CNG发动机典型零部件强度计算与疲劳可靠性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
配气机构和气缸盖罩是新型CNG(Compressed Natural Gas)发动机的重要组成部分。CNG发动机中气门和气门座在工作中承受极高的机械负荷、热负荷及腐蚀性气体的冲刷,常造成气门下沉、燃烧室的有害气体容积增大、气门头部断裂,严重时气门-气门座的密封作用失效,发动机性能变坏,影响发动机的正常工作,因此气门-气门座的结构性能对整车的安全性和可靠性有着重要的影响。如今镁合金已经广泛的应用于汽车工业,气缸盖罩置于气缸盖上起到密封的作用,镁合金气缸盖罩的使用使其质量有大幅度的减少,强度比钢结构件有所降低,而其处于高温的工作环境,这就要求其强度必须符合设计要求,因此气缸盖罩的强度可靠性及疲劳寿命的研究亦显得尤为重要。
     本文主要对6110中型CNG发动机中的气门-气门座及镁合金气缸盖罩两种典型部件进行了强度可靠性分析。文中首先系统地分析了气门-气门座这一对摩擦副碰撞接触应力、可靠性及疲劳寿命之间的关系。应用有限元软件LS-DYNA模拟研究了3个完整周期内气门-气门座的动态接触应力。本文还对汽缸罩盖进行了无简化实体建模,使用HYPERMESH对气缸盖罩进行网格划分,并应用有限元软件ABAQUS模拟研究气缸盖罩的热应力。
     根据计算结果可以看出,在额速工况下,气门-气门座的升程、速度与理论值吻合,加速度值偏大。气门杆头部由于存在应力集中现象而成为气门最大受力区域,但其值小于气门的最大许用应力。气门落座速度为0.2m/s,小于设计要求(0.5m/s),气门杆头部最大正应力为600MPa,小于气门最大抗拉强度1164MPa。气门座最大径向应力为80MPa,小于材料规定的疲劳极限。镁合金气缸盖罩有限元模拟得出危险点的最大热应力值为149.7MPa,小于材料的许用应力(280MPa)。为气缸盖罩的结构优化、使用维护、疲劳寿命分析等提供了理论依据。
     采用雨流计数法对气门-气门座危险点应力进行循环计数,得出随机载荷下的疲劳载荷谱,采用局部应力应变法分析气门-气门座这对摩擦副的疲劳寿命,同时运用应力-强度干涉模型得出气门-气门座系统的可靠度。计算结果表明,该摩擦副使用寿命范围为一年左右,可靠度大约是98.63%。镁合金气缸盖罩的可靠性研究采用名义应力法,通过修正零件S-N曲线和p-S-N曲线得到气缸盖罩的寿命和可靠性,得出气缸盖罩使用寿命为5万次,可靠度约为90%。二者寿命与可靠性均符合设计要求。
     本文最后对镁合金汽缸罩盖进行了模型简化,并对其进行结构优化设计。本文设计变量主要是在质量最小、强度在允许范围内镁合金气缸盖罩边缘厚度的最小值。采用ANSYS APDL参数化设计语言进行优化,得出优化后结果,气缸盖罩厚度减小24.2%,即质量减少23.6%,而最大应力值小于镁合金的许用应力。该优化结果为实际镁合金气缸盖罩优化提供了重要的参考。
Valve actuating mechanism and cylinder head cover have become an important part of new CNG(Compressed Natural Gas) engine.The valve and valve seat of CNG engine work under high mechanical load,thermal load and erosion of corrosive gases.Due to the poor working conditions,the sinking of the valve,the increasing of harmful gas in the combustion chamber and the fracture of the valve head are often happen.As a result,the engine performance is deteriorating and valve-valve seat can not work.Moreover,all of them affect the normal operation of the engine.It can be seen that the structural performances of the valve-valve seat have a significant effect on the safety and reliability of the whole vehicle.Today, magnesium alloys have been widely used in the automotive industry.For example,the cylinder head cover has an improvement on mechanical seal in high-temperature cylinder and the application of magnesium alloy cylinder head cover significantly reduce the weight of the engine although its strength is little lower than that of steel parts.Because the cylinder head cover is under the condition of high temperature,its strength must meet the requirements of design,and the study of the strength and fatigue reliability for the cylinder head cover is also particularly important.
     In this paper,strength and reliability analysis was conducted for two typical parts such as the valve-valve seat and magnesium alloy cylinder head cover in the 6110 medium-sized CNG engine.The relationship between the collision contact stress,reliability and fatigue life for the valve-valve seat was first analyzed systematically.In order to calculate the dynamic contact stress between the valve and valve seat,finite element(FE) software LS-DYNA was used for the simulation of three complete cycles.In addition,the solid model of the cylinder head cover was established and meshed by HYPERMESH.Thermal stress of the cylinder head cover is then studied by the FE software ABAQUS.
     According to the result of calculation,under the condition of rated speed,the valve lift and velocity curves are consistent with the corresponding theoretical values,but the acceleration curve is little bigger.The region of the highest stresses is in the head of the valve rod because of stress concentration,while the stress is less than the maximum allowable stress. The valve crash speed is 0.2 m/s,lower than the design requirements(0.5 m/s).The maximum normal stress of the valve head is 600 MPa,lower than the the maximum tensile strength 1164 MPa.The maximum radial contact stress of the valve seat is 80 MPa,lower than the fatigue strength.The results of finite element simulation for cylinder head cover show that the maximum thermal stress at dangerous area is 149.7MPa and it is lower than the material allowable stress(280MPa).The above mentioned research results will provide theoretical basis for structure optimization,the service life and fatigue life analysis of cylinder head cover.
     The number of full cycle can be obtained by rain-flow counting method and the fatigue load spectrum for random load can be calculated.Fatigue life of the valve and valve seat can be then calculated by local stress-strain method,the reliability of the valve and valve seat can be calculated by stress-intensity interference model at the same time.The calculation results show that the service life of the friction pair is about one year and the reliability is 98.63%.The study of the reliability for the cylinder head cover is based on the nominal stress method,that is to say, the fatigue life and reliability of the cylinder head cover is obtained by the modified S-N curve and p-S-N curve.The life of the cylinder head cover is 5×10~4 cycle,and the value of reliability is about 90%.Life and reliability of the two are in line with the design requirement.
     Finally,the magnesium alloy cylinder head cover model is simplified and optimized for structural design in the present paper.The main design variable is the minimum edge thickness of the magnesium alloy cylinder head cover under the conditions of the minimum quality and the permitted strength range.The optimization is conducted by using ANSYS APDL parametric design language.The optimized results show that the thickness,quality of the cylinder head cover can be reduced by24.2%,23.6%respectively while the maximum stress value is less than the allowable magnesium alloy stress.The optimizing results will provide an important reference for the optimization of the practical magnesium alloy cylinder head cover.
引文
[1]陈基杰,孙芃.天然气汽车的现状及发展趋势.城市燃气.2003,17(6):30-32.
    [2]张沛.CNG汽车是天然气利用的重要发展途径.石油与天然气.2008,37(1):23-26.
    [3]彭红涛.天然气汽车发展现状及对策.汽车工业研究.2006(1):47-48.
    [4]温苗苗.CNG发动机工作过程数值模拟.(硕士学位论文).武汉:武汉理工大学2004.
    [5]张德福.低散热压缩着火天然气发动机燃烧过程的实验研究.(硕士学位论文).天津:天津大学.2005.
    [6]温诗铸,黄平.摩擦学原理.北京:清华大学出版社,2002.
    [7]Taylor C.M..Valve train lubrication analysis.Vehicle Tribology,Proc.17th Leeds-Lyon Symposium on Tribology,Elsevier,Amsterdam,1991:119-131.
    [8]Mufti R A,Priest M.Experimental and theoretical study of instantaneous engine valve train friction.Journal of Tribology(Transactions of the ASME).2003,125(3),628-637.
    [9]Yasui Y,Nagai T,Tanaka T.Characteristics on dynamic strength of engine valve spring.Proceedings of the School of Engineering of Tokai University.2003,43(1),29-34.
    [10]刘忠民.配气机构动力学实验方法与模型规划研究:(博士学位论文).杭州:浙江大学,2005.
    [11]N.Q.Guo,H.Du,W.H.Li.Finite element analysis and simulation evaluation of a magnetorheological valve.The Internation Journal of Advanced Manufacturing Technology.2001,21(6),438-445.
    [12]Rui Cheng,Yong G.Lai,Krishnan B.Chandran.Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics.Annals of Biomedical Engineering,2004,32(11),1471-1483.
    [13]陶建忠.佟德辉.6200型CNG发动机气缸盖强度的有限元分析.农业机械学报,2007.38(11):205-209.
    [14]金鸿雁,周军,王霞.YZ4102QCNG发动机气缸盖罩拉深模具的设计与制造.扬州职业大学学报.2006.10(2):37-41.
    [15]陈婷,宋爱平,王召垒,金鸿燕.YZ4102QCNG发动机气缸盖罩成型模具设计与分析.模具技术.2006.6:45-48.
    [16]唐春龙.镁合金汽车发动机罩盖的结构设计与工艺优化.(硕士学位论文).沈阳:沈阳工业大学.2006.
    [17]常永贵,胡清明,刘斌,林颖.汽车发动机镁合金缸盖罩压铸过程数值模拟.计算机技术应用.2008.2:77-78.
    [18]钟舒平.气缸盖罩密封垫的密封机理及结构设计.应用技术.2007.13:29-32.
    [19]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003.
    [20]孙志礼,陈良玉.实用机械可靠性设计理论与方法.北京:科学出版社.2003.
    [21]Zhang Jianhai,Chen Dapeng,Zou Shengquan.Ale finite element analysis of the opening and closing process of the artificial mechanical valve.Applied Mathematices and Mechanics(Historical Archive),Volumel,Number 5
    [22]石亦平,周玉蓉.ABAQUS有限元分析实例详解.北京:机械工业出版社,2008.
    [23]K.C.Ramesh,R.Sagar.Fabrication of Metal Matrix Composite Automotive Parts.Advanced Manufacturing Technology,1999.15:114-118.
    [24]Lewis,R..Design and Development of a Bench Test-Rig for Investigating Diesel Engine Inlet Valve and Seat Wear.Transactings of Mechanical Engineering-IE Aust,24,1,39-46.
    [25]尚德广,王德俊.多轴疲劳强度.北京:科学出版社.2007.
    [26]Morrow J.Cyclic plastic strain energy and fatigue of metals.ASME STP378,1965:45-84
    [27]Brown M W,Miller K J.A theory for fatigue failure under multiaxial stress and strain conditions.Proc.Inst.Mechanical Engineers,1973,187:745-755.
    [28]Hoffmann M,Seeger T.Stress-strain analysis and life predictions of a notched shaft under multiaxial loading.Multiaxial Fatigue Analysis and Experiments,Ae-14,Society Engieers,Warrendale,PA,1989:81-99
    [29]Aktaa J,Schinke B.Unified modeling of time dependent damage taking into account an explicit dependency on backstress.Int.J.Fatigue,19(3):195-200.
    [30]Majumadar S,Maiya P S.A damage equation for creep-fatigue interaction.ASME-MPC Symposium on Creep-Fatigue Interaction,MPC-3,N.Y,1976:323.
    [31]周超.基于ANSYS的气门力学特性分析:(硕士学位论文).武汉:武汉理工学,2006.
    [32]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析.北京:清华大学出版社,2005.
    [33]ANSYS/LS-DYNA中国技术支持中心.ANSYS/LS-DYNA算法基础和使用方法.北京:北京理工大学,1999.
    [34]李裕春,时党勇,赵远.ANSYS 10.0/LS-DYNA基础理论与工程实践.北京:中国水利水电出版社,2006.
    [35]赵雨东,许昕,陆际清.凸轮轴下置式配气机构的一种新型动力学模型.内燃机学报,1992.
    [36]LS-DYNA KEYWORD USER'S MANUAL.LSTC.2003.
    [37]邓凡平.ANSYS10.0有限元分析自学手册.北京:人民邮电出版社.2007
    [38]唐占飞.中型CNG发动机凸轮/挺柱接触应力与疲劳磨损失效分析.(硕士学位论文).大连:大连理工大学.2008.
    [39]李厚佳,卢平.基于ANSYS的气门盘部设计参数对应力分布影响的研究.计算机应用技术.2008.4:31-35.
    [40]王琳.内燃机气门强化模拟磨损临界应力分析及有限元计算:(硕士学位论文).武汉:武汉理工大学,2000.
    [41]张京明,江浩斌.汽车工程概论.北京:北京大学出版社.2008.
    [42]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003.
    [43]CNG发动机设计手册编辑委员会.CNG发动机设计手册.北京:中国农业机械出版社,1984.
    [44]机械设计手册编委会.机械设计手册疲劳强度设计.北京:机械工业出版社,2007.
    [45]机械设计手册编委会.零件结构设计工艺性.北京:机械工业出版社,2007.
    [46]Endurance of high-strength steels.2007.
    [47]庄茁.ABAQUS有限元软件6.4版入门指南.北京:科学出版社,2004.
    [48]庄茁.ABAQUS非线性有限元分析与实例.北京:科学出版社,2005.
    [49]戴鑫鑫.发动机气缸盖内复杂流动与传热的仿真研究.(硕士学位论文).北京:北京交通大学.2008.
    [50]王淑萍.多气门气缸盖结构的研究.(硕士学位论文).太原:太原理工大学.2002.
    [51]田育耕,石晶,段敏,焦洪宇,张涛.计算机技CNG发动机气缸盖的模态分析.机械设计制造.2005(11):34-36.
    [52]吕彩琴,王良,苏铁熊.发动机气缸盖材料的疲劳性能研究.中北大报.2006,27(1):23-26
    [53]姚成.专用汽车结构拓扑优化设计及强度分析.(硕士学位论文).合肥:合肥工业大学.2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700