微管相关蛋白(MAP4)影响食管鳞癌细胞侵袭迁移的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管癌依然是严重危害人类健康的恶性肿瘤,抑制肿瘤细胞对周围组织的侵袭以及转移是有效治疗食管癌提高患者生存率的关键。寻找与食管癌侵袭迁移密切相关的基因、并对之进行功能研究,是当前的主要研究方向之一。我们实验室前期工作中发现了与肿瘤细胞侵袭、迁移和失巢凋亡相关的基因CTTN (cortactin),利用GST-Pull Down和LC-MS/MS技术,鉴定出微管相关蛋白(Microtubule-associated protein4, MAP4)存在于CTTN蛋白的复合体中。
     MAP4基因定位于3p21,其编码蛋白的主要功能是通过与微管蛋白结合稳定微管结构。目前MAP4在肿瘤中的功能几乎没有报道,为此我们对该基因在食管癌中发挥的功能以及作用机制进行了深入研究。利用组织微阵列联合免疫组织化学技术分析发现MAP4在364例食管癌中存在过表达,阳性率为62.6%。统计学分析发现,MAP4表达与淋巴结转移(P=0.0003)、病理分期(P=0.0010)以及患者术后生存时间较短(P=0.026)相关,Cox回归分析表明MAP4可作为食管鳞癌患者的独立预后因子(P=0.007)。
     我们选取高表达MAP4的Eca109和KYSE150,以及低表达MAP4的KYSE180食管癌系进行了体外功能实验,结果显示MAP4过表达不影响细胞的增殖、细胞周期和粘附能力,但敲降MAP4能明显抑制肿瘤细胞的划痕愈合、运动穿膜以及Matrigel侵袭能力。动物体内实验显示,MAP4表达降低可抑制裸鼠皮下瘤生长和实验性肺转移。
     针对MAP4影响食管癌细胞侵袭迁移能力这一表型,我们进一步探讨了MAP4发挥功能的分子机制。当降低MAP4表达时,Real-time PCR和Western blot结果显示,血管内皮生长因子(VEGFA)在mRNA和蛋白水平均下调,敲降VEGFA后,食管癌细胞的侵袭迁移能力降低。检钡VEGFA的受体VEGFRl和、EGFR2,发现在食管癌细胞系中VEGFRl表达量远远高于、EGFIR2,而且降低VEGFR1表达,细胞侵袭迁移能力也降低。这些结果提示,食管癌细胞系中MAP4在转录水平调节VEGFA,并通过VEGFA/VEGFRl下游通路影响食管癌细胞侵袭迁移能力。利用相同食管癌手术组织的连续切片分析发现,MAP4与VEGFA和VEGFR1蛋白的表达显著正相关。
     我们继而检测了与细胞侵袭迁移相关的信号通路关键节点分子,发现MAP4影响ERKl/2的磷酸化水平。敲降ERKl/2,发现细胞侵袭迁移的能力降低,而且VEGFA蛋白水平下降。免疫共沉淀(CO-IP)结果提示MAP4能与ERK1/2相互作用。机制分析结果显示,MAP4通过与ERKl/2相互作用,调节VEGFA,而且VEGFA和ERK1/2存在反馈调节,最终影响食管癌细胞的侵袭迁移。
     抑瘤实验结果显示,利用食管癌细胞诱导的皮下瘤内注射MAP4-siRNA,肿瘤的体积在注射两天后开始缩小;尾静脉注射贝伐单抗也能抑制瘤体生长;当瘤体注射MAP4-siRNA联合尾静脉注射贝伐单抗时,抑瘤效果不仅高于单独注射MAP4-siRNA,也优于单独注射贝伐单抗。
     这些资料表明,MAP4通过激活ERK1/2-VEGFA/VEGFR1-ERK1/2通路增强食管癌细胞的侵袭迁移能力,MAP4有可能可以作为独立的食管鳞癌预后标志物,并且可能成为食管鳞癌治疗的的分子靶点。
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies in the world. Cell invasion and migration are crucial steps in carcinogenesis progression that significantly contribute to tumor metastasis. We have previously reported that CTTN (cortactin) is an oncogene and exerts functions in tumor metastasis in ESCC. With GST-Pull Down and LC-MS/MS, we found that MAP4is in the CTTN-complex.
     The molecular mechanism underlying the role of MAP4in esophageal squamous cells remain unclear. We detected that high expression of MAP4is228(62.6%) in the364ESCCs, The high expression of MAP4was significantly associated with tumor stage (P=0.0010) and lymph node metastasis (P=0.0003). Kaplan-Meier analysis showed that patients with high MAP4expression had significantly poor overall survival (P=0.026). Multivariate Cox regression analysis indicated that MAP4high expression (P=0.007) was an independent prognostic factor.
     In order to characterize the role of MAP4in ESCC, we performed functional analysis by siRNA-mediated silencing. The results showed that MAP4did not influence cell proliferation, cell cycle and adhesion. Whereas MAP4RNAi decreased the ability of wound healing, haptotactic migration and matrigel invasion in Eca109and KYSE150cells.In vivo assay showed that inhibition of MAP4expression decreased tumor growth and metastasis in mouse models.
     At the molecular level, Real-time PCR and Western blot analysis showed that VEGFA were significantly reduced in MAP4-siRNA transfected Eca109and KYSE150cells and also in their culture supernatants. We then detected the levels of VEGFR1and VEGFR2expression in Eca109and KYSE150cells. The results indicated that VEGFR1expression was much higher than VEGFR2. Silencing VEGFA and VEGFR1expression also markedly inhibited the invasion and migration of Eca109and KYSE150cells. IHC showed a positive correlation between MAP4, VEGFA and VEGFR1expressions in the ESCC tissues.
     Futher analysis showed that the phosphorylation levels of ERK1/2were dramatically decreased in MAP4silenced cells, Knockdown of ERK1/2not only inhibited VEGFA expression but also suppressed the invasion and migration of Eca109and KYSE150cells. Co-immunoprecipitation (Co-Ip) assays showed that MAP4was co-immunoprecipitated with ERK1/2(Fig.4h), Knockdown of VEGFA or VEGFR1decreased the levels of phosphorylated ERK1/2. Collectively, these data suggest that there is a reciprocal activation between VEGFA/VEGFR1and ERK1/2, which contributes to the invasion and migration by MAP4in esophageal cancer cells regulated.
     An injection of MAP4-siRNA directly into the induced tumors, led to a decrease of the volume of tumor by86%as compared with the control. Injection of Bevacizumab via tail vein into nude mice suppressed the increase of the tumor volume. When combined intratumoral-injection of MAP4-siRNA with injection of Bevacizumab via tail vein, the inhibition to tumor growth was superior to that of Bevacizumab or MAP4-siRNA alone.
     In conclusion, We show that MAP4is of prognostic and therapeutic relevance. Elevated expression of MAP4protein is an independent indicator for shorter survival of the patients with ESCC. As an important regulator of ERK1/2-VEGFA/VEGFR1signaling, MAP4may serve as a candidate molecular target for ESCC therapy.
引文
Andreasen, P. A., Kjoller, L., Christensen, L., and Duffy, M. J. (1997). The urokinase-type plasminogen activator system in cancer metastasis:a review. Int J Cancer 72,1-22.
    Bachelder, R. E., Crago, A., Chung, J., Wendt, M. A., Shaw, L. M., Robinson, G., and Mercurio, A. M. (2001). Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Res 61,5736-5740.
    Bird, Z., Hard, R., Kanous, K. S., and Lindemann, C. B. (1996). Interdoublet sliding in bovine spermatozoa:its relationship to flagellar motility and the action of inhibitory agents. J Struct Biol 116,418-428.
    Brock, A., Krause, S., Li, H., Kowalski, M., Goldberg, M. S., Collins, J. J., and Ingber, D. E. (2014). Silencing HoxAl by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. Sci Transl Med 6, 217ra212.
    Brusevold, I. J., Aasrum, M., Bryne, M., and Christoffersen, T. (2012). Migration induced by epidermal and hepatocyte growth factors in oral squamous carcinoma cells in vitro:role of MEK/ERK1/2, p38 and PI-3 kinase/Akt. J Oral Pathol Med 41, 547-558.
    Bubendorf, L., Kolmer, M., Kononen, J., Koivisto, P., Mousses, S., Chen, Y., Mahlamaki, E., Schraml, P., Moch, H., Willi, N., et al. (1999a). Hormone therapy failure in human prostate cancer:analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst 91,1758-1764.
    Bubendorf, L., Kononen, J., Koivisto, P., Schraml, P., Moch, H., Gasser, T. C., Willi, N., Mihatsch, M. J., Sauter, G, and Kallioniemi, O. P. (1999b). Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 59,803-806.
    Buday, L., and Downward, J. (2007). Roles of cortactin in tumor pathogenesis. Biochim Biophys Acta 1775,263-273.
    Bulinski, J. C., and Borisy, G. G. (1980). Microtubule-associated proteins from cultured HeLa cells. Analysis of molecular properties and effects on microtubule polymerization. J Biol Chem 255,11570-11576.
    Bulinski, J. C., McGraw, T. E., Gruber, D., Nguyen, H. L., and Sheetz, M. P. (1997). Overexpression of MAP4 inhibits organelle motility and trafficking in vivo. J Cell Sci 110 (Pt 24),3055-3064.
    Burns, T. F., and Juergens, R. A. (2010). Bevacizumab in advanced lung cancer:in search of the right drug for the right patient. Oncology (Williston Park) 24,1223-1224, 1226.
    Cane, G., Ginouves, A., Marchetti, S., Busca, R., Pouyssegur, J., Berra, E., Hofman, P., and Vouret-Craviari, V. (2010). HIF-lalpha mediates the induction of IL-8 and VEGF expression on infection with Afa/Dr diffusely adhering E. coli and promotes EMT-like behaviour. Cell Microbiol 12,640-653.
    Chang, W., Gruber, D., Chari, S., Kitazawa, H., Hamazumi, Y, Hisanaga, S., and Bulinski, J. C. (2001). Phosphorylation of MAP4 affects microtubule properties and cell cycle progression. J Cell Sci 114,2879-2887.
    Chao, C., Lotz, M. M., Clarke, A. C., and Mercurio, A. M. (1996). A function for the integrin alpha6beta4 in the invasive properties of colorectal carcinoma cells. Cancer Res 56,4811-4819.
    Chapin, S. J., and Bulinski, J. C. (1991). Non-neuronal 210 x 10(3) Mr microtubule-associated protein (MAP4) contains a domain homologous to the microtubule-binding domains of neuronal MAP2 and tau. J Cell Sci 98 (Pt 1), 27-36.
    Chaturvedi, M. M., Sung, B., Yadav, V. R., Kannappan, R., and Aggarwal, B. B. (2011). NF-kappaB addiction and its role in cancer:'one size does not fit all'. Oncogene 30, 1615-1630.
    Chen, J., Braet, F., Brodsky, S., Weinstein, T., Romanov, V., Noiri, E., and Goligorsky, M. S. (2002). VEGF-induced mobilization of caveolae and increase in permeability of endothelial cells. Am J Physiol Cell Physiol 282, C1053-1063.
    Chen, J., Zhang, J., Zhao, Y, Li, J., and Fu, M. (2009). Integrin beta3 down-regulates invasive features of ovarian cancer cells in SKOV3 cell subclones. J Cancer Res Clin Oncol 135,909-917.
    Cheng, K. K., Duffy, S. W., Day, N. E., and Lam, T. H. (1995). Oesophageal cancer in never-smokers and never-drinkers. Int J Cancer 60,820-822.
    Cherng, J. M., Lin, C. M., Lin, C. L., Huang, S. M., Chang, H. L., Lee, C. C., Chiang, L. C., and Chang, P. Y. (2000). Effects of VEGF121 and/or VEGF165 gene transfection on collateral circulation development. J Formos Med Assoc 99, 603-611.
    Condeelis, J., and Segall, J. E. (2003). Intravital imaging of cell movement in tumours. Nat Rev Cancer 3,921-930.
    Cress, A. E., Rabinovitz, I., Zhu, W., and Nagle, R. B. (1995). The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev 14,219-228.
    Dankbar, B., Padro, T., Leo, R., Feldmann, B., Kropff, M., Mesters, R. M., Serve, H., Berdel, W. E., and Kienast, J. (2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95,2630-2636.
    Darrington, E., Zhong, M., Vo, B. H., and Khan, S. A. (2012). Vascular endothelial growth factor A, secreted in response to transforming growth factor-betal under hypoxic conditions, induces autocrine effects on migration of prostate cancer cells. Asian J Androl 14,745-751.
    De Falco, S., Gigante, B., and Persico, M. G (2002). Structure and function of placental growth factor. Trends Cardiovasc Med 12,241-246.
    Della Porta, P., Soeltl, R., Krell, H. W., Collins, K., O'Donoghue, M., Schmitt, M., and Kruger, A. (1999). Combined treatment with serine protease inhibitor aprotinin and matrix metalloproteinase inhibitor Batimastat (BB-94) does not prevent invasion of human esophageal and ovarian carcinoma cells in vivo. Anticancer Res 19, 3809-3816.
    Di Lorenzo, G, Buonerba, C., Biglietto, M., Scognanmiglio, F., Chiurazzi, B., Riccardi, F., and Carteni, G (2010). The therapy of kidney cancer with biomolecular drugs. Cancer Treat Rev 36 Suppl 3, S16-20.
    Enzinger, P. C., and Mayer, R. J. (2003). Esophageal cancer. N Engl J Med 349, 2241-2252.
    Eyssen-Hernandez, R., Ladoux, A., and Frelin, C. (1996). Differential regulation of cardiac heme oxygenase-1 and vascular endothelial growth factor mRNA expressions by hemin, heavy metals, heat shock and anoxia. FEBS Lett 382, 229-233.
    Ferhat, L., Represa, A., Bernard, A., Ben-Ari, Y, and Khrestchatisky, M. (1996). MAP2d promotes bundling and stabilization of both microtubules and microfilaments. J Cell Sci 109 (Pt 5),1095-1103.
    Filleur, S., Courtin, A., Ait-Si-Ali, S., Guglielmi, J., Merle, C., Harel-Bellan, A., Clezardin, P., and Cabon, F. (2003). SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 63, 3919-3922.
    Finnerty, H., Kelleher, K., Morris, G. E., Bean, K., Merberg, D. M., Kriz, R., Morris, J. C, Sookdeo, H., Turner, K. J., and Wood, C. R. (1993). Molecular cloning of murine FLT and FLT4. Oncogene 8,2293-2298.
    Fragoso, R., Elias, A. P., and Dias, S. (2007). Autocrine VEGF loops, signaling pathways, and acute leukemia regulation. Leuk Lymphoma 48,481-488.
    Friedl, P., and Alexander, S. (2011). Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147,992-1009.
    Fromes, Y, Gounon, P., Veitia, R., Bissery, M. C., and Fellous, A. (1996). Influence of microtubule-associated proteins on the differential effects of paclitaxel and docetaxel. J Protein Chem 15,377-388.
    Garidou, A., Tzonou, A., Lipworth, L., Signorello, L. B., Kalapothaki, V, and Trichopoulos, D. (1996). Life-style factors and medical conditions in relation to esophageal cancer by histologic type in a low-risk population. Int J Cancer 68, 295-299.
    Gerber, H. P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B. A., Dixit, V, and Ferrara, N. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273,30336-30343.
    Grille, S. J., Bellacosa, A., Upson, J., Klein-Szanto, A. J., van Roy, F., Lee-Kwon, W., Donowitz, M., Tsichlis, P. N., and Larue, L. (2003). The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63,2172-2178.
    Haigh, J. J. (2008). Role of VEGF in organogenesis. Organogenesis 4,247-256.
    Hamerlik, P., Lathia, J. D., Rasmussen, R., Wu, Q., Bartkova, J., Lee, M., Moudry, P., Bartek, J., Jr., Fischer, W., Lukas, J., et al. (2012). Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 209,507-520.
    Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer:the next generation. Cell 144,646-674.
    Ho, Y. T., Yang, J. S., Li, T. C., Lin, J. J., Lin, J. G, Lai, K. C., Ma, C. Y, Wood, W. G, and Chung, J. G. (2009). Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-kappaB, u-PA and MMP-2 and-9. Cancer Lett 279,155-162.
    Hu, J. Y, Chu, Z. G, Han, J., Dang, Y M., Yan, H., Zhang, Q., Liang, G. P., and Huang, Y. S. (2010). The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells. Cell Mol Life Sci 67, 321-333.
    Hutchings, H., Ortega, N., and Plouet, J. (2003). Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J 17,1520-1522.
    Iwaya, K., Norio, K., and Mukai, K. (2007a). Coexpression of Arp2 and WAVE2 predicts poor outcome in invasive breast carcinoma. Mod Pathol 20,339-343.
    Iwaya, K., Oikawa, K., Semba, S., Tsuchiya, B., Mukai, Y, Otsubo, T., Nagao, T., Izumi, M., Kuroda, M., Domoto, H., and Mukai, K. (2007b). Correlation between liver metastasis of the colocalization of actin-related protein 2 and 3 complex and WAVE2 in colorectal carcinoma. Cancer Sci 98,992-999.
    Jackson, M. W., Roberts, J. S., Heckford, S. E., Ricciardelli, C., Stahl, J., Choong, C., Horsfall, D. J., and Tilley, W. D. (2002). A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res 62,854-859.
    Jaquet, K., Krause, K., Tawakol-Khodai, M., Geidel, S., and Kuck, K. H. (2002). Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64, 326-333.
    Jemal, A., Siegel, R., Ward, E., Hao, Y, Xu, J., and Thun, M. J. (2009). Cancer statistics, 2009. CA Cancer J Clin 59,225-249.
    Kawachi, A., Ichihara, K., Hisanaga, S., Iida, J., Toyota, H., Hotani, H., and Itoh, T. J. (2003). Different protofilament-dependence of the microtubule binding between MAP2 and MAP4. Biochem Biophys Res Commun 305,72-78.
    Klein, C. A., Blankenstein, T. J., Schmidt-Kittler, O., Petronio, M., Polzer, B., Stoecklein, N. H., and Riethmuller, G. (2002). Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360,683-689.
    Koblinski, J. E., Ahram, M., and Sloane, B. F. (2000). Unraveling the role of proteases in cancer. Clin ChimActa 291,113-135.
    Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., Leighton, S., Torhorst, J., Mihatsch, M. J., Sauter, G, and Kallioniemi, O. P. (1998). Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4,844-847.
    Kremer, B. E., Haystead, T., and Macara, I. G. (2005). Mammalian septins regulate microtubule stability through interaction with the microtubule-binding protein MAP4. Mol Biol Cell 16,4648-4659.
    Kruger, A., Soeltl, R., Sopov, I., Kopitz, C., Arlt, M., Magdolen, V., Harbeck, N., Gansbacher, B., and Schmitt, M. (2001). Hydroxamate-type matrix metalloproteinase inhibitor batimastat promotes liver metastasis. Cancer Res 61, 1272-1275.
    Ku, G Y, and Ilson, D. H. (2010). Esophagogastric cancer:targeted agents. Cancer Treat Rev 36,235-248.
    Kurisu, S., Suetsugu, S., Yamazaki, D., Yamaguchi, H., and Takenawa, T. (2005). Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene 24,1309-1319.
    La Vecchia, C., and Negri, E. (1989). The role of alcohol in oesophageal cancer in non-smokers, and of tobacco in non-drinkers. Int J Cancer 43,784-785.
    Lee, G, Cowan, N., and Kirschner, M. (1988). The primary structure and heterogeneity of tau protein from mouse brain. Science 239,285-288.
    Lee, S. H., Jaganath, I. B., Manikam, R., and Sekaran, S. D. (2013). Inhibition of Raf-MEK-ERK1/2 and hypoxia pathways by Phyllanthus prevents metastasis in human lung (A549) cancer cell line. BMC Complement Altern Med 13,271.
    Lee, T. H., Seng, S., Sekine, M., Hinton, C., Fu, Y, Avraham, H. K., and Avraham, S. (2007). Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 4, e186.
    Luo, M. L., Shen, X. M., Zhang, Y, Wei, F., Xu, X., Cai, Y, Zhang, X., Sun, Y T., Zhan, Q. M., Wu, M., and Wang, M. R. (2006). Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res 66,11690-11699.
    Matsushima, K., Aosaki, M., Tokuraku, K., Hasan, M. R., Nakagawa, H., and Kotani, S. (2005). Identification of a neural cell specific variant of microtubule-associated protein 4. Cell Struct Funct 29,111-124.
    Michi, Y, Morita, I., Amagasa, T., and Murota, S. (2000). Human oral squamous cell carcinoma cell lines promote angiogenesis via expression of vascular endothelial growth factor and upregulation of KDR/flk-1 expression in endothelial cells. Oral Oncol 36,81-88.
    Montesano, R., Hollstein, M., and Hainaut, P. (1996). Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis:a review.Int J Cancer 69, 225-235.
    Muller, Y A., Li, B., Christinger, H. W, Wells, J. A., Cunningham, B. C., and de Vos, A. M. (1997). Vascular endothelial growth factor:crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci U S A 94, 7192-7197.
    Murphy, M., Hinman, A., and Levine, A. J. (1996). Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev 10,2971-2980.
    Nabeshima, K., Inoue, T., Shimao, Y., and Sameshima, T. (2002). Matrix metalloproteinases in tumor invasion:role for cell migration. Pathol Int 52, 255-264.
    Nagy, J. A., Vasile, E., Feng, D., Sundberg, C., Brown, L. F., Detmar, M. J., Lawitts, J. A., Benjamin, L., Tan, X., Manseau, E. J., et al. (2002). Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196,1497-1506.
    O'Connell, J., Bennett, M. W., O'Sullivan, G. C., Collins, J. K., and Shanahan, F. (1999). Resistance to Fas (APO-1/CD95)-mediated apoptosis and expression of Fas ligand in esophageal cancer:the Fas counterattack. Dis Esophagus 12,83-89.
    Ookata, K., Hisanaga, S., Bulinski, J. C., Murofushi, H., Aizawa, H., Itoh, T. J., Hotani, H., Okumura, E., Tachibana, K., and Kishimoto, T. (1995). Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J Cell Biol 128,849-862.
    Orringer, M. B., Marshall, B., and Iannettoni, M. D. (1999). Transhiatal esophagectomy: clinical experience and refinements. Ann Surg 230,392-400; discussion 400-393.
    Otsubo, T., Iwaya, K., Mukai, Y., Mizokami, Y., Serizawa, H., Matsuoka, T., and Mukai, K. (2004). Involvement of Arp2/3 complex in the process of colorectal carcinogenesis. Mod Pathol 17,461-467.
    Overall, C. M., and Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2,657-672.
    Pajusola, K., Aprelikova, O., Korhonen, J., Kaipainen, A., Pertovaara, L., Alitalo, R., and Alitalo, K. (1992). FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res 52,5738-5743.
    Parkin, D. M., Pisani, P., and Ferlay, J. (1993). Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 54,594-606.
    Parysek, L. M., Asnes, C. F., and Olmsted, J. B. (1984). MAP 4:occurrence in mouse tissues. J Cell Biol 99,1309-1315.
    Paulus, W., Baur, I., Beutler, A. S., and Reeves, S. A. (1996). Diffuse brain invasion of glioma cells requires beta 1 integrins. Lab Invest 75,819-826.
    Permana, S., Hisanaga, S., Nagatomo, Y, Iida, J., Hotani, H., and Itoh, T. J. (2005). Truncation of the projection domain of MAP4 (microtubule-associated protein 4) leads to attenuation of microtubule dynamic instability. Cell Struct Funct 29, 147-157.
    Pichler, J., and Marosi, C. (2011). [Drug therapy of patients with recurrent glioblastoma: is there any evidence?]. Wien Med Wochenschr 161,26-31.
    Price, D. J., Miralem, T., Jiang, S., Steinberg, R., and Avraham, H. (2001). Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ 12,129-135.
    Pulyaeva, H., Bueno, J., Polette, M., Birembaut, P., Sato, H., Seiki, M., and Thompson, E. W. (1997). MT1-MMP correlates with MMP-2 activation potential seen after epithelial to mesenchymal transition in human breast carcinoma cells. Clin Exp Metastasis 15,111-120.
    Rak, J., Filmus, J., and Kerbel, R. S. (1996). Reciprocal paracrine interactions between tumour cells and endothelial cells:the'angiogenesis progression' hypothesis. Eur J Cancer 32A,2438-2450.
    Ransford, R. A., and Jankowski, J. A. (2000). Genetic versus environmental interactions in the oesophagitis-metaplasia-dysplasia-adenocarcinoma sequence (MCS) of Barrett's oesophagus. Acta Gastroenterol Belg 63,18-21.
    Rouleau, E., Lefol, C., Bourdon, V, Coulet, F., Noguchi, T., Soubrier, F., Bieche, I., Olschwang, S., Sobol, H., and Lidereau, R. (2009). Quantitative PCR high-resolution melting (qPCR-HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements:application to MLH1 germline mutations in Lynch syndrome. Hum Mutat.
    Sanoff, H. K., and Goldberg, R. M. (2013). How we treat metastatic colon cancer in older adults. J Geriatr Oncol 4,295-301.
    Schoeffner, D. J., Matheny, S. L., Akahane, T., Factor, V., Berry, A., Merlino, G, and Thorgeirsson, U. P. (2005). VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms. Lab Invest 85, 608-623.
    Semba, S., Iwaya, K., Matsubayashi, J., Serizawa, H., Kataba, H., Hirano, T., Kato, H., Matsuoka, T., and Mukai, K. (2006). Coexpression of actin-related protein 2 and Wiskott-Aldrich syndrome family verproline-homologous protein 2 in adenocarcinoma of the lung. Clin Cancer Res 12,2449-2454.
    Sheng, S., Qiao, M., and Pardee, A. B. (2009). Metastasis and AKT activation. J Cell Physiol 218,451-454.
    Shima, D. T., Kuroki, M., Deutsch, U., Ng, Y S., Adamis, A. P., and D'Amore, P. A. (1996). The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J Biol Chem 271,3877-3883.
    Shuno, Y, Tsuno, N. H., Okaji, Y, Tsuchiya, T., Sakurai, D., Nishikawa, T., Yoshikawa, N., Sasaki, K., Hongo, K., Tsurita, G, et al. (2010). Idl/Id3 knockdown inhibits metastatic potential of pancreatic cancer. J Surg Res 161,76-82.
    Suto, K., Yamazaki, Y, Morita, T., and Mizuno, H. (2005). Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms:insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1. J Biol Chem 280,2126-2131.
    Swendeman, S., Mendelson, K., Weskamp, G, Horiuchi, K., Deutsch, U., Scherle, P., Hooper, A., Rafii, S., and Blobel, C. P. (2008). VEGF-A stimulates ADAM17-dependent shedding of VEGFR2 and crosstalk between VEGFR2 and ERK1/2 signaling. Circ Res 103,916-918.
    Tahir, S. A., Park, S., and Thompson, T. C. (2009). Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther 8,2286-2296.
    Teng, M., Jiang, X. P., Zhang, Q., Zhang, J. P., Zhang, D. X., Liang, G P., and Huang, Y S. (2012). Microtubular stability affects pVHL-mediated regulation of HIF-lalpha via the p38/MAPK pathway in hypoxic cardiomyocytes. PLoS One 7, e35017.
    Tester, A. M., Ruangpanit, N., Anderson, R. L., and Thompson, E. W. (2000). MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits. Clin Exp Metastasis 18,553-560.
    Thiery, J. P., and Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7,131-142.
    Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowicz, D., Fiddes, J. C., and Abraham, J. A. (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266,11947-11954.
    Toi, M., Kondo, S., Suzuki, H., Yamamoto, Y, Inada, K., Imazawa, T., Taniguchi, T., and Tominaga, T. (1996). Quantitative analysis of vascular endothelial growth factor in primary breast cancer. Cancer 77,1101-1106.
    Trikha, M., Timar, J., Lundy, S. K., Szekeres, K., Cai, Y, Porter, A. T., and Honn, K. V. (1997). The high affinity alphaⅡb beta3 integrin is involved in invasion of human melanoma cells. Cancer Res 57,2522-2528.
    Valastyan, S., and Weinberg, R. A. (2011). Tumor metastasis:molecular insights and evolving paradigms. Cell 147,275-292.
    van Hinsbergh, V. W., Koolwijk, P., and Hanemaaijer, R. (1997). Role of fibrin and plasminogen activators in repair-associated angiogenesis:in vitro studies with human endothelial cells. EXS 79,391-411.
    Weigand, M., Hantel, P., Kreienberg, R., and Waltenberger, J. (2005). Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 8,197-204.
    Zhang, H. T., Scott, P. A., Morbidelli, L., Peak, S., Moore, J., Turley, H., Harris, A. L., Ziche, M., and Bicknell, R. (2000). The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. Br J Cancer 83,63-68.
    Zhang, J., and Peng, B. (2007). In vitro angiogenesis and expression of nuclear factor kappaB and VEGF in high and low metastasis cell lines of salivary gland Adenoid Cystic Carcinoma. BMC Cancer 7,95.
    Zheng, Y, and Lu, Z. (2009). Paradoxical roles of FAK in tumor cell migration and metastasis. Cell Cycle 8,3474-3479.
    Akagi, I., Miyashita, M., Makino, H., Nomura, T., Hagiwara, N., Takahashi, K., Cho, K., Mishima, T., Takizawa, T., and Tajiri, T. (2008). SnoN overexpression is predictive of poor survival in patients with esophageal squamous cell carcinoma. Ann Surg Oncol 15,2965-2975.
    Akbari, M. R., Malekzadeh, R., Nasrollahzadeh, D., Amanian, D., Islami, F., Li, S., Zandvakili, I., Shakeri, R., Sotoudeh, M., Aghcheli, K., et al. (2008). Germline BRCA2 mutations and the risk of esophageal squamous cell carcinoma. Oncogene 27,1290-1296.
    Ando, T., Ishiguro, H., Kimura, M., Mitsui, A., Mori, Y, Sugito, N., Tomoda, K., Mori, R., Harada, K., Katada, T., et al. (2007). Frequent loss of the long arm of chromosome 18 in esophageal squamous cell carcinoma. Oncol Rep 17,1005-1011.
    Arai, H., Ueno, T., Tangoku, A., Yoshino, S., Abe, T., Kawauchi, S., Oga, A., Furuya, T., Oka, M., and Sasaki, K. (2003). Detection of amplified oncogenes by genome DNA microarrays in human primary esophageal squamous cell carcinoma:comparison with conventional comparative genomic hybridization analysis. Cancer Genet Cytogenet 146,16-21.
    Brown, J., Bothma, H., Veale, R., and Willem, P. (2011). Genomic imbalances in esophageal carcinoma cell lines involve Wnt pathway genes. World J Gastroenterol 17,2909-2923.
    Carneiro, A., Isinger, A., Karlsson, A., Johansson, J., Jonsson, G., Bendahl, P. O., Falkenback, D., Halvarsson, B., and Nilbert, M. (2008). Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer. BMC Cancer 8, 98.
    Chang, Y C, Yeh, K. T., Liu, T. C., and Chang, J. G. (2010). Molecular cytogenetic characterization of esophageal cancer detected by comparative genomic hybridization. J Clin Lab Anal 24,167-174.
    Chattopadhyay, I., Singh, A., Phukan, R., Purkayastha, J., Kataki, A., Mahanta, J., Saxena, S., and Kapur, S. (2010). Genome-wide analysis of chromosomal alterations in patients with esophageal squamous cell carcinoma exposed to tobacco and betel quid from high-risk area in India. Mutat Res 696,130-138.
    Egashira, A., Morita, M., Kakeji, Y., Sadanaga, N., Oki, E., Honbo, T., Ohta, M., and Maehara, Y. (2007). p53 gene mutations in esophageal squamous cell carcinoma and their relevance to etiology and pathogenesis:results in Japan and comparisons with other countries. Cancer Sci 98,1152-1156.
    Ersfeld, K. (2004). Fiber-FISH:fluorescence in situ hybridization on stretched DNA. Methods Mol Biol 270,395-402.
    Gen, Y., Yasui, K., Zen, Y., Zen, K., Dohi, O., Endo, M., Tsuji, K., Wakabayashi, N., Itoh, Y., Naito, Y., et al. (2010). SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma. Cancer Genet Cytogenet 202,82-93.
    Guo, X. Q., Wang, S. J., Zhang, L. W., Wang, X. L., Zhang, J. H., and Guo, W. (2007). DNA methylation and loss of protein expression in esophageal squamous cell carcinogenesis of high-risk area. J Exp Clin Cancer Res 26,587-594.
    Hirasaki, S., Noguchi, T., Mimori, K., Onuki, J., Morita, K., Inoue, H., Sugihara, K., Mori, M., and Hirano, T. (2007). BAC clones related to prognosis in patients with esophageal squamous carcinoma:an array comparative genomic hybridization study. Oncologist 12,406-417.
    Hu, N., Li, G., Li, W. J., Wang, C., Goldstein, A. M., Tang, Z. Z., Roth, M. J., Dawsey, S. M., Huang, J., Wang, Q. H., et al. (2002). Infrequent mutation in the BRCA2 gene in esophageal squamous cell carcinoma. Clin Cancer Res 8,1121-1126.
    Hu, N., Wang, C., Ng, D., Clifford, R., Yang, H. H., Tang, Z. Z., Wang, Q. H., Han, X. Y., Giffen, C., Goldstein, A. M., et al. (2009). Genomic characterization of esophageal squamous cell carcinoma from a high-risk population in China. Cancer Res 69, 5908-5917.
    Hu, N., Wang, C., Su, H., Li, W. J., Emmert-Buck, M. R., Li, G., Roth, M. J., Tang, Z. Z., Lu, N., Giffen, C., et al. (2004). High frequency of CDKN2A alterations in esophageal squamous cell carcinoma from a high-risk Chinese population. Genes Chromosomes Cancer 39,205-216.
    Jiang, J., and Gill, B. S. (2006). Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49,1057-1068.
    Kaushal, M., Chattopadhyay, I., Phukan, R., Purkayastha, J., Mahanta, J., Kapur, S., and Saxena, S. (2010). Contribution of germ line BRCA2 sequence alterations to risk of familial esophageal cancer in a high-risk area of India. Dis Esophagus 23,71-75.
    Kim, D. H., Muto, M., Kuwahara, Y, Nakanishi, Y, Watanabe, H., Aoyagi, K., Ogawa, K., Yoshida, T., and Sasaki, H. (2006). Array-based comparative genomic hybridization of circulating esophageal tumor cells. Oncol Rep 16,1053-1059.
    Kim, Y. R., Oh, J. E., Kim, M. S., Kang, M. R., Park, S. W., Han, J. Y, Eom, H. S., Yoo, N. J., and Lee, S. H. (2010). Oncogenic NRF2 mutations in squamous cell carcinomas of oesophagus and skin. J Pathol 220,446-451.
    Kim, Y T., Park, J. Y, Jeon, Y K., Park, S. J., Song, J. Y, Kang, C. H., Sung, S. W., and Kim, J. H. (2009). Aberrant promoter CpG island hypermethylation of the adenomatosis polyposis coli gene can serve as a good prognostic factor by affecting lymph node metastasis in squamous cell carcinoma of the esophagus. Dis Esophagus 22,143-150.
    Kwong, D., Lam, A., Guan, X., Law, S., Tai, A., Wong, J., and Sham, J. (2004). Chromosomal aberrations in esophageal squamous cell carcinoma among Chinese: gain of 12p predicts poor prognosis after surgery. Hum Pathol 35,309-316.
    Landegent, J. E., Jansen in de Wal, N., Dirks, R. W, Baao, F., and van der Ploeg, M. (1987). Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Hum Genet 77,366-370.
    Lima, S. C., Hernandez-Vargas, H., Simao, T., Durand, G, Kruel, C. D., Le Calvez-Kelm, F., Ribeiro Pinto, L. F., and Herceg, Z. (2011). Identification of a DNA methylome signature of esophageal squamous cell carcinoma and potential epigenetic biomarkers. Epigenetics 6.
    Ling, Z. Q., Li, P., Ge, M. H., Zhao, X., Hu, F. J., Fang, X. H., Dong, Z. M., and Mao, W. M. (2011). Hypermethylation-modulated down-regulation of CDH1 expression contributes to the progression of esophageal cancer. Int J Mol Med 27,625-635.
    Mohammad Ganji, S., Miotto, E., Callegari, E., Sayehmiri, K., Fereidooni, F., Yazdanbod, M., Rastgar-Jazii, F., and Negrini, M. (2010). Associations of risk factors obesity and occupational airborne exposures with CDKN2A/p16 aberrant DNA methylation in esophageal cancer patients. Dis Esophagus 23,597-602.
    Nancarrow, D. J., Handoko, H. Y, Smithers, B. M., Gotley, D. C., Drew, P. A., Watson, D. I., Clouston, A. D., Hayward, N. K., and Whiteman, D. C. (2008). Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res 68,4163-4172.
    Patel, K., Mining, S., Wakhisi, J., Gheit, T., Tommasino, M., Martel-Planehe, G, Hainaut, P., and Abedi-Ardekani, B. (2011). TP53 mutations, Human Papilloma Virus DNA and inflammation markers in Esophageal Squamous Cell Carcinoma from the Rift Valley, a high-incidence area in Kenya. BMC Res Notes 4,469.
    Qin, Y. R., Fu, L., Sham, P. C., Kwong, D. L., Zhu, C. L., Chu, K. K., Li, Y, and Guan, X. Y. (2008). Single-nucleotide polymorphism-mass array reveals commonly deleted regions at 3p22 and 3p14.2 associate with poor clinical outcome in esophageal squamous cell carcinoma. Int J Cancer 123,826-830.
    Sakai, N., Kajiyama, Y, Iwanuma, Y, Tomita, N., Amano, T., Isayama, F., Ouchi, K., and Tsurumaru, M. (2010). Study of abnormal chromosome regions in esophageal squamous cell carcinoma by comparative genomic hybridization:relationship of lymph node metastasis and distant metastasis to selected abnormal regions. Dis Esophagus 23,415-421.
    Salam, I., Hussain, S., Mir, M. M., Dar, N. A., Abdullah, S., Siddiqi, M. A., Lone, R. A., Zargar, S. A., Sharma, S., Hedau, S., et al. (2009). Aberrant promoter methylation and reduced expression of p16 gene in esophageal squamous cell carcinoma from Kashmir valley:a high-risk area. Mol Cell Biochem 332,51-58.
    Sepehr, A., Taniere, P., Martel-Planche, G., Zia'ee, A. A., Rastgar-Jazii, F., Yazdanbod, M., Etemad-Moghadam, G, Kamangar, F., Saidi, F., and Hainaut, P. (2001). Distinct pattern of TP53 mutations in squamous cell carcinoma of the esophagus in Iran. Oncogene 20,7368-7374.
    Shi, Z. Z., Liang, J. W., Zhan, T., Wang, B. S., Lin, D. C., Liu, S. G, Hao, J. J., Yang, H., Zhang, Y, Zhan, Q. M., et al. (2011). Genomic alterations with impact on survival in esophageal squamous cell carcinoma identified by array comparative genomic hybridization. Genes Chromosomes Cancer 50,518-526.
    Shibata, T., Kokubu, A., Saito, S., Narisawa-Saito, M., Sasaki, H., Aoyagi, K., Yoshimatsu, Y, Tachimori, Y, Kushima, R., Kiyono, T., and Yamamoto, M. (2011). NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia 13,864-873.
    Shiraishi, H., Mikami, T., Yoshida, T., Tanabe, S., Kobayashi, N., Watanabe, M., and Okayasu, I. (2006). Early genetic instability of both epithelial and stromal cells in esophageal squamous cell carcinomas, contrasted with Barrett's adenocarcinomas. J Gastroenterol 41,1186-1196.
    Silveira, A. P., Da Silva Manoel-Caetano, F., Aoki, S., Yamasaki, L. H., Rahal, P., and Silva, A. E. (2011). Gene mutations and polymorphisms of TP53 and FHIT in chronic esophagitis and esophageal carcinoma. Anticancer Res 31,1685-1690.
    Sugimoto, T., Arai, M., Shimada, H., Hata, A., and Seki, N. (2007). Integrated analysis of expression and genome alteration reveals putative amplified target genes in esophageal cancer. Oncol Rep 18,465-472.
    Tada, K., Oka, M., Tangoku, A., Hayashi, H., Oga, A., and Sasaki, K. (2000). Gains of 8q23-qter and 20q and loss of 11q22-qter in esophageal squamous cell carcinoma associated with lymph node metastasis. Cancer 88,268-273.
    Taghavi, N., Biramijamal, F., Sotoudeh, M., Khademi, H., Malekzadeh, R., Moaven, O., Memar, B., A'Rabi, A., and Abbaszadegan, M. R. (2010). p16INK4a hypermethylation and p53, p16 and MDM2 protein expression in esophageal squamous cell carcinoma. BMC Cancer 10,138.
    Wang, J. S., Guo, M., Montgomery, E. A., Thompson, R. E., Cosby, H., Hicks, L., Wang, S., Herman, J. G, and Canto, M. I. (2009). DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett's esophagus. Am J Gastroenterol 104,2153-2160.
    Weier, H. U. (2001). DNA fiber mapping techniques for the assembly of high-resolution physical maps. J Histochem Cytochem 49,939-948.
    Wu, Y. P., Yang, Y L., Yang, G. Z., Wang, X. Y, Luo, M. L., Zhang, Y, Feng, Y B., Xu, X., Han, Y. L., Cai, Y, et al. (2006). Identification of chromosome aberrations in esophageal cancer cell line KYSE180 by multicolor fluorescence in situ hybridization. Cancer Genet Cytogenet 170,102-107.
    Yang, Y, Chu, J., Wu, Y, Luo, M., Xu, X., Han, Y, Cai, Y, Zhan, Q., and Wang, M. (2008). Chromosome analysis of esophageal squamous cell carcinoma cell line KYSE 410-4 by repetitive multicolor fluorescence in situ hybridization. J Genet Genomics 35,11-16.
    Yao, H. Q., He, S., Wu, Y P., Wang, X. C., Han, Y L., Xu, X., Cai, Y, Wang, G. Q., and Wang, M. R. (2008). [Application of multicolor fluorescence in situ hybridization to early diagnosis of esophageal squamous cell carcinoma]. Ai Zheng 27, 1137-1143.
    Zare, M., Jazii, F. R., Alivand, M. R., Nasseri, N. K., Malekzadeh, R., and Yazdanbod, M. (2009). Qualitative analysis of Adenomatous Polyposis Coli promoter: hypermethylation, engagement and effects on survival of patients with esophageal cancer in a high risk region of the world, a potential molecular marker. BMC Cancer 9,24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700