子午线轮胎稳态滚动阻力及水滑特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用大型有限元分析程序ANSYS,建立了子午线轮胎205/60R15的完整有限元模型。在考虑轮胎橡胶材料的非线性、帘线-橡胶材料的各向异性、轮胎大变形导致的各向异性、轮胎与轮辋的装配、轮胎与路面的接触非线性边界条件的基础上,应用改变材料方向轴的方法来模拟带束层的角度,并采用显式积分非线性动力分析程序LS-DYNA对模型进行稳态滚动分析。采用ANSYS/S-DYNA的热隐式-显式顺序求解方法对子午线轮胎滚动阻力进行了模拟分析。利用LS-DYNA的流-固耦合分析功能对子午线轮胎水滑特性进行了分析。
     本文分析了子午线轮胎在充气压力和垂直载荷下,制动、滚动、驱动工况下的胎体变形、接触压力的状态。在此基础上,根据轮胎橡胶材料滞后生热特性,采用热-结构耦合分析方法对子午线轮胎稳态滚动阻力进行了有限元分析。着重研究了轮胎行驶速度、充气压力、垂直载荷、胎冠胶弹性模量、带束层帘线角度五个参数对轮胎稳态滚动阻力的影响。结果表明行驶速度和垂直载荷对轮胎滚动阻力的影响较大,轮胎滚动阻力随行驶速度和垂直载荷的增大而增大。充气压力和带束层帘线角度对滚动阻力的影响不是特别明显。此外,本文还对轮胎在湿滑路面从行驶到发生水滑现象过程中的水流状态进行了研究。
A finite element model of radial tire which type is 205/60R15 was built by ANSYS which is a large finite element analysis procedure. Based on the consideration of nonlinear property, geometric nonlinearity caused by the large deformation of tire, assembling of tire with rim, contraction force of cord and nonlinear boundary conditions resulting from the contact of tire with road, belt angle was simulated by changing the direction of material axis and the steady state rolling analysis was performed by using LS-DYNA which is an explicit integral nonlinearity dynamical analysis procedure. The radial tire rolling resistance was simulated and analyzed by using thermal implicit-explicit order solution method of ANSYS/LS-DYNA. The fluid-solid coupling analytic function was used for the analysis of radial tire hydroplaning .
     The tire deformation and contact pressure of tire which suffered inflation pressure and vertical load in braking condition, rolling condition and driving condition was analyzed in this paper. Based on the dynamic analysis of tire and thermal energy loss, the analytic method of thermal-structure coupling was used to the finite element analysis of radial tire steady state rolling resistance. The influence of five parameters which include speed, inflation pressure, vertical load, crown compound elastic modulus and belt angle to tire steady state rolling resistance was mainly studied. The results show that speed and vertical load have an important influence on tire rolling resistance. Tire rolling resistance increase with speed and vertical load. The influence of inflation pressure and belt angle to tire rolling resistance was not very obvious. In addition, the water flow state when tire occurred hydroplaning in wet-road was studied in this paper.
引文
[1]黄文龙.子午线轮胎CAD研究[D].北京:北京化工大学,2000
    [2]颜超.子午胎整胎细致模型和胶片挤出成型的有限元分析[D].北京:北京化工大学,2008
    [3]俞淇,丁剑平,张安强.轮胎结构设计与制造工业[M].北京:化学工业出版社,2006,27
    [4]D.J.Schuring.Energy Loss of Pneumatic Tire Under Freely Rolling,Braking,and Driving Conditions[J].Tire Science and Technology,1976,4(1):3-15
    [5]#12
    [6]P.S.Pillai..Total Tire Energy Loss Comparison by the Whole Tire Hysteresis and the Rolling Rsistanee Methods[J].Tire Science and Technology,1995,23(4):256-265
    [7]J.D.Water,F.S.Conant.Energy Losses in Tire[J].Tire Science and Technology,1974,2(4):235-260
    [8]D.A.Glemming,P.A.Bowers.Tire Testing for Rolling Resistance and Fuel Economy[J].Tire Science and Technology,1974,2(4):286-311
    [9]S.K.Clark.Rolling Rsistance of Pneumatic Tire[J].Tire Science and Technology,1978,6(3):163-175
    [10]W.B.Crum,R.G.McNall.Effects of Rolling Resistance on Vehicle Fuel Consumption [J].Tire Science and Technology,1975,3(1):3-15
    [11]M.G.Bekker,E.V.Semonin.A Note on Tire Rolling Resistance Due to Test Wheel Curvature[J].Tire Science and Technology,1977,5(2):119-122
    [12]J.T.Tielking,R.A.Schapery.Energy Loss in an Analytical Membrane Tire Mode 1[J].Tire Science and Technology,1977,5(3):136-151
    [13]A.Y.C.Lou.Relationship of Tire Rolling Resistance to the Viscoelastic Properties of the Tread Rubber[J].Tire Science and Technology,1978,6(3):176-188
    [14]H.Hirakawa,A.Ahagon.New Process for Preparing Tire Tread Compounds Having Low Rolling Resistance[J].Tire Science and Technology,1982,10(1):16-22
    [15]M.K.Chakko.Analysis and Computation of Energy Loss in Radial Tires[J].Tire Science and Technology,1984,12(1):3-22
    [16]Y.D.Kwon,D.C.Prevorsek.Formation of Standing Waves in Radial Tire[J].Tire Science and Technology,1984,12(1):44-63
    [17]M.Loo.A Model Analysis of Tire Behavior Under Vertical Loading and Straight-Line Free Rolling[J].Tire Science and Technology,1985,13(2):67-90
    [18]J.R.Luchini,J.M.Peters,R.H.Arthur.Tire Rolling Loss Computation with the Finite Element Method[J].Tire Science and Technology,1994,22(4):206-222
    [19]A.Abe,T.Kamegawa,Y.Nakajima.Optimum Yong's Modulus Distribution in Tire Design [J].Tire Science and Technology,1996,24(3):204-219
    [20]H.C.Park,S.-K.Youn,T.S.Song,N.-J.Kim.Analysis of Temperature Distribution in a Rolling Tire Due to Strain Energy Dissipation[J].Tire Science and Technology,1997,25(3):214-228
    [21]T.G.Ebbott,R.L.Hohman,J.-P.Jeusette,V.Kerchman.Tire Temperture and Rolling Resistance Prediction with Finite Element Analysis[J].Tire Science and Technology,1999,27(1):2-21
    [22]A.Becker,V.Dorsch,M.Kaliske,H.Rothert.A Material Model for Simulating the Hysteretic Behavior of Filled Rubber for Rolling Tire[J].Tire Science and Technology,1998,26(3):132-148
    [23]Z.Shida,M.Koishi,T.Kogure,K.Kabe.A Rolling Resistance Simulation of Tire Using Static Finite Element Analysis[J]Tire Science and Technology,1999,27(2):84-105
    [24]W.V.Mars,J.R.Luchini.An Analytical Model for the Transient Rolling Resistance Behavior of Tire[J].Tire Science and Technology,1999,27(3):161-175
    [25]M.Shiraishi,H.Yoshinaga,A,Miyori,E.Takahashi.Simulation of Dynamically Rolling Tire [J].Tire Science and Technology,2000,28(4):264-276
    [26]G.Unnithan,R.Krishnakumar,A.Prasad.Application of a Shell-Spring Model for the Optimization of Radial Tire Contour Using a Genetic Algorithm[J]Tire Science and Technology,2003,31(1):39-63
    [27]S.Futamura,A.Goldstein.A Simple Method of Handling Thermomechanical Coupling for Temperature Computation in a Rolling Tire[J].Tire Science and Technology,2004,32(2):56-68
    [28]D.Bozdog,W.W.Olson.An Advanced Shell Theory Based Tire Model[J].Tire Science and Technology,2005,33(4):227-238.21:327-39
    [29]崔玉福,郑慕桥.负重轮轮胎滚动阻力数学模型及分析[J].兵工学报,1998,19(4):289-292
    [30]管迪华,代易宁,谢先海.利用试验模态参数建立轮胎滚动模型[J]清华大学学报(自然科学版),2003,43(8):1138-1142
    [31]管迪华,曾祥生,范成建.轮胎动态模型的阻尼和对滚动阻力及动态响应影响的分析[J].汽车工程.2006,28(7):643-646
    [32]王野平.轮胎滚动阻力及温度的预测[J].机械,2002,29:20-22
    [33]丁剑平,贾德民,俞淇.有限元法分析轮胎结构与滚动阻力的关系[J].橡胶工业,2005,52(10):592-595
    [34]丁剑平,贾德民,周小舒,周峰.子午线轮胎滚动阻力的数值模拟[J].汽车技术,2005,3:23-25
    [35]危银涛,刘宇艳,杜星文,吴宝国.子午线轮胎滚动阻力与温度场非线性有限元分析[J].轮胎工业.1998,18(6):330-335
    [36]konghui Guo,Dang Lu,Lei Ren.A unified non-steady non-liner tyre model under complex wheel motion inputs including extreme operating conditions[J].JSAE Review,2001,22:395-402
    [37]Y.-T.Wei,Z.-H.Tian,X.W.Du.A Finite Element Model for The Rolling Loss Prediction and Fracture Analysis of Radial Tire[J].Tire Science and Technology,1999,27(4):250-276
    [38]R.N.J.Saal.Laboratory investigation into the slip-periness of roads[J].Chemistry and Industry.1936,55:3-7
    [39]C.S.Martin.Hydrodynamics of tire hydroplaning[C].Final Report,Project B-608,Georgia Institute of Technology.1966
    [40]A.Eshel,A study of tire on a wet runway[J].Ampex Corp..1967,RR:67-24
    [41]A.L.Browne.Tire deformation during dynamic hydroplaning[J].Tire Science and Technology.1975,3(1):16-28
    [42]H.Grogger,M.Weiss.Calculation of the three-dimensional free surface flow around and automobile tire[J].Tire Science and Technology.1996,24(1):39-49
    [43]M.Zmindak,I.Grajciar.Simulation of the aquaplane problem[J].Computers & Structures,1997,64(5/6):1155-1164
    [44]Y.Nakajima,E.Seta,T.Kamegawa,H.Ogawa.Hydroplaning analysis by FEM and FVM:Effect of tire rolling and tire pattern on hydroplaning[J].International Journal of Automotive Technology.2000,1:26-34
    [45]T.Okano,M.Koishi.A new computational procedure to predict transient hydroplaning performance of a tire[J].Tire Science and Technology.2001,29(1):2-22.
    [46]M.Koishi,T.Okano,L.Olovsson,H.Saito,M.Makino.Hydroplaning simulation using fluid-structure interaction in LS-DYAN[C].the 3~(rd) European LS-DYNA UsersConference.2001
    [47]C.-W.Oh,T.-W.Kim,H.-Y..Jeong,K.-S.Park,S.-N.Kim.Hydroplaning simulation for a straight-grooved tire by using FDM,FEM and an asymptotic method[J].Journal of Mechanical Science and Technology.2008,22:34-40
    [48]J.R.Cho,H.W.lee,J.S.Sohn,G.J.Kim,J.S.Woo.Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire[J].European Journal of Mechanics A/Solids 2006,25:914-926
    [49]ShidaZ KoishiM,KogureT.A rolling resistance simulation of tires using static finite element analys[J].Tire Science and Technology,1999,27(2):84-105
    [50]马国清.国内外轿车子午线轮胎室内滚动阻力性能分析[D].北京:北京化工大学,2004.
    [51]Mars W V,Luchini J R.An analytical model for the transient rolling resistance behavior of tires[J].Tire Science and technology,1999,27(3):161-175
    [52]Clark S K.Interlaboratory tests for tire rolling resistance[[N].SAE Paper,1979,780630
    [53]SAE J1269-1987.Rolling resistance measurement procedure for passenger car tires[M].SAE Handbook
    [54]董秀玲摘译.轿车、轻型载重车、载重车及大客车轮胎滚动阻力测试方法[J].轮胎工业,2001,21(9):532-535
    [55]Luchini J R.Rolling resistance Test Methods[J].ACS Rolling Resistance Symposium.October6,1982&Akron Rubber Group,April 26,1984
    [56]Luchini J R.Measuring and modeling tire rolling resistance[J].U.S.Department of energy workshop:Opportunities for Heavy Vehicle Energy Efficiency Gains through Running Resistance and Braking Systems R&D,Oak Ridge,Tennessee,August,1999:18-19
    [57]滕国兴,鞠衍明.轮胎滚动阻力测试设备的研究[J].橡胶工业,1997,44(7):426-430
    [58]George Komandi.An evaluation of the concept of rolling resistance[J].Journal of Terramechanics.1999,36:159-166
    [59]轮胎研究室编译.充气轮胎理论基础[M].北京:化学工业部北京橡胶工业研究设计院,1990:436-448
    [60]DeRaad L W.The influence of road surface texture on tire rolling resistance.[N]SAE Paper No.780257
    [61]Luchini J R.Test surface curvature reduction factor for truck tire rolling resistance[N].SAE Paper No.821264
    [62]王建民、吕海涛、孔江生.轮式车辆水滑现象的初始条件[J].公路交通科技.2003,20(5):117-120
    [63]万长东.汽车滑水现象分析及影响因素探讨[J].苏州职业大学学报.2008,19(3):29-30.
    [64]Ong,G.P,Fwa,T.F.Prediction of wet-pavement skid resistance and hydroplaning potential[J].Surface Properties-Vehicle Interaction.2007,160-171
    [65]邓海燕.防水滑轮胎的特点及其技术状况[J].轮胎研究与开发.2001,2:17-21.
    [66]吴桂忠、李福军.汽车轮胎试验研究现状与发展趋势[J].轮胎工业.2006,26:579-585
    [67]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社.2005
    [68]杨卫民.子午线轮胎的三维非线性有限元分析和性能仿真的研究[D].北京:北京化工大学机电工程学院.1998
    [69]余淇、丁剑平、张安强.子午线轮胎结构设计与制造技术[M].北京:化学工业出版社.2006
    [70]王伟.基于ADINA的轮胎力场和温度场研究[M].青岛:青岛科技大学.2007
    [71]王登祥.滚动阻力文献评述[J].轮胎工业,1997,17(12):707-712.
    [72]何燕.轮胎稳态温度场的研究[M].武汉:华中科技大学.2006
    [73]K.Kabe and I.Shimomura.Application of Tyre Stress Analysis and Thermal Analysis to Tyre Durability[J].International Polymer Science and Thechnology,1984,11(8):32-39
    [74]马改陵.载重子午线轮胎橡胶材料时滞特性引起的滚动阻力分析[D].北京.北京化工大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700