低压高性能采样/保持电路的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随数字工艺Scaling技术的不断发展和片上系统集成的需求,低压技术成为实现高端模数转换器(Analog-to-Digital Converter)ADC的发展趋势之一。与此同时,高清数字视频和无线射频技术的进步对ADC速度和精度也提出了更高要求。因此,研究对ADC系统速度、精度和功耗有着重要影响的采样/保持(Sample and Hold)S/H模块如何在低压下达到高性能成为热门课题。
     本文源于S/H基本理论,从采样开关、跨导放大器(Operational TransconductanceAmplifier)OTA和S/H电路拓扑结构三个方面研究和探讨了在低压工艺下实现高性能S/H电路的难点和相关技术方法,并基于SMIC Si 0.18μm CMOS工艺模型进行了设计和验证。
     首先,推导了电源电压V_(DD)按比例减小的情况下S/H电路各主要参数之间的制约关系:要保持精度N不变,电路允许的最小噪声电压σ也必须按比例减小,由带宽GBW和采样率f_s决定的速度均需不同程度下降;当工艺线宽L、GBW、f_s和N均恒定时,功耗反而会上升,要降低功耗则要牺牲速度和精度;当深亚微米工艺中L足够小使V_(DD)随之线性减小时,功耗在GBW、f_s、N恒定情况下降低。
     其次,在对比总结采样开关各种非理想因素及其相关解决技术基础上,提出了一种高线性度无馈通双边对称(No-Feedthrough Double-Side Symmetrical)NFDSS栅压自举NMOS采样开关;在1.8V电源电压下,仿真测试了8种类型采样开关并比较其在满摆幅输入下导通电阻R_(on)曲线,得到该NFDSS开关具有仅不足4Ω最小且最稳定的R_(on),更适合低压高性能应用。
     接着,通过求证适合高性能S/H系统OTA的增益自举和无电容前馈补偿技术增益带宽设计规则,提出了一种高增益大带宽大摆幅的共源共栅跨导前馈补偿(Cascode Gm-FeedForwrd)CGFF两级全差分OTA,其性能优于传统套筒式、折叠式共源共栅Cascode-OTA和Miller补偿两级OTA。
     然后,从分析相关双采样(Correlated Double Sampling)CDS原理和比较不同CDS技术入手,揭示了它与S/H原理的相关性,并将同向宽带CDS原理应用于传统电荷转移型S/H电路,获得能消除OTA失调、低频噪声和开关电荷注入等直流误差且增益误差远低于传统值的CDS-S/H拓扑。
     最后,综合前述不同技术,在3.3V电源电压下,提出了12bit精度100Msps采样率S/H电路的3例设计方案。优化的仿真结果表明:应用NFDSS栅压自举采样开关和增益95.47dB带宽760MHz相位裕度59.56°增益自举OTA的方案Ⅰ得到了84.24dB-SFDR;仅替换90.39dB增益726.9MHz带宽CGFF-OTA的方案Ⅱ比方案Ⅰ功耗低10.69mW且平台稳定时间长6.3%;改用CDS-S/H拓扑结构的方案Ⅲ相比方案Ⅰ与Ⅱ有最小增益误差0.1199‰,OTA结构最为简单,增益仅需69.96dB。
     3例方案均实现了12bit、100Msps S/H电路,验证了本文提出技术方法的可行性,从不同角度克服了S/H电路精度N、带宽GBW、采样率f_s和功耗等指标之间相互制约的性能瓶颈,为解决低压带来的设计难题提供了可选途径。
     上述理论和方法可望用于高性能流水线Pipeline ADC的前端S/H模块实现和相关技术领域的进一步研究探讨。
With the continued developing of digital process scaling down and the demand of system-on-chip, low-voltage technology has became one of the trends of achieving high-end Analog-to-Digital Converters (ADC). At the same time, progress of high-definition television and wireless radiofrequency technologies has also requested higher ADC's speed and accuracy. So, study of low-voltage high-performance Sample-and-Hold(S/H) module which has an important impact of ADC's speed, resolution and power dissipation is a hot subject.
     In this thesis, stemming from S/H basic theory, the difficulties and related technical methods of achieving high-performance S/H circuit under low-voltage are researched and discussed from three areas which are sampling switch, Operational Transconductance Amplifier (OTA) and S/H circuit topology, and, designs and authentications are also gived based on SMIC Si 0.18μm CMOS process.
     Firstly, the constrained interactions between several main parameters of S/H circuits and the declining supply voltage V_(DD) are derived. If resolution N is kept constant, the minimum limited noise voltageσmust be lower, and speed determined by either bandwidth GBW ox sampling frequency f_s will drop by different levels. Power dissipation will rise inversely if all of process linewidth L, N, GBW and f_s are kept constant, so speed and resolution need to be sacrificed to save the power. In deep sub-micro process power dissipation will be reduced if all of N, GBW and f_s are kept constant when L is small enough that V_(DD) scales down linearly with it.
     Secondly, on the basis of aggregating and comparing main non-ideal factors and relative technical solution, a high-linearity No-Feedthrough Double-Side Symmetrical (NFDSS) gate-voltage bootstrapped sampling switch is presented. By testing eight different kinds of switches in simulation under 1.8V-supply voltage and comparing the curve of the on-state resistant R_(on) with full-swing input, it is got that this NFDSS switch with R_(on) less than 4Ωwhich is the smallest and the most stable of all is more suitable for low-voltage high-performance applications.
     Thirdly, by the confirmation of the gain-bandwidth design rules of gain-boost and no-capacitor feedforward compensation technology of OTA suitable for high-performance S/H system, a high-gain wide-band large-swing Cascode Gm-FeedForwrd (CGFF) two-stage differential OTA is proposed, of which the performance is better than that of traditional telescope or folded cascode OTA and Miller compensation two-stage OTA.
     Then, from Correlated Double Sampling (CDS) theory and comparative analysis of different CDS technologies, the correlation in the principle with S/H is revealed, and, a CDS-S/H topology is got from a traditional charge-transferring S/H topology combined with a noninverting wide-band CDS topology, which can cancel the dc error such as OTA's offset, low frequency noise and charge injection of switches and achieve much lower gain-error synchronously.
     Finally, three design strategies are also proposed for 12bit-resolution 100Msps-speed S/H circuit by different configurations with the above modules under 3.3V-supply voltage. The optimized simulation results show that strategy I of the NFDSS gate-voltage bootstrapped sampling switch and 95.47dB-gain 760MHz-bandwidth 59.56°-phase margin gainboost cascode OTA attains 84.24dB-SFDR, strategy II has 10.69mW lower power dissipation and 6.3% longer hold time than strategy I with the replacement of the 90.39dB-gain 726.9MHz-bandwidth CGFF-OTA, and, by using the CDS-S/H topology, strategy HI gets the smallest gain-error 0.1199%o, of which the OTA is the simplest and only needs 69.96dB-gain.
     So, all of the three strategies have achieved 12bit 100Msps S/H circuit and verified the feasibility of the technical methods introduced in mis paper, which overcome the performance bottleneck of the constrained interactions between specifications such as N, GBW,f_s, power dissipation et al. from different angles and offer some optional ways towards solving design problems caused by low-voltage.
     The above theory and methodology are suitable for the front-end S/H module of high-performance pipeline ADC and further research and discussion of relative technical aspects.
引文
[1] Behzad Razavi. Principles of Data Conversion System Design. New York, IEEE Press, 1995
    
    [2] Rudy van de Plassche. CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters.2~(nd) edition, Dordrecht, the Netherlands, Kluwer Academic Publishers, 2003
    
    [3] Sanjit K-Mitra. Digital Signal Processing. 2~(nd) edition, University of California, Santa Barbara,Tsinghua University Press, 2001
    
    [4] J. C. Rudell, J. A. Weldon, J. J. Ou, et al.. An Integrated GSM/DECT Receiver. Design Specifications , UC Berkeley Electronics Research Laboratory Memorandum, Memo #: UCB/ERLM97/82
    
    [5] Keith Ken Onodera. Low-Power Techniques for High-Speed Wireless Baseband Applications.Doctor dissertation, UC Berkeley, 2002
    
    [6] Yun Chiu. High-Performance Pipeline A/D Converter Design in Deep-Submicron CMOS.Doctor dissertation, UC Berkeley, 2004
    
    [7] Shouri Chatterjee, Peter R.Kinget. A 0.5-V 1-Msps Track-and-Hold Circuit With 60-dB SNDR.IEEE, JSSCC, April 2007, Vol.42(4):722-729
    
    [8] Chi-Chang Lu, Jyun-Yi Wu, Tsung-Sum Lee. A 1.5V 10-b 30-MS/s CMOS PipelinedAnalog-to-Digital Converter. IEEE, ISCAS2007, May 27-30:1955-1958
    
    [9] Kazutaka Honda, Masanori Furuta, Shoji Kawahito. A Low-Power Low-Voltage 10-bit 100-MSample/s Pipeline A/D Converter Using Capacitance Coupling Techniques. IEEE, JSSCC, April2007, Vol.42(4):757-765
    
    [10] J.K.Seon, K.H.Nam, S.H.Kang, et al.. A Simple and Accurate Track-and-Hold Circuit usingOperational Transconductance Amplifier. IEEE, ISSCS2007, July 13-14, Vol. 1:1-4
    
    [11] Pieter Harpe, Athon Zanikopoulos, Hans Hegt, et al.. Analog Calibration of Mismatches in an Open-Loop Track-and-Hold Circuit for Time-Interleaved ADCs. IEEE, ISCAS2007, May 27-30:1951-1954
    
    [12] Patrick Satarzadeh, Bernard C.Levy, Paul J.Hurst, et al.. Bandwidth Mismatch Correction for a Two-Channel Time-Interleaved A/D Converter. IEEE, ISCAS2007, May 27-30:1705- 1708
    
    [13] HirokazuYoshizawa, Gabor C.Temes. Predictive Switched-Capacitor Track-and-Hold Amplifier with Improved Linearity. IEEE, ISCAS2007, May 27-30:233-236
    
    [14] Takahide Sato, Shigetaka Takagi, Nobuo Fujii. Low-power design technique for flash A/Dconverters based on reduction of the number of comparators. IEEE, ISCAS2007, May27-30:3606- 3609
    
    [15] Nicodimus Retdian, Shigetaka Takagi, Nobuo Fujii. Improvement of Bootstrapped Switchusing Track and Precharge Phase. IEEE, ISCAS2007, May 27-30:3335-3338
    
    [16] Johan F.Witte, Kofi A.A.Makinwa, Johan H. Huijsing, et aL A CMOS Chopper Offset-Stabilized Opamp. IEEE, JSSCC, July.2007, Vol.42(7): 1529-1535
    
    [17] Y. Bouvier, A. Konczykowska, A. Konczykowska, et al.. A 20-GSamples/s Track-HoldAmplifier in InP DHBT Technology. IEEE, 2007 European Microwave Integrated CircuitConference(EuMIC), Oct. 8-10:1-4
    
    [18] Chi-Chang Lu, Tsung-Sum Lee. A 10-bit 60-MS/s Low-Power CMOS Pipelined Analog-to-Digital Converter. IEEE, Transactions on Circuits and Systems, Aug.2007, Vol. 54(8):658- 662
    
    [19] Lei Wang, Junyan Ren, Wenjing Yin, et al.. A High-Speed High-Resolution Low-DistortionCMOS Boot- strapped Switch. IEEE, ISCAS2007, May 27-30:1721 -1724
    
    [20] Sidong Zhang, Lu Huang, Beiyuan Lin. Design of A Low-power, High Speed Op-amp for 10bit300-Msps Parallel Pipeline ADCs. IEEE, 2007 International Conference on IntergrationTechno- logy(ICIT), March 20-24:504-507
    
    [21] Ke Liu, Haigang Yang. Optimum design of a fully differential 12bit 100MS/s sample and holdmodule with over 77dB SFDR. IEEE, 2007International Conference on ASIC(ASICON),Oct.22-25:442-445
    
    [22] Liu Zao, Cheng Jun, Chen Guican. The design and optimization of gain-boosted OTA for highspeed and high accuracy sample and hold amplifier. IEEE, 2007 International Conference onASIC (ASICON), Oct.22-25:461-464
    
    [23] Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab. Signals and Systems. 2~(nd) edition,Cambridge, Massachusetts, Publishing House of Electronics Industry, 2002
    
    [24] David Johns, Ken Martin. Analog Integrated Circuit Design. University of Toronto, Canada,Printed in the United States of America, 1997
    
    [25] Erik Sail. Design of a Low-Power High-Performance Track-and-Hold Circuit in a 0.18μmCMOS technology. Master Thesis, Linkoping University, Sweden, 2002
    
    [26] David William Cline. Noise, Speed, and Power Trade-offs in Pipelined Analog to DigitalConverters. Doctor Thesis, U.CBerkeley, 1999
    
    [27] Phillip E. Allen, Douglas R. Holberg. CMOS Analog Circuit Design. 2~(nd) edition, Oxford??University Press, 2002
    
    [28] Mikko Waltari. Integration of High-Speed CMOS Sample-and-Hold Circuits. Master thesis, Finland, Helsinki University of Technology, 1999
    
    [29] George Chien. High-Speed Low-Power Low-Voltage Pipelined Analog-to-Digital Converter. Master thesis, U.C. Berkeley, 1993
    
    [30] Lauri Sumanen. Pipeline Analog-to-Digital Converters for Wide-Band Wireless Communications . PhD thesis, Finland, Helsinki University of Technology, 2002
    
    [31]李宏斌.10bits 100MSPS PipelinedADC的采保和时钟电路研究与设计(硕士学位论文).电 子科技大学,2005
    
    [32]吴霜毅.高速高精度采样/保持电路理论模型与技术实现(硕士学位论文).电子科技大 学,2007
    
    [33] Klaas Bult Analog Design in Deep Sub-Micron CMOS.The 26th European Solid-State CircuitConference, Sep.2000:11-17
    
    [34] Mikko Waltari. Circuit Techniques for Low-Voltage and High-Speed A/D Converters. PhDdiesis, Finland, Helsinki University of Technology, 2002.
    
    [35] Thomas B. Cho. Low-Power Low-Voltage Analog-to-Digital Conversion Techniques UsingPipelined Architectures. PhD Thesis, U.C. Berkeley, 1995
    
    [36] Andrew Masami Abo. Design for Reliability of Low-voltage Switched-capacitor Circuits. PhDThesis, U.C. Berkeley, 1992
    
    [37] Bing J. Sheu, Je-hurn Shieh, M. Patil. Modeling Charge Injection in MOS Analog Switches.IEEE Trans. CAS, 1987, vol. 34:214-216
    
    [38] G Wegmann, E .A. Vittoz, F. Rahali. Charge Injection in Analog MOS Switches. IEEE JSSC,1987, vol. 22:1091-1097
    
    [39] M. Shinagawa, Y. Akazawa, T.Wakimoto. Jitter Analysis of High-Speed Sampling Systems.IEEE JSSC, 1990, vol. 25:220-224
    
    [40] D. G Haigh, B. Singh. A switching scheme for switched capacitor filters which reduces theeffect of parasitic capacitances associated with switch control terminals. IEEE InternationalSymposium on Circuits and Systems, 1983:586-589
    
    [41] Behzad Razavi. Design of Analog CMOS Integrated Circuits. Tsinghua University Press, 2005
    
    [42] T. B. Cho, P. R. Gray. A10 b 20 Msample/s 35 mW Pipeline A/D Converter, IEEE JSSC, Mar.1995, vol. 30:166-172
    
    [43] A. M. Abo, P. R. Gray. A 1.5-V, 10-bit, 14-MS/s CMOS Pipeline Analogto-Digital Converter.??IEEE JSSC, May, 1999, vol. 34:599-606
    
    [44] M. Dessouky, A. Kaiser. Rail-to-rail operation of very low voltage CMOS switched-capacitorcircuits. IEEE, ISCAS, 30 May~2 June, 1999, vol.2:144-147
    
    [45] M. Dessouky, M. M. Louerat. Switch sizing for very low-voltage switched-capacitor circuits.IEEE, ICECS, 2-5 Sept. 2001, vol.3:1549-1552
    
    [46] Christian Lillebrekke, Carsten Wulff, Trond Ytterdal. Bootstrapped Switch In Low-VoltageDigital 90nm CMOS Technology. IEEE, 23~(rd) NORCHIP Conference, 21-21 Nov. 2005:234-236
    
    [47] Tsung-Sum Lee, Hua-Yuan Chung, Sheng-Min Cai. Design techniques for low-voltage fullydifferential CMOS switched-capacitor amplifiers. IEEE, ICCAS, 21-24 May 2006:4
    
    [48] Y. Chouia, K. EI-Sankary, A. Saleh, et al.. 14b 50MS/s CMOS Front-End Sample and HoldModule Dedicated to a Pipelined ADC. Proceedings of the 47~(th) IEEE International MidwestSymposium on Circuits and Systems, 25-28 July 2004, vol. 1:353-356
    
    [49] M. Waltari, K.Halonen. Bootstrapped switch without bulk effect in standard CMOS technology . IEEE, Electronic Letters, 6 June 2002, vol.38(12):555-557
    
    [50] Christian Jesus B. FAYOMI, Gordon W. ROBERTS, Mohamad SAWAN. Low-Voltage CMOSAnalog Switch for High Precision Sample-and-Hold Circuit Proceedings of the 43~(rd) IEEEMidwest Symposium on Circuits and Systems, 8-11 Aug. 2000, vol.2:710-713
    
    [51] Christian Jesus B. FAYOMI, Gordon W. ROBERTS, Mohamad SAWAN. Low-Voltage CMOSAnalog Bootstrapped Switch for Sample-and-Hold Circuit: Design and Chip Characterization.IEEE, ISCAS, 23-26 May 2005, vol.3:2200-2203
    
    [52] Tsung-Sum Lee, Chi-Chang Lu. A 1.5-V 50-MHz pseudodifferential CMOS sample-and-holdCircuit With Low Hold Pedestal. IEEE Trans CAS, 2005, vol.52(9): 1752- 1757
    
    [53]李福乐,李冬梅,等.一种提高流水线模数转换器速度的方法.清华大学学报,2002,42 (1):7-10
    
    [54] C.T. Chuang. Analysis of the settling behavior of an operational amplifier. IEEE JSSC, 1982, 17(l):74-80
    
    [55] Howard C. Yang, David J. Allstot. Considerations for fast settling operational amplifiers. IEEE Trans CAS, 1990,37(3):326-334
    
    [56] Ning Ning, Yu Qi, Wang Xiangzhan, et al.. A Novel Clock Feedthrough Frequency Compensation for Fast-Settling of Folded-Cascode OTA. Chinese Journal of Semiconductors, 2006, vol.27(10):1737-1741
    
    [57] Paul R. Gray, Paul J.Hurst, Stephen H. Lewis, et al. Analysis and Design of Analog IntegratedCircuits. 4~(th) Edition, Higher Education Press, 2003
    
    [58] B. Yeshwant Kamath, Robert G Meyer, Paul R. Gray. Relationship Between FrequencyResponse and Settling Time of Operational Amplifier. IEEE, JSSC, Dec. 1974, vol.9(6):347-352
    
    [59] Jie Yuan, Nabil Farhat. A Compensation-based Optimization Methodology for Gain-BoostedOpamp. IEEE, ISCAS, 23-26 May 2004, vol. 1:669-672
    
    [60] Mohanmmad Mahdi Ahmadi. A New Modeling and Optimization of Gain-Boosted CascodeAmplifier for High-Speed and Low-Voltage Applications. IEEE Tarns CAS, 2006, vol.53(3):169-173
    
    [61] Ka Nang Leung, Philip K. T. Mok. Analysis of Multistage Amplifier-Frequency Compensation . IEEE Trans CAS, vol.48(9): 1041-1056
    
    [62] Paul J. Hurst, Stephen H. Lewis, John P. Keane, et al.. Miller Compensation Using CurrentBuffers in Fully Differential CMOS Two-Stage Operational Amplifiers. IEEE Trans CAS,vol.51(2):275-285
    
    [63] Bharath Kumar Thandri, Jose Silva-Martinez, Franco Maloberti. A Feedforward Compensation for High Gain Wideband Amplifiers. The 8~(th) IEEE ICECS, 2001, vol.3:1115-1118
    
    [64] Bharath Kumar Thandri, J.S.Martinez. A Robust Feed forward Compensation Scheme forMultistage Operational Transconductance Amplifiers With No Miller Capacitors. IEEE JournalSolid- State Circuits, 2003,38(2):237-243
    
    [65] Ojas Choksi, L. Richard Carley. Analysis of Switched-Capacitor Common-Mode FeedbackCircuit IEEE Trans CAS, vol.50(12):906-917
    
    [66] Ahmed Noman, Mohamed Dessouky, Khald Sharaf. A Dual Phase SC CMFB Circuit forDouble Sampling Modulators. Proceedings of the 46~(th) IEEE Midwest Symposium on Circuitsand Systems, 27-30 Dec. 2003, vol. 1:287-290
    
    [67] Christian C. Enz, Gabor C. Temes. Circuit Techniques for Reducing the Effects of Op-AmpImperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization.Proceedings of the IEEE, Nov. 1996, vol.84:1584-1614
    
    [68] Yunteng Huang, Gabor C. Temes. Paul F. Ferguson. Reduced Nonlinear Distortion in CircuitsWith Correlated Double Sampling. IEEE, ICCAS, 12-15 May 1996, vol.l:159-162
    
    [69] Hirokazu Yoshizawa, Gabor C. Themes. Switched-Capacitors Track-and-Hold Amplifiers WithLow Sensitivity to Op-Amp Imperfections. IEEE Trans CAS, 2007,54(1):193-199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700