车辆悬架系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以车辆悬架系统中的被动减振器、半主动减振器和半主动悬架为研究对象,对被动减振器的物理参数建模、半主动减振器的安全冗余创新设计和新型半主动控制策略等进行了深入研究,主要涉及以下几个方面:
     提出一种改进的双筒式液压减振器建模方法。该模型中结构动力学子模型和流体动力学子模型采用经典的解析计算方法建立,但阀片(组)变形动态子模型采用基于薄板大挠度变形理论的数值计算方法建立。与传统的基于薄板小挠度理论的模型相比,所建立的阀片(组)变形动态子模型可以解决多片阀片间变形的耦合问题、更准确地描述不规则形状阀片的变形特性。仿真与实验数据的对比分析表明,改进的模型比传统计算模型能更准确地描述减振器的阻尼力特性和滞环特性。
     提出一种新的具有安全冗余功能的减振器结构形式,这一结构集半主动减振器的可控性和被动减振器的安全性于一体,能够在车辆悬架控制系统不能正常工作的情况下提供足够大的阻尼力,保证此时车辆的安全性和舒适性。这一结构比现有文献中类似结构更简单、能耗更低、安全性更高。针对此结构,进一步研究其动力学模型及电磁磁路和永磁磁路的设计模型。根据建立的设计模型进行了样机设计与试制,并对样机进行了台架试验,用实验数据验证了这一安全冗余结构和所建立的动力学和磁路设计模型的有效性和实用性。
     研究使用前述具有失效保护功能的磁流变液减振器的半主动悬架的控制策略。提出将具有清晰物理意义的负刚度减振理论应用于车辆半主动悬架的控制,并讨论其在基于磁流变液减振器的半主动悬架上的技术实现方法。将负刚度控制策略和天棚阻尼控制策略进行了比较分析,并通过搭建的1/4车垂向动力学实验系统进行了验证,结果表明负刚度半主动控制能更好的抑制振动对车身加速度和轮胎动位移的影响,并且结构更简单、成本更低。
     研究车辆1/4悬架性能实验系统中电液伺服阀控激振系统的控制策略和时域内路面不平度的台架复现方法。提出将自抗扰控制算法用于电液伺服阀控激振系统的控制,并与基于扰动观测器的控制策略进行了对比分析。仿真和实验结果表明,采用自抗扰控制算法时系统具有更高的稳态精度、对大范围的负载干扰和参数扰动具有更强的抑制作用。将时域内路面不平度的两种台架复现方法进行仿真和实验比较分析。结果表明采用谐波叠加法模拟产生的随机路面的精度优于线性滤波法。
The research objects of this thesis are passive shock absorber, semi-active shock absorber and semi-active suspension of vehicle suspension system. Physics parameter based model of passive shock absorber, innovational mechanism with safety redundancy function, and new semi-active control strategy are studied.
     A new physics parameters based nonlinear complex model of passive shock absorber was presented. In the model, mechanical dynamics sub-model and fluid dynamics sub-model were modeled with analytic method, while the deformation dynamics sub-model of valve plate was modeled with numerical method based on plate large deformation theory. This complex physics parameter based nonlinear model takes account of the effect of gas pressure, effective bulk modulus of gas mixed oil, bulk modulus of cylinder shell, leak, friction, etc. Validation with test data shows that the model can simulate the damping character and hysteresis of shock absorber well.
     An innovational mechanism with safety redundancy function of magneto-rheological fluid shock absorber was presented. This fail safe magneto-rheological fluid shock absorber gives attention to controllability of semi-active shock absorbers and safety of passive shock absorbers. Dynamics model, electromagnetic model and permanent-magnetic model were given. Based on the models, prototype shock absorbers were designed and manufactured. Test data show that the models are effective and precision.
     A new semi-active control strategy based on the new designed shock absorber was studied. The negative stiffness control strategy with legible physics signification was introduced to control the semi-active suspension. The negative stiffness control strategy was compared with sky hook control strategy, and the compare results were validated on the quarter car vertical dynamics test system.
     A quarter car vertical dynamics test system was established. Two key technology of the test system were discussed, they are robust controller of electro-hydraulic position servo system and methods of reproduction of road roughness in time field.
引文
[1] 靳晓雄,张立军,江浩,汽车振动分析.2002.5,上海:同济大学出版社.
    [2] Lee, J.K., A study of semi-active vibration control using a magneto-rheological fluid actuator in a flexible structure. 1998, UNIVERSITY OF PITTSBURGH.
    [3] Kasteel,R-V.,et al.,液压减振器动态数学模型的研究.中国铁道科学,2004.25(3):p.1~5.
    [4] L.Segel and H.H.Lang, The Mechanics of Automotive Hydraulic Dampers at High Stroking Frequencies. Vehicle System Dynamics, 1981(10): p. 82~85.
    [5] Lang, H.H., A Study of the Characteristics of Automotive Hydraulic Dampers at High Stroking Frequency. 1977, University of Michigan.
    [6] Lee, K., Numerical modeling for the hydraulic performance prediction of automotive monotube dampers. Vehicle System Dynamics, 1997.28: p. 25-39.
    [7] Talbott, M.S. and J. Starkey, An Experimentally Validated Physical Model of a High-Performance Automotive Damper. SAE 2002-01-3337, 2002.
    [8] 杨礼康,基于磁流变技术的车辆半主动悬挂系统理论与试验研究.2004,浙江大学:杭州.
    [9] 王文林,高速列车可调式线性油压减振器的设计理论与应用研究.2001,浙江大学:杭州.
    [10] 檀润华,陈鹰,路甬祥,路面对汽车激励的时域模型建立及计算机仿真.中国公路学报,1998.11(3):p.96~101.
    [11] Runhua, T., et al., Complex nonlinear mathematical model for a kind of vehicle shock absorbers. Chinese Journal of Mechanical Engineering, 1999. 12(1): p. 32~39.
    [12] Duym, S.W.R., Simulation Tools, Modelling and Identification, for an Automotive Shock Absorber in the Context of Vehicle Dynamics. Vehicle system dynamics, 2000. 33: p. 261-285.
    [13] Sincebaugh, P., W. Green, and G. Rinkus, Neural network based diagnostic test system for armored vehicle shock absorbers. Expert System with Application, 1996. 11(2): p. 237~244.
    [14] Mollica, R. and K. Youcef-Toumi. A nonlinear dynamic model of a monotube shock absorber, in Proceedings of the American Control Conference. 1997. New Mexico.
    [15] Barber, A.J., Accurate Models for Bushings and Dampers using the Empirical Dynamics Method. 1999 ADAMS European User's Group, 1999.
    [16] Karnopp, D.C., M.J. Crosby, and R.A. Harwood, Vibration Control Using SemiActive Force Generators. ASME Journal of Engineering for Industry, 1974. 96(2): p. 619~626.
    [17] BOONCHANTA, P., Comparisons of active, passive and semi-active suspensions for ground vehicles. 1982, university of California, Davis: Davis.
    [18] Guy, Y., W. Kerastas, and R.E. Bruckman, A Solenoid-actuated pilot valve in a semi-active damping system. SAE paper 881139, 1988.
    [19] Besinger, F.H., D. Cebon, and C.D. J. Experimental investigation into the use of semi-active dampers on heavy lorries, in Proceedings of 12th IAVSD symposium. 1991. Lyon.
    [20] Stribersky, A., et al., Design and evaluation of a semi-active damping system for rail vehicles. Vehicle System Dynamics. Supplement, 1998. 28: p. 669-681.
    [21] Kitching , K.J., D.J. Cole, and D. Cebon, Performance of a semi-active damper for heavy vehicles. Transaction of the ASME Journal of Dynamic Systems, Measurement, and Control, 2000. 122(9): p. 498-506.
    [22] Son, H.Y., et al. A robust controller design for performance improvement of a semi-active suspension systems. in IEEE International Symposium on Industrial Electronics. 2001.
    [23] Ehrgott, R.C. and S.F. Masri, Modeling the oscillatory dynamic behavior of electrorheological materials in shear. ; 1:275-85. Smart Materials and Structures, 1992(1): p. 275-285.
    [24] Gavin, H., R. Hanson, and F. Filisko, Electrorheological dampers, part 1: analysis and design. J of Applied Mechanics, ASME 1996. 63(9): p. 669-675.
    
    [25] Gavin, H., R. Hanson, and F. Filisko, Electrorheological dampers, part 2: testing and modeling. J of Applied Mechanics, ASME, 1996. 63(9): p. 676-682.
    [26] Wereley, N., L. Pang, and G. Kamath, Idealized hysteresis modeling of electrorheological and magnetorheological dampers. J of Intelligent Material, Systems and Structures 1998. 9(8): p. 642-649.
    [27] Phule, P.P. An overview of synthesis and applications of magnetorheological (MR) fluids, in the annual meeting of the America Ceramic Society. 1996.
    [28] Lee, J.K., A study of a semi-active vibration control using a magnetorheological fluid acturor in a flexible structure. 1998: University of Pittsburgh.
    [29] Dyke, S.J., et al., Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction. Smart Materials & Structures, 1996(5): p. 565-575.
    [30] Carlson, J. and J.B. Spencer. Magneto-rheological fluid dampers for semi-active seismic control, in Proceedings of 3rd International Conference on Motion and Vibration Control. 1996. Chiba, Japan.
    [31] Dyke, S.J., et al. Experimental verification of semi-active structural control strategies using acceleration feedback. in Proc. 3rd int, conf. on motion and vibr. control. 1996. Chiba,Japan.
    [32] Carlson, J. and M. Chrzan, Magnetorheological fluid dampers. 1994, Lord Corporation: United States Patent 5398917.
    [33] Carlson, J., M. Chrzan, and F. James, Magnetorheological fluid devices. 1995, Lord Corporation.
    [34] http://www.lord.com, What is the Difference between MR and ER Fluid.
    [35] http://www.lord.com, Representative Controllable Fluid Properties.
    [36] http://www.lord.com, MRF-132AD Product Bulletin.
    [37] http://www.iord.com, Magnetic Circuit Design.
    [38] http://www.lord.com, Designing with MR Fluids.
    [39] http://www.lord.com, Lord Rheonetic~(TM) damper RD-1005-3 product bulletin. 2003.
    [40] http://www.lord.com, Lord Rheonetic~(TM) damper RD-1097-01 product bulletin. 2002.
    [41] Yang, G., Large-Scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling, Testing and Control, in Department of Civil Engineering and Geological Sciences. 2001, University of Notre Dame: Notre Dame, Indiana.
    [42] http://www.lord.com, Lord Corporation Magnetorheological(MR) Fluid for Automotive Damping Systems.
    [43] Reichert, B.A.J., Application of Magneto-Rheological Dampers for Vehicle Seat Suspensions. 1997, Virginia Polytechnic Institute and State University: Blacksburg, Virginia.
    [44] Pare, C.A., Experimental Evaluation of Semiactive Magneto-Rheological Suspensions for Passenger Vehicles. 1998, Virginia Polytechnic Institute and State University: Blacksburg, Virginia.
    [45] Simon, D.E., Experimental Evaluation of Semiactive Magnetorheological Primary Suspensions for Heavy Truck Applications. 1998, Virginia Polytechnic Institute and State University. p. master.
    [46] 余淼,汽车磁流变半主动悬架控制系统研究.2003,重庆大学:重庆.
    [47] Dyke, S.J., Acceleration feedback control strategies for active and semi-active control systems: Modeling, algorithm development, and experimental verification 1996, UNIVERSITY OF NOTRE DAME p. 255.
    [48] B.F. Spencer, J., S.J. Dyke, and M.K. Sain. Magnetorheological dampers: a new approach to seismic protection of structures, in Proceedings of the 35th Conference on Decision and Control. 1996. Kobe, Japan.
    [49] B. F. Spencer, J., et al., Phenomenological Model of a Magnetorheological Damper. Journal of Engineering Mechanics, ASCE, 1997. 123: p. 230-238.
    [50] Carlson, J., D. Catanzarite, and K. Clair, Commercial Magnetorheological Fluid Devices. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996(10): p. 2857-2865.
    [51] Gavin, H., R. Hanson, and F. Filisko, Electrorheological dampers, Part Ⅰ: Analysis and design Journal of Applied Mechanics,ASME, 1996. 63: p. 667~682.
    [52] Kamath, G.M., M.K. Hurt, and N.M. Wereley, Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers. SmartMaterials and Structures, 1996(5): p. 576-590.
    [53] Makris, N., et al., Analysis and design of ER damper for seismic protection of structures. J. of Engineering Mechanics, ASCE 1996. 122(10): p. 1003-1011.
    [54] Spencer Jr., B.F., et al. "Smart" dampers for seismic protection of structures: a full-scale study, in Proceedings of 2nd World Conference on Structural Control,. 1998. Kyoto, Japan.
    [55] Yang, G., Large-scale magnetorheological fluid damper for vibration mitigation: modeling, testing and control. 2001, Notre Dame: Indiana.
    [56] Ehrgott, R.C. and S.F. Masri, Modeling the oscillatory dynamic behavior of electrorheological materials in shear. Smart Materials and Structures, 1992(1): p. 275-285.
    [57] Gamota, D.R. and F.E. Filisko, Dynamic mechanical studies of electrorheological materials: moderate frequencies. J. of Rheology, 1991. 35: p. 399-425.
    [58] Snyder, R.A., G.M. Kamath, and N.M. Wereley. Characterization and analysis of magnetorheological damper behavior due to sinusoidal loading. in Proceedings of SPIE 2000, No 3989. 2000.
    [59] Wereley, N.M. and L. Pang, Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models. Smart Materials and Structures, 1998(7): p. 732-743.
    [60] Spencer Jr., B.F., et al., Phenomenological Model of a Magnetorheological Damper. Journal of Engineering Mechanics, ASCE, 1997. 123: p. 230-238.
    [61] sammier, D., O. sename, and L. dugard, Skyhook and H- Control of Semi-active Suspensions Some Practical Aspects. Vehicle system dynamics, 2003. 39(4): p. 279-308.
    [62] Simon, D.E., An Investigation of the Effectiveness of Skyhook Suspensionsfor Controlling Roll Dynamics of Sport Utility Vehicles Using Magneto-Rheological Dampers. 2001, Virginia Polytechnic Institute and State University: Blacksburg.
    [63] Dyke, S.J. and B.F. Spencer Jr. A comparison of semi-active control strategies for the MR damper. in Proc. of the IASTED Intl. Conf. on Intelligent. Info. Systems. 1997, December Bahamas.
    [64] ELMADANY, M.M. and Z.S. ABDULJABBAR, Linear Quadratic Gaussian Control of a Quarter-Car Suspension. Vehicle system dynamics, 1999. 32: p. 479-497.
    [65] Giua, A., M. Melas, and C. Seatzu. Design of a control law for a magneto-rheological suspension. in Proc. European Control Conference 2003. 2003.
    [66] Titli, A., S. Roukieh, and E. Dayre. Three control approaches for the design of car semi-active suspension (optimal control, variable structure control, fuzzy control), in 32nd IEEE CDC. 1993. San Antonio, Texas.
    [67] 刘豹,现代控制理论.2000.5:机械工业出版社.209~293.
    [68] Crolla,D.and喻凡,车辆动力学及其控制.2004,北京:人民交通出版社.
    [69] Ohsaku, S., et al., Nonlinear H∞ control for semi-active suspension. JSAE Review, 1999. 20: p. 447~452.
    [70] Yokoyama, M., J.K. Hedrick, and S. Toyama. A model following sliding mode controller for semi-active suspension systems with MR dampers, in Proceedings of the American control conference. 2001. Arlington.
    [71] C.Y.Lai and W.H.Liao, Vibration Control of a Suspension System via a Magnetorheological Fluid Damper. Vehicle system dynamics, 2002(8): p. 527~547.
    [72] Kawabe, T., et al., New semi-active suspension controller design using quasi-linearization and frequency shaping. Control Engineering Practice, 1998(6): p. 1183~1191.
    [73] 郑玲,邓兆祥,李以农,汽车半主动悬架的滑模变结构控制.振动工程学报,2003.16(4):p.457~462.
    [74] 翁建生,基于磁流变阻尼器的车辆悬架系统半主动控制.2001,南京航空航天大学:南京.
    [75] Kok, J.J., et al. Active and semi-active control of suspension systems for commercial vehicles based on preview, in American Control Conference, 1997. 1997.
    [76] Raman, K.M. and N.A. Jayesh. Active Suspension Using Preview Information and Model Predictive Control. in Proceedings of IEEE International Conference on Control Applications. 1997. New York.
    [77] KITCHING, K.J., D. CEBONI, and D.J. COLE, An Experimental Investigation of Preview Control. Vehicle system dynamics, 1999. 32: p. 459~478.
    [78] Kim, H.-J., S.H. Yang, and Y.-P. Park, Improving the vehicle performance with active suspension using road-sensing algorithm Computers and Structures, 2002. 80(18-19): p. 1569~1577.
    [79] Prokop, G. and R.S. Sharp. Performance Enhancement Of Limited Bandwidth Active Automotive Suspensions By Road Preview. in IEE Proceedings Control Theory and Applications. 1995.
    [80] Song, X., et al., An Adaptive Semiactive Control Algorithm for Magnetorheological Suspension Systems. Journal of Vibration and Acoustics, 2005,October. 127: p. 493~502.
    [81] Sohn, H.-C., et al., An adaptive LQG control for semi-active suspension systems. Int. J. Vehicle Design, 2004. 34(4): p. 309~324.
    [82] KASHANI, R. and J.E. STRELOW, Fuzzy Logic Active and Semi-Active Control of Off-Road Vehicle Suspensions. Vehicle system dynamics, 1999.32: p. 409~420.
    [83] Nicolas, C.F., et al., Application of Fuzzy Logic Control to the Design of Semi-Active Suspension Systems. IEEE Transactions on Fuzzy Systems, 1997: p. 987~993.
    [84] Schurter, K.C. and P.N. Roschke. Neuro-fuzzy control of structures using magnetorheological dampers, in American Control Conference. 2001. Arlington, VA, USA.
    [85] Qidong, W., et al. Research on the intelligence control for automotive semi-active suspensions using the muitibody model, in Proceedings of the 3rd World Congress on Intelligent Control and Automation. 2000.
    [86] 张也影,流体力学.1987,北京:高等教育出版社.
    [87] Merritt, H.E., Hydraulic Control Systems. 1967, New York: John Wiley & Sons, Inc.
    [88] 徐灏主编,机械设计手册第l卷第4篇机械设计力学基础(第2版).2000,北京:机械工业出版社.
    [89] 路甬祥主编,液压气动技术手册.2002,北京:机械工业出版社.
    [90] Lee, I.-Y. and D.D. Sun. Evaluation of Effective Bulk Modulus of Oil in Automotive Hydraulic Dampers. in SICE Annual conference in Sapporo. 2004. Japan.
    [91] Rabinow, J., The Magnetic Fluid Clutch AIEE Transaction, 1948. 67: p. 1308~1315,In: Jolly M R, Bender J W and Carlson J D. Properties and applications of commercial magnetorheological fluids. Journal of Intelligent Material Systems and Structures, 1999, 10 (1): 5~13.
    [92] Carlson, J. WHAT MAKES A GOOD MR FLUID? in International Conference on Electrorheological (ER) Fluids and Magneto-rheological (MR) Suspensions. 2001. Nice.
    [93] 沈仲棠,刘鹤年,非牛顿流体力学及其应用.1989,北京:高等教育出版社.
    [94] W.F.休斯,J.A.布.著,徐燕候等译,流体动力学.2002,北京:科学出版社.
    [95] Vavreck, A.N. Control of a dynamic vibration absorber with magnetorheological damping, in Proceedings of SPIE—Volume 4073, Fifth European Conference on Smart Structures and Materials. 2000.
    [96] 王维锐,潘双夏,王芳,具有失效自保护功能的磁流变液半主动减振器.2005:中华人民共和国专利.
    [97] 李德才,磁性液体理论及应用.2003,北京:科学出版社.
    [98] Abele, M.G. and H.A. Leupold, A general method for flux confinement in permanent-magnet structure. J. Appl. Phys., 1988.64(10): p. 5988-5990.
    [99] 夏平畴,永磁机构.2000.12,北京:北京工业大学出版社.
    [100] M.米奇克,汽车动力学B卷.第二版ed.1994,北京:人民交通出版社.
    [101] 张建卓等,超低频精密隔振系统的新发展.辽宁工程技术大学学报,2004.23(4):p.538-541.
    [102] 张建卓,et al.,新型非线性超低水平隔振系统的研制.机械设计,2005.22(5):p.19-21.
    [103] 汽车工程手册(试验篇).2001,北京:人民交通出版社.
    [104] YOSHIMURA, A., Semi-active Suspension of Passenget Cars Using Fussy Reasoning and the Field Testing. Int. J. of Vehicle Designs, 1998. 19(2): p. 150~166.
    [105] 杨云等,道路模拟振动台及其控制系统的研制.系统仿真学报,2004.16(5):p.1044~1046.
    [106] 张波,王天利,徐彦,车辆减振器模拟工况试验台.辽宁工学院学报(自然科学版),2002.22(3):p.42~43,68.
    [107] 胡志强等,随机振动试验应用技术.1996.12,北京:中国计量出版社.
    [108] Weirui, W., P. Shuangxia, and W. Fang. A comparison study of two disturbance rejection control strategies for hydraulic position servo systems, in IECON'04. 2004. Busan, South Korea.
    [109] H. E. Merritt, Hydraulic control systems. 1967, New York: John Wiley & Sons, Incorporated.
    [110] 张智涣,王树青,非线性系统的多内模控制.浙江大学学报(工学版),2003.37(1):p.56~59.
    [111] Keun-Kim, B. and C. Hyun-Taek, Analysis and Design of Robust Motion Controllers in the Unified Framework. Journal of Dynamic Systems, Measurement, and Control, 2002. 124(6): p. 313~321.
    [112] Tochizawa, M. and K. A. Edge. A compare of some control strategies for a hydraulic manipulator in Proceedings of American Control Conferenc. 1999. San Diego, USA.
    [113] 韩京清,从PID技术到“自抗扰控制”技术.控制工程,2002.9(3):p.13~18.
    [114] 韩京清,自抗扰控制器及其应用.控制与决策,1998.13(1):p.19~23.
    [115] Zhi-qiang, G., From Linear to Nonlinear Control Means: A Practical Progression. ISA Transactions, 2002.41(2): p. 177~189.
    [116] Zhi-qiang, G. Scaling and bandwidth- parameterization based controller tuning, in Proceedings of American Control Conference. 2003. Denver, USA.
    [117] 韩京清,王伟,非线性跟踪微分器.系统科学与数学,1994.4(2):p.177~183.
    [118] 韩京清,袁露林,跟踪微分器的离散形式.系统科学与数学,1999.19(3):p.265~273.
    [119] 要晓梅,王庆林,刘文丽,一般工业对象的二阶自抗扰控制.控制工程,2002.9(5):p.59~62.
    [120] 中华人民共和国国家标准,车辆振动输入路面平度表示方法.Vol.GB 7031-86.1986.
    [121] 余志生,汽车理论(第三版).2002,北京:清华大学出版社.
    [122] 常志权等,谐波叠加路面输入模型的建立及数字模拟.重庆大学学报(自然科学版),2004.27(12):p.5~8.
    [123] 张永林,用谐波叠加法重构随机道路不平顺高程的时域模型.农业工程学报,2003.19(6):p.32~34.
    [124] 张永林,钟毅芳,载重车道路多点随机激励输入的时空相关性建模研究.中国公路学报,2004.17(4):p.105~108.
    [125] 谢伟东,王磊,余翊妮,随机信号在路面不平度仿真中的应用.振动、测试与诊断,2005.25(2):p.126~130.
    [126] Michelberger, P., L. Palkovics, and J. Bokor, Robust design of active suspension system. International Journal of Vehicle Design, 1993. 14(2): p. 145~165.
    [127] 陈助碧,王维锐,潘双夏,C MEX S-函数在时域路面不平度实时仿真试验中的应用.机电工程,2006(9).
    [128] F.Yusivar and S.Wakao, Minimum Requirements of Motro Vector Control Modeling and Simulation Utilizing C MEX S-function in MATLAB/SIMULINK. IEEE, 2001 : p. 315~321.
    [129] French, M., An Introduction to Road Simulation Testing. Experimental Techniques, 2000(May): p. 37~38.
    [130] 卢文祥,杜润生,机械工程测试·信息·信号分析(第二版).1999,武汉:华中科技大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700