5585 -5594.
    [26] Beliaev AS, Saffarini DA, McLaughlin J L, et al. MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1[J].Mol Microbiol, 2001, 39: 722-730.
    [27] Pitts KE, Dobbin PS, Reyes-Ramirez F, et al. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome mtrA[J]. J Bio Chem, 2003, 278: 27758-27765.
    [28] Myers JM, Myers CR. Genetic complementation of an outer membrane cytochrome omcB mutant of Shewanella putrefaciens MR-1 requires omcB plus downstream DNA[J]. Appl Environ Microbiol, 2002, 68: 2781-2793.
    [29] Seeliger S, Cord-Ruwisch R, Schink B. A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria[J]. J Bacteriol, 1998, 180: 3686-3691.
    [30] Childers SE, Ciufo S and Lovley DR. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis[J]. Nature, 2000, 416: 767-769.
    [31] Arnold RG, Hoffmann MR, Dichristina TJ. et al. Regulation of dissimilatory Fe(III) reduction activity in Shewanella putrefaciens[J]. Appl. Environ. Microbiol, 1990, 56: 2811-2817.
    [32] Newman DK, Kolter R. A role for excreted quinines in extracellular electron transfer[J]. Nature, 2000, 405:94-97.
    [33] Caccavo F, Das A. Adhesion of dissimilatory Fe(III)-reducing bacteria to Fe(III) minerals[J]. Geomicrobiol. J, 2002, 19: 161-177.
    [34] Das A, Caccavo F. Adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to crystalline Fe(III) oxides[J]. Curr. Microbiol, 2001, 42: 151-154.
    [35] Das A, Caccavo Jr F. Dissimilatory Fe(III) oxide reduction by Shewanella alga BrY requires adhesion[J]. Curr. Microbiol, 2000, 40: 344-347.
    [36] Anderson RT, Vrionis HA, Ortiz-Bernad, et al. Stimulated in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer[J]. Appl Environ Microbiol, 2003, 69: 5884-5891.
    [37] Holmes DE, Finneran KT, O’Neil R. A et al. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments[J]. Appl Environ Microbiol, 2002, 68: 2300-2306.
    [38] Roling WFM, van Breukelen BM, Braster BL, et al. Relationships between microbial communitystructure and hydrochemistry in a landfill leachatepolluted aquifer[J]. Appl Environ Microbiol, 2001, 67: 4619-4629.
    [39] Snoeyenbos-West OL, Nevin KP, Anderson RT, et al. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments[J]. Microb Ecol, 2000, 39: 153-167.
    [40] Stein L, La Duc MT, Grundl TJ, et al. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments[J]. Environ Microbiol, 2001, 3: 10-18.
    [41] Magnuson TS, Hodges-Myerson AL, Lovley DR. Characterization of a membrane-bound NADH- dependent Fe(III) reductase from the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens[J]. FEMS Microbiol Lett 2000, 185: 205-211.
    [42] Leang C, Coppi MV, Lovley DR: OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens[J]. J Bacteriol 2003, 185: 2096-2103.
    [43] Butler JE, Kaufmann F, Coppi MV, Nunez C, Lovley DR. MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens[J]. J Bacteriol 2004, 186: 4042-4045.
    [44] Methé BA, Nelson KE, Eisen JA et al. Genome of Geobacter sulfurreducens: metal reduction in subsurface environments[J]. Science, 2003, 302: 1967-1969.
    [45] Holmes DE, Nevin KP, Lovley DR: Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov[J]. Int J Syst Evol Microbiol 2004, 54: 1591-1599.
    [46] Lovley DR, Phillips EJP, Lonergan DJ, Widman PK. Fe(III) and S0 reduction by Pelobacter carbinolicus[J]. Appl Environ Microbiol, 1995, 61: 2132-2138.
    [47] Afkar E, Reguera G, Schiffer M et al. A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens. Biomed Central Microbiol, 2005, 5:41.
    [48] Vargas M, Kashefi K, Blunt-Harris EL. and Lovley, D.R. Microbiological evidence for Fe(III) reduction on early Earth[J].Nature, 1998, 395: 65-67.
    [49] Walker JCG, Brimblecombe P. Iron and sulfur in the pre-biologic ocean[J]. Precambr. Res.1985, 28: 205-222.
    [50] Kasting JF. Earth’s early atmosphere[J]. Science, 1993, 259: 920-926.
    [51] Walker JC. G. Was the Archaean biosphere upside down[J] Nature, 1987, 329: 710-712.
    [52] McKay DS, Gibson EK, Jr KL. Thomas-Deprta, et al. Search for past life on Mars: possible relic biogenic activity in Martial meteorite ALH84001[J]. Science, 1996, 273: 924-930.
    [53] Huber, R. et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 ℃ [J]. Arch. Microbiol, 1986, 144: 324-333.
    [54] Ravot, G. et al. Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales[J]. Appl. Environ. Microbiol, 1995, 61: 2053-2055.
    [55] Gates WP, Wilkinson HT, tucki JW. Swelling properties of microbially reduced Ferruginous smectites [J]. Clays and clay Minerals. 1993, 41:360-364.
    [56] Stucki, J.W. Redox Processes In Smecties: Soil Environmental Significance [J]. Adv. In GeoEcology.1997, 30:395-406.
    [57] Ponnamperuma FN. Flooing and Plant Growth[M]. New York :Academic Press. 1984, 9-45.
    [58] Ottow JCG. Iron reduction and grey formation by nitrogen-fixing. Clost ri dia Oecol, 1971, 6:164-175.
    [59] Ernstsen V, Gates WP. Microbial reduction of structural iron in clays -A renewable source ofreduction capacity. J Environ Qual, 1998, 27 (4): 761-766.
    [60] Jansson M. Anaerobic dissolution of iron-phosphorus complexes in sediment due to the activity of nitrate-reducing bacteria[J]. Microbiol Ecol, 1987, 14: 81-89.
    [61] Landa ER, Phillips EJ P and Lovley DR. Release of 226-Ra from uranium mill tailings by microbial Fe ( Ⅲ ) reduction[J]. Appl Geochem, 1992, 6: 647-652.
    [62] Gates WP, Jaunet AM. Swelling and texture of iron-bearing smectites reduced by bacteria[J]. Clays and Clay Minerals, 1998, 46(5): 487-497.
    [63] Yuan WL, et al. Chemical retardation of the reduction of flooded soils and the growth of rice[J]. Plant Soil, 1966, 25: 347-360.
    [64] 朱维琴,林咸永,章永松.铁、锰等金属元素的微生物还原及其在环境生物修复中的意义[J].应用生态学报,2003, 13(3): 369-372.
    [65] Lovley DR, Giovannoni SJ, White DC, et al. Geobacter meta11ireducens gen~ nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds. to the reduction of iron and other metals[J]. Arch Mlcroblol, 1993, 159(4): 336-344.
    [66] Lovley DR, Phillips EJP, Gorby YA, et al. Microbial reduction of uranium [J]. Nature, 1991, 350: 413-416.
    [67] Shelobolina ES, Sullivan SA, O’Neill KR, et al. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov[J]. Appl Environ Microbiol, 2004, 70(5): 2959-2965.
    [68] Tebo BM, Obraztsova AY. Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV),and Fe(III) as electron acceptors[J]. FEMS Microbiol. Lett, 1998, 162: 193-198.
    [69] Kashefi K, Lovley DR. Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum[J].Appl. Envrion. Microbiol, 2000, 66(3): 1050-1056.
    [70] Fredrickson JK, Kostandarithes HM, Li SW, et al. Reduction of Fe (III), Cr (VI), U (VI), and Tc (VII) by Deinococcus radiodurans R1 [J]. Appl. Environ. Microbiol, 2000, 66(5): 2006-2011.
    [71] Lloyd JR, Sole VA, Van Praagh CVG, et al. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria[J]. Appl. Environ. Microbiol, 2000, 66(9): 3743-3749.
    [72] Bernad IO, Anderson RT, Vrionis HA, et al. Vanadium respiration by Geobacter metallireducens: novel strategy for In situ removal of vanadium from Groundwater[J]. Appl. Environ. Microbiol, 2004, 70(5): 3091-3095.
    [73] Niggemyer A, Spring S, Stackebrandt E, et al. Isolation and characterization of a novel As(V)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacterium[J]. Appl. Environ. Microbiol, 2001, 67(12): 2256-5580.
    [74] Nevin KP, Finneran KT, Lovley DR. Microorganisms associated with uranium bioremediation in a high salinity subsurface sediment[J]. Appl. Environ. Microbiol, 2003, 69: 3672-3675.
    [75] Lloyd JR, Sole VA, Van Praagh CVG, et al. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria[J]. Appl. Environ. Microbiol, 2000, 66(9): 3743-3749.
    [76] 曲东,毛晖,曾辰.添加铬、铁及葡萄糖对土壤中异化铁环源的影响[J].西北农林科技大学学报(自然科学版),2004,32(6):43-46.
    [77] Kazumi J, H?ggblom MM, and Young LY. Degradation of Monochlorinated and NonchlorinatedAromatic compounds under iron-reducing conditions[J]. Appl. Environ. Microbiol, 1995, 61(11): 4069-4073.
    [78] Zachara JM, Fredrickson JK, Smith SC, et al. Solubilization of Fe(III) oxide-bound trace metals by a dissimilatory Fe(III)reducing bacterium[J]. Geochim. Cosmochim.Acta, 2000, 65(1): 75-93.
    [79] Parmar N, Warren LA, Roden EE, et al. Solid phase capture of strontium by the iron reducing bacteria Shewanella alga strain BrY[J].Chemical Geology, 2000, 169: 281-288.
    [80] Roden RE, Leonardo MR, Ferris FG. Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction[J]. Geochim. Cosmochim.Acta, 2002, 66(16): 2823-2839.
    [81] Lovley DR, Anderson RT. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface[J]. Hydrogeology Journal, 2000, 8: 77-88.
    [82] Rooney-Varga J, Anderson RT, Farga J. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer[J]. Appl. Environ. Microbiol, 1999, 65(7): 3056-3063.
    [83] He Q, Sanford RA. Characterization of Fe(III) reduction by Anaeromxyobacter dehalogens[J]. Appl. Environ. Microbiol, 2003, 69: 2712-2718.
    [84] Sung Y, Ritalahti KM, Sanford RA, et al. Characterization of two tetrachloroethene-reducing, acetateoxidizing bacteria and their description as Desulfuromonas michiganensis sp. novo[J] .Appl. Environ[J]. Microbiol, 2003, 69: 2964-2974.
    [85] 许玫英,钟小燕,曹渭等.脱色西瓦氏菌(Shewanella decolorations)S12T 的脱色特性[J].微生物学通报,2005,32(1):5-9.
    [86] 曲东,S. Schnell.外源氧化铁对水稻土甲烷形成的影响[J].环境科学学报,2002, 22(1): 65-69.
    [87] 曲东,S. Schnell.纯培养条件下不同氧化铁的微生物还原能力[J].微生物学报,2001, 41(6): 744-749.
    [88] Roden EE. Diversion of electron flow from methanogenesis to crystalline Fe(III) oxide reduction in carbon-limited cultures of wetland sediment microorganisms[J] Appl. Environ. Microbiol, 2003, 69(9): 5702-5706.
    [89] Kennedy LG, Everett JW. Microbial degradation of simulated landfill leachate: solid iron/sulfur interactions[J]. Advances in Environmental Research, 2001, 5: 103-116.
    [90] Lueders T, Fridrich MW. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil [J]. Appl. Environ. Microbiol, 2002, 68(5): 2484-2494.
    [91] Van Bodegom PM, Scholten JCM, Stams AJM. Direct inhibition of methanogenesis by ferric iron [J]. FEMS Microbiol. Ecol, 2004, 49: 261-268.
    [92] Bond DR, Holmes DE, Tender LM, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295(18): 483-485.
    [93] Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial cells[J]. Nature, 2003, 21(10): 1229-1232.
    [94] Maier et al. 环境微生物学(下册)[M].北京:科学出版社,2004, 488-489.
    [95] 孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001, PP: 148-150.
    [96] Lovley DR. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Microbiol Rev, 1991, 55: 259-287.
    [97] Lovely DR. Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers[J]. J Ind Microbiol, 1997b, 18: 75-81.
    [98] Christensen TH, Kjeldsen P, Albrechtsen H-J, et al. Attenuation of landfill leachate pollutants in aquifers[J]. Crit Rev Environ Sci Technol, 1994, 24:109-202.
    [99] Anderson RT, Lovley DR. Ecology and biogeochemistry of in situ groundwater bioremediation[J]. Adv Microbial Ecol, 1997, 15: 289-350.
    [100]Lovley DR, Chapelle FH. Deep subsurface microbial processes[J]. Rev Geophys, 1995, 33: 365-381.
    [101]Baedecker MJ, Cozzarelli IM, Evans JR, et al. Authigenic mineral formation in aquifers rich in organic material. 7th Int Symp on Water-Rock Interaction, Park City. AA Balkema, Rotterdam, 1992.
    [102]Lovley DR, Baedecker MJ, Lonergan DJ, et al. Oxidation of aromatic contaminants coupled to microbial iron reduction[J]. Nature, 1989, 339-:297-299.
    [103]Anderson RT, Lovley DR. Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers[J]. Bioremediation J, 1999, 3:121-135.
    [104]Tuccillo ME, Cozzarelli IM, Herman JS. Iron reduction in the materials of a hydrocarbon- contaminated aquifer[J]. Appl Geochem, 1999, 4:71-83.
    [105]Kashefi K, Tor JM, Holmes DE, et al. Geoglobus ahangari, gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor[J]. Int. J. Syst. Evol. Microbiol, 2002, 52:719–728.
    [106]Coates JD, Lonergan DJ. Desulfuromonas palmitatis sp. nov.,a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments[J]. Arch. Microbiol, 1995, 164: 406-413.
    [107]Coates JD, Ellis DJ, Gaw CV. Geothrix fermentans gen. novo sp. nov., a noval Fe(III)- reducing bacterium from hydrocarbon contaminated aquifer[J]. Internat. J. Sys. Bacteriol, 1999, 49: 1615-1622.
    [108]Lovley DR, Lonergan DJ. Anaerobic oxidtion of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15[J]. Appl. Environ. Microbiol, 1990, 56:1858-1864.
    [109]Tor JM., Lovley DR. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus[J]. Environ. Microbiol, 2001, 3: 281–287.
    [110]Lovley DR, Baedecker MJ, Lonergan DJ, et al. Oxidation of aromatic contaminants coupled to microbial iron reduction[J]. Nature, 1989, 339:297-299.
    [111]MIelcic JR, Luthy RG. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems[J]. Appl Environ Microbial, 1988, 54:1188-1198.
    [112]Coates JD, Anderson RT, Lovley DR. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions[J]. Appl Environ Microbiol, 1996a, 62:1099-1101.
    [113]Coates JD, Woodward J, Allen J, et al. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediment[J]. Appl Environ Microbiol, 1997, 63: 3589-3593.
    [114]Sanford RA, Cole JR, Tiedje JM. Characterization and description of anaeromyxobacter dehalogenans gen. nov., sp. Nov., an arylhalorespiring facultative anaerobic myxobacterium[J]. Appl Environ Microbiol, 2002, 68: 893-900.
    [115]Gerritse J, Drzyzga O, Kloetstra G, et al. Influence of different electron donors and acceptors ondehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1[J]. Appl. Environ. Microbiol, 1999, 65: 5212–5221.
    [116]Krumholz LR. Desulfuromonas chloroethenica sp. novo uses tetrachloroethylene and trichloroethylene as electron acceptors[J]. Internat. J. Syst. Bacteriol, 1997, 47: 1262-1263.
    [117]Sung Y, Ritalahti KM, Sanford RA, et al. Characterization of two tetrachloroethene-reducing, acetateoxidizing bacteria and their description as Desulfuromonas michiganensis sp. nov[J]. Appl. Environ. Microbiol, 2003, 69: 2964-2974.
    [118]He Q, Sanford RA. Induction characteristics of reductive dehalogenation in the ortho- halophenol - respiring bacterium, Anaeromyxobacter dehalogenans[J]. Biodegradation, 2002, 13: 307-316.
    [119]Glass BL. Relation between the degradation of DDT and the iron redox system in soils[J]. J Agric Food Chem, 1972, 20: 324-327.
    [120]Fredrick JK, Gorby YA. Environmental processes mediated by iron-reducing bacteria[J]. Curr Opin Biotech, 1996, 7: 287-294.
    [121]Heijman CG, Holliger C, Glaus MA, et al. Abiotic reduction of 4-chloronitrobenzene to 4- chloroaniline in a dissimilatory iron-reducing enrichment culture[J]. Appl Environ Microbiol, 1993, 59: 4350-4353.
    [122]Heijman CG, Grieder E, Holliger C, et al. Reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns[J]. Environ Sci Technol, 1995, 29: 775-783.
    [123]Lovley DR, Phillips EJP. Organic matter mineralization with reduction of ferric iron in anaerobic sediments[J]. Appl Environ Microbiol, 1986, 51: 683-689.
    [124]Lovley DR, Woodward JC. Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction[J]. Chem Geol, 1996, 132: 19-24.
    [125]Lovley DR, Fraga JL, Blunt-Harris EL, et al. Humic substances as a mediator for microbially catalyzed metal reduction[J]. Acta Hydrochim Hydrobiol, 1998, 26: 152-157.
    [126]Lovley DR, Phillips EJP. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Appl Environ Microbiol, 1988, 54(6): 1472-1480.
    [127]Lovley DR, Phillips EJP. Rapid assay for microbially reducible ferric iron in aquatic sediments[J]. Appl Environ Microbiol, 1987, 53: 1536-1540.
    [128]Lovley DR, Woodward JC, Chapelle FH. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms[J]. Appl Environ Microbiol, 1996b, 62:288-291.
    [129]Cervantes F.J., Dijksma W., Duong-Dac T. et al. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors[J]. Appli. Envrion. Microbiol. 2001, 67(10): 4471-4478.
    [130]Bond DR, Lovley DR. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinines[J]. Environ Microbiol, 2002, 4(2): 115-124.
    [131]Lovley DR, Coates JD, Blunt-Harris EL, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996a, 382: 445-448.
    [132]Lovley DR, Fraga JL, Blunt-Harris EL, et al. Humic substances as a mediator for microbially catalyzed metal reduction[J]. Acta Hydrochim Hydrobiol, 1998, 26: 152-157.
    [133]Nevin KP, Lovley DR. Potential for nonenzymatic reduction of Fe(III) during microbial oxidation oforganic matter coupled to Fe(III) reduction[J]. Envion Sci Technol, 2000, 34: 2472-2478.
    [134]Anderson RT, Rooney-Varga J, Gaw CV, et al. Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers[J]. Environ Sci Technol, 1998, 32:1222-1229.
    [135]Bekins BA, Godsy EM, Warren E. Distribution of microbial physilolgic types in an aquifer contaminated by crude oil[J]. Microbial Ecol, 1999, 37: 263-275.
    [136]Coates JD,Lonergan DJ, Jenter H, et al. Isolation of Geobacter species from diverse sedimentary environments[J]. Appl Environ Microbiol, 1996b, 62: 1531-1536.
    [137]Synoeyenbos-West OL, Nevin KP, Lovley DR. Stimulation of dissimilatory Fe(III) reduction results in a predominance of Geobacter species in a variety of sandy aquifers. Microbial Ecol, 2000, 39: 153-167.
    [138]Anderson RT, Vrionis HA, Ortiz-Bernad I, et al. Stimulated in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer[J]. Appl Environ Microbiol, 2003, 69: 5884-5891.
    [139]Holmes DE, Finneran KT, O’Neil RA, et al. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments[J]. Appl Environ Microbiol, 2002, 68: 2300-2306.
    [140]Roling WFM, van Breukelen BM, Braster BL, et al. Relationships between microbial community structure and hydrochemistry in a landfill leachatepolluted aquifer[J]. Appl Environ Microbiol, 2001, 67: 4619-4629.
    [141]Snoeyenbos-West OL, Nevin KP, Anderson RT, et al. Enrichment of Geobacter species in response to stimulation of Fe(III) reduction in sandy aquifer sediments[J]. Microb Ecol, 2000, 39: 153-167.
    [142]Stein LY, La Duc MT, Grundl TJ, et al. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments[J]. Environ Microbiol, 2001, 3: 10-18.
    [143]Bond DR, Holmes DE, Tender LM, et al. Electrode-reducing microorganisms that harvest energy from marine sediments[J]. Science, 2002, 295: 483-485.
    [144]Holmes DE, Bond DR, O’Neil RA, et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol, 2004, 48(2): 178-190.
    [145]Tender LM, Reimers CE, Stecher HA, et al. Harnessing microbially generated power on the seafloor[J]. Nat Biotechnol, 2002, 20: 821-825.
    [146]Lovley DR. Microbial Fe(III) reduction in subsurface environments. FEMS Microbial. Reviews. 1997, 20: 305-313.
    [147]Lovley DR., Woodward JC, Chapelle FH. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands[J]. Nature, 1994, 370: 128-131.
    [148]Krumholz LR, Sharp R, Fishbain SS. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation[J]. Appl Environ Microbiol, 1996, 62(11): 4108-4113.
    [149]Schwertmann U, Cornell RM. Iron oxides in the Laboratory: Prepartion and charcterization[M]. VCH, Weinheim. 1991. 69-144.
    [150]Schnell S, Ratering S. Simultaneous determination of iron(III), iron(II), and Manganese(II) in Environmemtal Samples by Ion Chromatography. Envirn. Sci. Technol. 1998. 32: 1530-1537.
    [151]孙丽蓉,曲东,王旭刚.土壤微团聚体中氧化铁的异化还原能力[J].西北农林科技大学学报(自然科学版),2004, 32(10):47-50.
    [152]曲东,贺江舟,孙丽蓉.不同水稻土中氧化铁的微生物还原特征[J].西北农林科技大学学报(自然科学版),2005,33(4): 97-101.
    [153]曲东,张一平,Schnell S 等.水稻土中铁氧化物的厌氧还原及其对微生物过程的影响[J].土壤学报, 2003,40(6): 858-863.
    [154]Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentration in methanogenic soil and sediments [J]. FEMS Microboil. Ecol. 1999, 28: 193-20.
    [155]曲东,张一平,Sylvia Schnell.添加氧化铁对土壤中 H2、CO2、和 CH4 形成的影响[J].应用生态学报.2003, 14(8): 1311-1313.
    [156]Stumn W, Sulzberger B. The cycling of iron in natural environments: considerations based on laboratory studies of heterogeneous redox processes[J]. Geochim. Cosmochim. Acta, 1992, 56: 3233-3257.
    [157]Lovley, D.R. Bioremediation of organic and metal contaminants with dissimilatory metal reduction[J]. J. Industr. Microbiol, 1995, 14: 85-93.
    [158]平立凤,骆永明.有机质对多环芳烃环境行为影响的研究进展[J].土壤(Soils), 2005, 37(4): 362-369.
    [159]巩宗强,李培军,郭书海等.多环芳烃污染土壤的生物泥浆法修复[J].环境科学, 2001, 22(5): 112-116
    [160]裘娟萍.耕地受多效唑农药污染后的再生修复技术[J].土壤学报,2002, 39(1): 45-51.
    [161]蒋建东,张瑞福,何健等.细菌对环境污染物的趋化性及其在生物修复中的作用[J].生态学报,2005, 25(7): 1764-1771.
    [162]徐琪.水稻土研究的进展[J].土壤,1989,21( 4):192-195.
    [163]麦克拉伦 AD,闵九康,关松荫等译.土壤生物化学[M].北京:农业出版社 1984,pp 402-409.
    [164]保学明.铁、锰.见:于天仁,水稻土的物理化学[M]. 北京:科学出版社社,1983,pp 94-108.
    [165]陈家坊.水稻土的氧化物.见:李庆逵,中国水稻土[M].北京科学出版社,1992,pp 155-161.
    [166]川口桂三郎.汲惠吉译.水田土壤学[M].北京:农业出版社,1985,25-43,182-207,pp 288-291.
    [167]薛德榕.淹水土壤电化学的变化与水稻生长.水稻生理生态译丛(二)[M].北京:农业出版社,1982,pp 67-76.
    [168]薛德榕.水稻土的化学变化.水稻生理生态译丛(二)[M].北京:农业出版社,1982,pp 79-83.
    [169]陈家坊,何群,邵宗臣等.土壤中氧化铁的活化过程的探讨[J].土壤学报,1983,20(4):387-392.
    [170]陈同斌,陈志军.溶解性有机质对土壤中污染物吸附和解吸过程的影响[J].植物营养与肥料学报, 1998,4(3):201-210.
    [171]ChiouCT, Malcolin RL, Brinton TI, et al. Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids[J]. Environ Sci Technol, 1986, 20: 502-508.
    [172]Maxin CR, Kǒgel-Knaber I. Partitioning of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter[J]. EurJ Soil Sci, 1995, 46: 193-204.
    [173]Raber B, Kǒgel-Knaber I, Stein C, et al. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils[J]. Chemosphere, 1998, 36(1): 79-97.
    [174]Barriuso E, Baer U, Caivet R. Dissolved organic matters and adsorption-desorption of dimefuron, atrazine and carbetamide by soils[J]. J Environ Qual, 1992, 21: 359-367.
    [175]Kǒgel-Knaber I, Totsche KU. Desorption of polycyclic aromatic hydrocarbons from soil in the presence of dissolved organic matters[J]. J Environ Qual, 2000, 21: 906-916.
    [176]Hǒss H, Traunspurger W. Effects of dissolved organic matters on the bioconcentration of organic chemicals in aquatic organisms[J]. Chemosphere, 1998, 37(7): 1335-1362.
    [177]Kǒgel-Knaber I, Totsche KU. Influence of dissolved and colloidal phase humic substances on the transport of hydrophobic organic contaminants in soils[J]. Phys Chem Earth, 1998, 23(2): 179-185.
    [178]Yongkoo S, Linda SL. Effects of dissolved organic matters in treated effluents on sorption of atrazine and prometryn by soils[J]. Soil Sci Soc, 2000, 64: 1976-1983.
    [179]Arvola L, Tulonen T. Effects of allochthonous dissolved organic matters and inorganic nutrients on the growth of bacteria and algae from a highly humic lake[J]. Environ Int, 1998, 24(5-6): 509-520.
    [180]Thornton SF. Attenuation of landfill leach ate by UK Triassic sandstone aquifer materials II.Sorption and degradation of organic pollutants in laboratory columns[J]. J Contam Hydro, 2000, 43: 355-383.
    [181]凌婉婷,徐建民,高彦征等.溶解性有机质对土壤中有机污染物环境行为的影响[J].应用生态学报, 2004, 15(2): 326-330.
    [182]沈锡辉,刘志培,王保军等.苯酚降解菌红球菌 PNAN5 菌株(Rhodococcus sp. strain PNAN5)的分离鉴定、降解特性及其开环双加氧酶性质研究[J].环境科学学报, 2004, 24 (3): 482 - 486.
    [183]HARAYAMA S, TIMM IS K N. Metal ions in biological systems[M]. New York: Marcel Dekker Inc, 1992, 99-156.
    [184]ARAD H T,OH IS H I, CHANGM Y, et al. Arrangement and regulation of the genes formeta - pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441[J]. Microbiology, 2000, 146: 707-715
    [185]向述荣,林 敏. 苯酚的生物降解基因组成及其调控机制[J].微生物学杂志,2001,21(3):48- 53.
    [186]宋建华,宋冬林,陈 涛等.五氯酚( PCP)高效降解菌 Pseudomonas sp. CS5 的研究[J].应用与环境生物学报,2000, 6 (6): 586-592.
    [187]Folsom B R , Chapman P J , Pritchard P H. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4 : Kinetics and interactions between substrates[J]. Appl Environ Microbiol, 1990, 56(5): 1279-1285.
    [188]Lack A, and G. Fuchs. Carboxylation of phenylp hosphate by phenol carboxylase, an enzyme system of anerobic phenol metabolism[J]. J.B, 1992, 174(11): 3629-3636.
    [189]Latha S; Mahadevan A. Review: role of rhizobia in the degradation of aromatic substances[J]. Washington, USA, American Chemical Society, 1997, 13(6): 601-607.
    [190]Muller C. Carbon catabolite repression of phenol degradation in P. Putida is mediated by the inhibition of the activator protein phlR[J]. J.B. 1996, 178(7): 2030-2036.
    [191]Frédéric Ampe, David Léonard, and Nicholas D. Lindley. Repression of phenol catabolism by organic acid in Ralstonia eutropha[J]. Appl. Environ. Microbiol, 1998, 64 (1): 1-6.
    [192]Wang KW, Baltzig BC and Cewandonski GA. Kinetics of phenol biodegradation in the presence of glucose[J]. Biotechnology and Bioengineering, 1996, 51 (1): 87-194.
    [193]伊萍,杨彦希,杨惠芳.麦芽糖假丝酵母 10-4 降解酚类化合物的研究[J].环境科学,1997,18 (1): 10-13.
    [194]陈明,张维,徐玉泉等.醋酸不动杆菌PHEA-2对苯酚的降解特性研究[J].中国环境科学,2001,21(3): 226 - 229.
    [195]李淑彬,陈振军.微生物降解酚类化合物的研究进展[J].华南师范大学学报(自然科学版),2005, 4: 136-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700