利用功能分子标记分析甘蓝型油菜产量相关性状QTLs及其杂种优势遗传基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国主要的油料作物,提高油菜籽产量和含油量以增加单位面积产油量是当前油菜研究和育种的首要目标。杂种优势利用是提高作物产量不可替代的最重要的途径,在油菜育种中已被广泛应用。与杂种优势利用取得的辉煌成绩相比,杂种优势机理的研究却远远滞后。已有研究表明,杂种和双亲间的差异表达基因与杂种优势的形成关系密切。但是,这些大量差异表达的基因是否与杂种优势或产量相关性状有关,目前尚不清楚。因此,将差异基因发展为功能标记并整合到图谱中,同时对重要农艺性状进行QTLs定位,从而确定差异表达基因与QTLs之间的关系,将在一定程度上有助于探讨杂种优势的遗传机理,促进甘蓝型油菜产量相关性状QTLs的克隆和利用。此外,模式植物拟南芥和水稻各个方面的研究都比较先进,甘蓝型油菜与模式植物的比较分析将有助于加快油菜上述各项研究的进程。
     本研究以SI-1300和Eagle组配得到的F_2分离群体为基础,利用杂种和亲本的差异表达基因作标记构建的图谱为依托,对单株产量、单株角果总数等12个产量相关性状进行了QTLs定位和上位性分析,探讨了甘蓝型油菜杂种优势的机理,并利用本研究在甘蓝型油菜成功定位的功能分子标记开展了和其它作物的比较基因组学研究。主要结果如下:
     1.根据杂种和亲本间的差异表达基因共设计了261对能扩增不同基因的引物对,其中247对引物序列在双亲SI-1300和Eagle中能扩增出清晰、明亮的条带。经过SSCP分析,111对引物的PCR扩增产物在双亲间能检测到清晰的多态性,共得到了177个功能分子标记。
     2.根据Gene Ontology网站提供的分类信息,对能在双亲间扩增得到多态性的111个基因进行了分类。这些基因涉及了该分类标准的所有类别,共包括17大类,以初级代谢的基因最多。
     3.以180个SSR标记、191个AFLP标记、152个SRAP标记和177个功能分子标记进行连锁遗传分析。在LOD≥3.0的条件下,共有582个标记进入连锁群,得到一张包含20个连锁群的甘蓝型油菜分子遗传图谱。该图谱总长2054.51 cM,标记间平均图距为3.53 cM。综合利用Piquemal等(2006)、Lowe等(2005)以及BBSRC网站等提供的油菜图谱中SSR标记的信息,对本研究中构建的油菜图谱与国际公认的图谱进行了初步比较。比较结果表明,该图谱中的19条连锁群可与公认的图谱(N1-N19)对应,仅是多出了1条连锁群(LG 20)。
     4.12个产量相关性状均表现为正态分布。产量相关各性状在家系间的表型差异达到极显著水平,变异非常丰富。遗传力的变异范围为0.41~0.81。不同地点相同性状之间(除单株角果总数外)均存在极显著正相关性;同一地点不同性状之间的相关性也很明显。
     5.利用复合区间作图法,在武汉和荆门两点共检测到影响12个性状的133个QTLs(LOD≥12.5),其中有14个QTLs在两个地点都能被检测到。每个性状可以检测到7~15个QTLs不等。单个QTL可以解释的变异在3.02%~36.68%之间,平均为11.62%。涉及39个不同ESTs或基因的45个功能分子标记和产量及其相关性状有关,并且基础代谢的基因最多。
     6.QTLs在连锁群上的分布并不是随机的,而成聚集分布,主要分布在N2和N7连锁群上;一些不同性状的QTLs定位在相同的区域,即存在一因多效或紧密连锁;高值亲本和低值亲本都包含对性状表现起增效作用(或减效作用)的等位基因;产量及其相关性状QTLs区域的相关位点表现了显性和超显性现象。
     7.基因杂合性与性状值之间的相关系数表明,全基因组杂合性和性状之间并不存在显著相关。
     8.利用169个共显性标记,对12个产量相关性状检测了全基因组所有可能的两位点互作对。取P<0.01,12个性状在武汉和荆门两点分别检测到1093对和1121对极显著互作位点。经随机测验后,在武汉和荆门两点分别有297对和285对符合要求的位点对,共同的有6对。结果显示,油菜基因组中控制产量相关性状的互作位点数显著高于单一位点数。
     9.本研究检测到的位点间互作有QTLs与非QTLs位点的互作和非QTLs位点与非QTLs位点间的互作,且后者类型占据了绝大多数。大多数位点的单独效应值一般都较小,但当两位点发生互作时,其效应值显著增大,成为显著影响性状表现的互作位点对;同一个位点可以与不同的位点互作,从而对同一性状产生影响,但效应值存在差异;相同的位点互作对可能影响不同的性状,即存在上位性互作的多效性。
     10.单位点水平上的显性效应、超显性效应以及位点间的上位性互作效应都是甘蓝型油菜产量性状杂种优势的重要来源。
     11.随机挑选10个功能标记的扩增产物测序。测序结果与原始序列比较分析发现,二者之间的相似程度极高,平均达到98%,最小的也有96%。说明扩增引物对原始序列进行了真实的扩增;随机挑选5对引物在双亲间的扩增差异片断进行回收、克隆并测序。对双亲间测序结果的比较发现,功能基因在双亲间的序列差异比较小。
     12.利用TAIR网站的seqview软件,对整合到甘蓝型油菜遗传图谱的107个功能基因在拟南芥中的同源基因进行了电子定位。这些基因在拟南芥5条染色体上均有分布,共覆盖拟南芥基因组的110.95 MB。通过甘蓝型油菜和拟南芥之间的比较作图,本研究中共得到了21个共线性区域,涉及了油菜标记60个和拟南芥基因50个,这些共线性区域存在于甘蓝型油菜的15条连锁群上,并发现在拟南芥基因组上的每个共线性区域在油菜中存在1-7个拷贝。
     13.在NCBI中利用Blastx查询水稻、玉米和小麦中位于油菜QTLs区间内功能标记序列的相似序列,大多数序列都能找到同源基因。在水稻中,对上述同源基因进行电子定位,并查找附近区域产量性状相关的QTLs,结果在部分水稻同源序列附近发现有与控制油菜类似性状相关的QTLs。
Bracissa napus is one of the most important oilseed crops in China. Now, the major object for breeders is to increase the oil production by increasing the yield and the oil content of rapeseed, and heterosis utilization, which is the most effective way to increase the yield and improve the quality in crops, have been widely used in B. napus. However, the molecular basis of heterosis is unclear until now. Some researches have shown that the differentially expressed genes between parents and hybrid are related to the heterosis. Nevertheless, it is unclear whether all the differentially expressed genes in hybrid are contributors to the heterosis or QTLs for traits, or some of them merely the results of hybridization. Therefore, such genes were developed to molecular functional markers, and were tested for their association with interested traits when they are integrated into a functional map of the genome and the QTLs of important agronomical traits have been located. This work will be helpful to the studies of the molecular basis of heterosis and facilitate the cloning and utilization of QTLs for important traits in B. napus. In addition, the comparative mapping between B. napus and model plants (Arabidopsis and flee) will accelerate above studies in rapeseed.
     In this study, an F2 population of 184 individuals resulting from crossing "SI-1300×Eagle" was used for linkage analysis, and a molecular functional map was constructed using differentially expressed genes, where QTLs mapping were conducted for 12 yield-related traits. Furthermore, the genetic dissection of heterosis in B. napus was studied. In addition, the comparative mapping was done between B. napus and model plants, including Arabidopsis and rice. The major results are as follows:
     1. A total of 261 PCR primer pairs were designed according to the differentially expressed genes between parents and hybrid. Of these, each of the majority (247) amplified a clear, strong and single band from the total genomic DNA of two parents when detected by 1.5% agarose gels. Using SSCP analysis, a total of 111 B. napus ESTs or genes showed polymorphisms between parents of the mapping population, providing 177 marker loci.
     2. Based on the information from Gene Ontology website, these 111 ESTs or genes were grouped into 17 functional categories, and the largest group was allocated to the general metabolism.
     3. One hundred and fifty-two sequence-related amplified polymorphism (SRAP) markers, 177 functional markers, 180 simple sequence repeat (SSR) markers, and 191 amplified fragment length polymorphism (AFLP) markers were used to construct a genetic linkage map of B. napus. Under the condition of LOD≥3.0, a total of 582 markers were assigned to 20 linkage groups (LGs). This map covered 2054.51 eM with average marker interval of 3.53 cM. The public information of microsatellites (SSR markers), derived from the Piquemal et.al (2005), Lowe et.al (2004), and BBSRC, contributed to establish the links between the map of Parkin et.al (1995) and ours. The results showed that most of LGs were aligned with the standard map (N1-NI9) except one LG.
     4. All the 12 yield-related traits demonstrated the normal distribution. The highly significant variation among the 184 genotypes was observed for all the traits, and the heritability ranged from 0.41 for number of siliques on main infloresence (SMI) to 0.81 for height of primary effective branch (HPB). High correlation coefficients between the two locations were observed for most traits with the exception of number of seeds per silique (SS), And the coefficients between different traits in the same location are also high.
     5. QTLs were detected for 12 yield-related traits in Wuhan and Jingmen, respectively. A total of 133 QTLs were identified, including 14 consistent ones across two locations. Seven to fifteen QTLs were found per trait and individual QTLs explained 3.02% 36..68% of the variance with an average of 11.62%. A total of 45 functional markers involved in 39 expressed sequence tags were linked with the QTLs of 12 traits, and the metabolic genes were the largest group.
     6. The results of mapping QTLs showed that most of the QTLs were clustered, especially on LGs N2 and N7. Some QTLs related to different traits located in the similar region, which are tightly linked or pleiotropy. Both parents had QTLs with positive or negative effects on the same trait, and QTLs for yield-related traits which showed overdominant and dominant were detected in both locations.
     7. The correlation coefficients between heterozygosity of the marker genotypes and trait measurements were small for all the traits and indicated that the lack of correlation between them.
     8. All possible two-locus combinations were tested for t 2 yield-related traits using 169 codominant markers. With P<0.01, 1093 and 1121 combinations which were significantly affected the traits were detected in Wuhan and Jingmen, respectively. Further conformation by randomization test revealed 297 and 285 two-locus interactions in Wuhan and Jingmen, respectively, whereas only six were common in both locations. The results showed that the number of two-locus combinations significantly affected the yield-related traits were greater than that of QTLs.
     9. Interactions included the epistasis between QTLs and non-QTLs, and the one between non-QTLs. The later occupied the majority. The effect of individual locus of the interaction was small, whereas the significant effects to the trait were gotten when the two loci interacted. The same locus may have interaction with several other loci to affect the same trait, and the same two-locus interaction may affect several traits, like pleiotropy.
     10. The dominant and overdominant effects at single locus level and the epistasis effects at multiple loci level are all the important sources of the genetic basis of heterosis in B. napus.
     11. Ten amplified sequences for functional markers were cloned and sequenced. Comparing the sequence of cloned by us with the original one, we found that the similarity of them is average high to 98%, with the least 96%, which indicated that the designed primers can really amplify the original sequence. In addition, the sequences in both parents amplified by five functional primer pairs were randomly selected and sequenced. The comparation of the sequences between the parents showed the high similarity of the functional genes between cultivars.
     12. The physical localizations of Arabidopsis genes corrponding to the 107 ones of B. napus intergrated to the map were determined by the seqview tool of TAIR. Alignment between the B. napus LGs and A. thaliana chromosomes revealed that genes localized on each five Arabidopsis chromosome and covered a total of 110.95 MB of Arabidopsis genome. Syntenic regions were sought between Arabidopsis and Brassica. A total of 21 conserved regions, involved in 60 functional markers and 50 genes of B. napus and Arabidopsis, respectively, were identified. These conserved regions were located at 15 LGs of B. napus, and each conserved region in Arabidopsis corresponded to 1-7 regions ofB. napus.
     13. The genes which were located in the QTLs regions in B. napus were used to search Genbank by BLASTX to achieve the homologous sequence in rice, maize and wheat. The results showed that most have similar sequences. Furthermore, the homologous sequences in rice were mapped by in-silico way, and the QTLs were searched around this gene. The regions where some genes located were found the QTLs for the similar trait in rice compared to B. napus.
引文
1.马西青.玉米株高杂种优势遗传基础分析.[硕士学位论文]。中国农业大学,2005
    2.孔令旗,张文毅,李振武.高粱籽粒蛋白质及其组分的配合力与杂种优势分析.作物学报,1992,18:352-358
    3.文雁成,王汉中,沈金雄,刘贵华,张书芬.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础.中国农业科学,2006,39:246-256
    4.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种,科学出版社,2001
    5.王刚,潘俊松,李效尊,何欢乐,吴爱忠,蔡润.黄瓜SRAP遗传连锁图的构建及侧枝基因定位.中国科学C辑,2005,34:510-516
    6.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的DNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29:741-746
    7.王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记.作物学报,2000,26(5):575-578
    8.王章奎,倪中福,孟凡荣,吴利民,谢晓东,孙其信.小麦杂交种及其亲本拔节期根系基因差异表达与杂种优势关系的初步研究.中国农业科学,2003,36:473-479
    9.卢庆善,Schertz KF,宋仁本,郑春阳.中美高粱杂种优势与配合力研究.辽宁农业科技,1994.4:3-7
    10.卢庆善,孙毅,华泽田.农作物杂种优势.北京:中国农业科技出版社,2001
    11.卢孟柱,王晓茹.PCR-SSCP用于针叶树种遗传分析的可行性.林业科学研究,2000,13:349-354
    12.田曾元,戴景瑞.利用cDNA-AFLP技术分析玉米灌浆期功能叶基因差异表达与杂种优势.科学通报,2002,47:1412-1416
    13.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25:317-321
    14.刘仁虎,赵建伟,肖勇,孟金陵.拟南芥eDNA芯片和油菜-拟南芥比较作图相结合筛选甘蓝型油菜抗菌核病先验基因.中国科学(C辑),2005,35:13-21
    15.刘春林,官春云,李枸,阮颖,寥晓兰,熊兴华,周小云,王国槐,陈社员.油菜分子标记图谱构建及抗菌核病性状的QTLs定位.遗传学报,2000,27:918-924
    16.华金平.汕优63“永久F_2”群体构建及其杂种优势的遗传研究.[博士学位论文].华中农业大学,2001
    17.孙德生,李文滨,张忠臣,陈庆山,杨庆凯.大豆株高QTLs发育动态分析.作物学报,2006,32:509—514
    18.朱军.复杂数量性状基因定位的混合线性模型方法.见王连铮,戴景瑞主编:全国作物育种学术讨论会论文集,北京:中国农业科技出版社,1998,11-20
    19.邢俊杰,成志伟,杨剑,李亦群,梁铃,殷绪明,张朝良,杨塞,谢宝贵,曹孟良.利用基因芯片技术分析水稻杂种优势的分子机理.杂交水稻,2005,20:59-61
    20.严建兵,汤华,黄益勤,郑用琏,李建生.玉米F_2群体分子标记偏分离的遗传分析.遗传学报,2003,30:913-918
    21.何小红,徐辰武,蒯建敏,顾世梁,李韬.数量性状基因作图精度的主要影响因子.作物学报,2001,27:469-475
    22.何光华,袁祚廉,郑家奎,谢戎,杨正林,黄建国,邵启明,袁玲.水稻籽粒蛋白质、游离氨基酸含量的配合力与杂种优势分析.作物学报,1996,22:192-196
    23.吴才君,曹家树,董德坤.芸薹种蔬菜杂交种及其亲本莲座期基因差异表达与杂种优势的关系.中国农业科学,2004,37:1654-1659
    24.吴利民,倪中福,王章奎,林展,孙其信.小麦杂种及其亲本苗期叶片家族基因差异表达及其与杂种优势关系的初步研究.遗传学报,2001,8:256-266
    25.吴敏生,高志环,戴景瑞.利用cDNA-AFLP技术研究玉米基因的差异表达.作物学报,2001,27:339-342
    26.张书芬,傅廷栋,宋文光.甘蓝型油菜单、双低雄性不育杂种的抗逆性研究.河南农业科学,1993,10:15-17
    27.张书芬.甘蓝型油菜农艺及品质性状杂种优势和遗传分析.[博士学位论文] 。华中农业大学, 2005
    28.张转,薛伟,王象坤,孙传清.利用基因渗入系研究水稻杂种优势与基因差异表达的关系.农业生物技术学报,2005,13:691-697
    29.李卫华,曹连莆,艾尼瓦尔,莫庸,慕自新.不同蛋白质含量小麦品种籽粒蛋白质及其组分含量的配合力和杂种优势研究.作物学报,2001,27:1007-1012
    30.李佳,沈斌章,韩继祥,甘莉.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13:521-523
    31.沈金雄.甘蓝型油菜杂种优势及其遗传分析.[博士学位论文].华中农业大学,2003
    32.沈俊儒,吴建勇,张剑,刘平武,杨光圣.甘蓝型油菜华油杂6号及其亲本的基因差异表达研究.中国农业科学,2006,39:23-28
    33.沈俊儒,吴建勇,张剑,杨光圣.甘蓝型油菜杂种及其亲本的基因差异表达分析.中国油料作物学报,2005,27:1-6
    34.沈钧儒.甘蓝型油菜华油杂6号及其亲本的基因差异表达研究.[博士学位论文].华中农业大学,2005
    35.肖成汉,何凤仙,傅廷栋.甘蓝型杂种油菜与其不育系和恢复系的幼苗生长和植株解剖比较研究.中国油料,1992,4:1-5
    36.肖炳光,朱军,卢秀萍,白永富,李永平.烤烟主要农艺性状对产量的遗传贡献率分析.遗传学报,2005,32:1089-1093
    37.陆光远,杨光圣,傅廷栋.一个简便的适合于分析油菜中SSR位点的检测体系.中国油料作物学报,2003,25:79-81
    38.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004b,31:1309-1315
    39.陆光远,杨光圣,傅廷栋.甘蓝型油菜显性细胞核雄性不育基因的AFLP标记.作物学报,2004a,30:104-107
    40.陆光远,杨光圣,傅廷栋.应用于油菜研究的简便银染AFLP标记技术的构建.华中农业大学学报,2001,20:413-415
    41.孟凡荣,孙其信,倪中福,吴利民,窦秉德,王章奎.小麦杂交和自交种子发育前期MADS-box和Ser/Thr两类家族基因差异表达与杂种优势.农业生物技术学报,2002,10:220-226
    42.孟凡荣,倪中福,吴利民,谢晓东,王章奎,孙其信.不同优势小麦正反交杂交种子与亲本自交种子发育前期基因表达差异.作物学报,2005,31:119-123
    43.官春云,王国槐,赵均田.油菜杂种在生理性状上的优势表现.中国油料,1985,2:14-17
    44.林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析.遗传学报,2004,31:622-626
    45.欧承刚,张恩惠,王妍妮,许忠民,程永安.甘蓝一代杂种优势苗期快速鉴定方法研究.西北农业学报,2004,13:165-168
    46.胡中立,刘后利.甘蓝型油菜品质性状的配合力分析及低硫苷新种质开发的理论探讨.作物学报,1989,15:221-229
    47.钟金城.活性基因假说.西南民族学院学报(自然科学版),1994,20:203-205
    48.倪中福,孙其信,吴利民,解超杰,孟凡荣.小麦种间与品种间杂交种及其亲本之间基因差异表达比较研究.农业生物技术学报 2001,9:366-370
    49.倪中福,孙其信,吴利民,解超杰.普通小麦不同优势杂交种及其亲本苗期根系基因的差异表达.植物学报,2002,44:457-462
    50.唐继华.优良玉米杂交种豫玉22的产量及其杂种优势遗传机理的剖析。[博士后学位论文].中国农业大学,2005
    51.徐云碧.分子标记在数量基因定位中的应用.遗传,1992,14:45-48.
    52.涂金星,傅廷栋,郑用琏.甘蓝型油菜核不育材料90-2441A的遗传及其等位性分析.华中农业大学学报,1997,16:255-258
    53.顾克余,翟虎渠,张红生.水稻杂种一代及其亲本分蘖期根系基因的差异表达.南京农业大学学报,2000,23:1-4
    54.梅拥军,朱军,张利莉,郭伟锋,胡守林.陆地棉产量组分对主要纤维品质性状的贡献分析.中国农业科学,2006,39:848-854
    55.傅廷栋.加入WTO对我国农业的影响和发展优质油菜生产问题.安徽农学通报,2001,7:8-12
    56.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000.
    57.曾长英,徐芳森,孟金陵,王运华,胡承孝.从QTLs到QTG的路还有多远?遗传,2006,28:1191-1198
    58.程宁辉,杨金水,高燕萍,徐明良,钱旻,葛扣麟.玉米杂种一代与亲本基因表达差异的初步研究.科学通报,1996,41:451-454
    59.程宁辉,高燕萍,杨金水,钱曼,葛扣麟.水稻杂种一代与亲本幼苗基因表达差异的分析.植物学报,1997,9:379-382
    60.谢晓东,倪中福,孟凡荣,吴利民,王章奎,孙其信.小麦杂交种与亲本发育早期种子的基因表达差异及其与杂种优势关系的初步研究.遗传学报,2003,30:260-266
    61.虞辉,官春云,王国槐.甘蓝型油菜杂种优势与配合力及通经分析.湖南农学院学报,1989,15:21-31
    62.鲍文奎.机会与风险-40年育种经验与思考.植物杂志,1990,4:4-5
    63.熊立仲.基因表达水平上水稻杂种优势的分子生物学基础研究.[博士学位论文].华中农业大学,1999
    64.裴新澍.数理遗传与育种.上海:上海科学技术出版社,1987,PP244-267
    65.潘俊松,王刚,李效尊.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位.自然科学进展,2005,15:167-172
    66.魏亦勤,张改生,李树华,李国庆,刘旺清,李红霞,张双喜,龚月娟,裘敏,王平.Ven、K型小麦雄性不育系春性F_1杂种优势表现及叶绿素含量和同工酶谱的关系.西北植物学,2001,21:1092-1102
    67. Ahmad R, Potter D, Southwick S M. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular marker. Journal of American Society for Horticultural Science, 2004, 129: 204-210
    68. Alonso-Blanco C, Mendez-Vigo B, Koornneef M. From phenotypic to molecular polymorphisms involved in naturally occurring variation of plant development. Int J Dev Biol, 2005, 49:717-732
    69. Alpert K B, Grandillo S, Tanksley S D.fw-2.2: A major QTLs controlling fruit weight is common to both red-fruited and green-fruited tomato species. Theo. App. Genet, 1995, 91:994-1000
    70. Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc NatlAcadSci, 1996, 93:15503-15507
    71. Anneloor L M A, Asbroek T, Olsen J, Housman D, Baas F, Stanton V J. Genetic variation in mRNA coding sequences of highly conserved genes. Physiol Genomics, 2001, 5:113-118
    72. Arumuganathan K, Earle E D. Nuclear DNA content of some important plant species. Plant Mol Bio. Rep, 1991, 9, 208-218
    73. Ashikari M, Sakakibara H, Lin S Y,Yamamoto T, Takashi T, Nishimura A, Angeles E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production, Science, 2005, 309: 741-745
    74. Ashraf M, Ahmad S. Genetic effects for yield components and fibre characteristics in upland cotton (Gossypium hirsutum L.) cultivated under salinized (NaCI) conditions. Agron J, 2000, 20: 917-926
    75. Ashraf M, Akbar M, Salim M. Genetic improvement in physiological traits of rice yield. In: Slafer GA (ed) Genetic improvement of field crops. Marcel Dekker Incorporates New York, 1994, pp 413-455
    76. Atchley W R, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics, 1997, 147:765-776
    77. Axelsson T, Shavorskaya O, Lagercrantz U. Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome, 2001, 44: 856-864
    78. Ayele M, Haas B J, Kumar N, Wu H, Xiao Y, Van Aken S, Utterback T R, Wortman J R, White O R, Town C D. Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res, 2005, 15:487-495
    79. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C F, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Genet Genom, 2003, 268: 656-665
    80. Bao J, Lee S, Chen C, Zhang X, Zhang Y, Liu S, Clark T, Wang J, Cao M, Yang H, Wang SM, Yu J. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars.Plant Physiol, 2005, 138: 1216-1231
    81. Basten C J, Weir B S, Zeng Z B. QTLs cartographer, version 1.16. Department of Statistics, North Carolina State University, Raleigh, 2002
    82. Becker J, Vos P, Kuiper M. Combined mapping of RFLP and AFLP markers in barley. Mol Gen Genet, 1995,249:65-73
    83. Bell C J, Ecken J R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics, 1994, 19: 137-144
    84. Bennett, M D, Smith J B. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London B, 1976, 274: 227-274
    85. Bentsink L, Yuan K, Koornneef M, Vreugdenhil D. The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor Appl Gene/, 2003,106: 1234-1243
    86. Bert P F, Charmet G, Sourdille P, Hayward M D, Balfourier F. A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet, 1999, 99: 445-452
    87. Boehnke M. Limits of resolution of genetic linkage studies: implications for the positional cloning of human disease genes. Am J Hum Genet, 1994, 55: 379-390
    88. Brown G G, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung W Y, Landry B S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J, 2003, 35: 262-272
    89. Bruce A B. The Mendelian theory of heredity and augmentation of vigor. Science, 1910, 32: 627-628
    90. Brunei D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGM) in Brassica napus from Arabidopsis thaliana sequence of known biological function. Genome, 1999, 42: 387-402
    91. Buckler E S, Thornsberry J M. Plant molecular diversity and applications to genomics. Curr Opin Plant Biol, 2002, 5: 107-111
    92. Budak H, Shearman R C, Parmaksiz I, Dweikat I. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs and SRAPs. Theoretical Applied Genetics, 2004b, 109: 280-288.
    93. Budak H, Shearman R C, Parmaksiz 1, Gaussoin R E, Leel D J, Jordan R, Dewiakat T P. Molecular characterizati On of Bufalograss germplasm using sequence—related amplified polymorphism markers. Theoretical Applied Genetics, 2004a, 108:328- 324
    94. Burns M J, Barnes S R, Bowman J G, Clarke M H, Werner C P, Kearsey M J. QTLs analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity, 2003,90: 39-48
    95. Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines in Brassica napus L. Genetics 1999, 153: 949-964
    96. Cao G Q, Zhu J, He C X, Gao Y M, Yan J Q, Wu P. Impacts of epistasis and QTLs and environment interaction for developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103:153-160
    97. Castiglioni P, Ajmone P, van Wijk R, Motto M. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theoretical Applied Genetics, 1999, 99:425-431
    98. Cavell A C, Lydiate D J, Parkin I A, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome, 1998,41: 62-69
    99. Conner K C. Genetic mechanisms of floral trait correlations in a natural population. Nature, 2002, 420: 407-410
    100. Cowley D E, Atchley W R. Quantitative genetic models for development, epigenetic selection and phenotypic evolution. Evolution, 1992, 46: 4952-5181
    101. Crow J F. 90 years ago: The beginning of hybrid maize. Genetics, 1998, 148: 923-928
    102. Darrah L L, Hallauer A R. Genetic effects estimated from generation means in four diallel sets of maize inbreds. Crop science, 1972, 12: 615-621
    103. Darwin C. The different forms of flowers on plants of the same species. London, UK: John Murray, 1877
    104. Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form. Plant Cell, 1998, 10: 1075-1082
    105. Doebley J, Stec A. Gustus C. Teosinte branchedl and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995, 141: 333-346
    106. Doganlar S, Frary A, Daunay M C, Lester R N.Tanksley S D. A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics, 2002,161:1697-1711
    107. Dumolin L S, Bodenes C, Petit R J. Detection of rare polymorphism in mitochondrial DNA of oaks with PCR-RFLP combined to SSCP analysis. Forest Genetics, 1996,3: 227-230
    108. East E M. Heterosis. Genetics, 1936, 21: 375-397
    109. East E M. Inbreeding in corn. Rpt Connecticut Agric Exp Sta for 1907. 1908, pp 419-428
    110. Ecke W, Uzunova M,Weissleder K. Mapping the genome of rapeseed (Brassica napus L.) II. Localization of genes controlling erucic acid synthesis and seed oil content Theor Appl Genet, 1995,91:972-977
    111. Edwards M D, Stuber C W, Wendel J F. Molecular marker facilitated investigations of quantitative-trait loci in maize. I.Numbers, genomic distribution and types of gene action. Genetics, 1987, 116: 113-125
    112. Eshed Y., Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTLs. Genetics, 1995, 141: 1147-1162
    113. Eta-Ndu J T, Openshaw S J. Epistasis for grain yield in two F2 populations of maize. Crop sci, 1999, 39: 346-352
    114. Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E. Candidate genes and QTLs for sugar and organic acid content in peach [Prunus persica (L.) Batsch]. Theor Appl Genet, 2002, 105: 145-159
    115. Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando M S. QTLs analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet, 2005, 111: 658-664
    116. Fatokun C A, Menancio-Hautea D I, Danesh D, Young N D. Young evidence for orthologous seed weight genes in cowpea and mung bean based on rflp mapping. Genetics, 1992,132: 841-846
    117. Faville M J, Vecchies A C, Schreiber M, Drayton M C, Hughes L J, Jones E S, Guthridge K M, Smith K F, Sawbridge T G, Spangenberg C, Bryan G T, Forster J W. Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet, 2004, 110: 12-32
    118. Ferreira M E, Rimmer S R, Williams P H, Osborn T C. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopath, 1995b, 90: 213-217
    119. Ferreira M E, Satagopan J, Yandell B S, Williams P H, Osborn T C. Mapping loci controlling vernalzation requirement and flowering time in Brassica napus. Theor Appl Genet, 1995a, 90: 727-732
    120. Ferreira M E, Williams P H and Osborn T C. RFLP mapping of Brassica using doubled haploid lines. Theor Appl Genet, 1994, 89: 615-621
    121. Ferreira M E, Williams P H, Osborn T C. Mapping of a locus controlling resistance to Alvugo Candida in Brassica napus using molecular markers. Phytopath, 1995c, 90:218-220
    122. Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet, 2003a, 107: 271-282
    123. Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution, 2003b, 50: 227-238
    124. Finnegan E J. Is plant gene expression regulated globally? TRENDS in Genetics, 2001, 17: 361-365
    125. Foisset N, Delourme R, Barret P, Hubert N, Landry B S, Renard M. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet, 1996,93: 1017-1025
    126. Fourmann M, Barret P, Froger N, Baron C, Chariot F, Delourme R, Brunei D. From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor Appl Genet, 2002, 105: 1196-1206
    127. Fourmann M, Chariot F, Froger N, Delourme R, Brunei D. Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome, 2001, 44: 1083-1099
    128. Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289:85-88
    129. Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci U S A, 2000,97:4718-4723
    130. Fulton T M, Van der Hoeven R, Eannetta N T, Tanksley S D. Identification, analysis and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell,2002, 14: 1457-1467
    131. Gadau J, Page R E, Werren J H. The genetic basis of the interspecific differences in wing size in nasonia (hymenoptera; pteromalidae): major quantitative trait loci and epistasis. Genetics, 2002, 161:673-684
    132. Gao M, Li G, McCombie W R, Quiros C F. Comparative analysis of a transposon-rich Brassica oleracea BAC clone with its corresponding sequence in A. thaliana. Theor Appl Genet, 2005, 111: 949-955
    133. Gao M, Li G, Potter D, McCombie W R, Quiros C F. Comparative analysis of methylthioalkylmalate synthase (MAM) gene family and flanking DNA sequences in Brassica oleracea and Arabidopsis thaliana. Plant Cell Rep, 2006, 25: 592-598
    134. Gao M, Li G, Yang B, McCombie W R, Quiros C F. Comparative analysis of a Brassica BAC clone containing several major aliphatic glucosinolate genes with its corresponding Arabidopsis sequence. Genome, 2004,47: 666-679
    135. Gao Z R. Quantitative genetics Sichuang University, Chongqing, 1986
    136. Gardner C O. Estimates of genetic parameters in cross fertilizing plants and their implications to plant breeding, in Statistical Genetics and Plant Breeding, edited by W. D. Hanson and H.F. Robinson. Special Publ. 982, NAS-NRC, Washington, 1963, pp. 225-252. Genet, 1998a, 97: 267-274
    137. Gimelfarb A, Lande R. Marker-assisted selection and marker - QTLs associations in hybrid populations. Theor Appl Genet, 1995,91: 522-528
    138. Gimelfarb A, Lande R. Simulation of marker-assisted selection for non-additive traits. Genet Res, 1994b, 64: 127-136
    139. Gondit R, Hubbell S P. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome, 1991, 3466-3471
    140. Gottwald J R, Krysan P J, Young J C, Evert R F, Sussman M R. Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci U S A, 2000,97: 13979-13984
    141. Grossc F, Loom J, Dipenbrock W. Yield formation and yield structure of winter oilseed rape Brassica napus L.., I. Genotype variability. J Agron crop Sci, 1992, 169: 70-93
    142. Gudrun A B, Kratzsch J, Haley C S, Renne U, Schwerin M, Karle S. Single QTLs effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F2 variance of growth and obesity in DU6ix DBA/2 mice. Genome Research, 2000,10: 1941-1957
    143.Guerreiro L, Mantet-Gay J, Guillot H, Chalhoub B, Veillet S. Use of database sequences to rapidly develop simple sequence repeats (SSRs) markers on rapeseed (Brassica napus L). 1998, Plant & Animal Genome VI Conference, January 18-22
    144. Guo L B, Xing Y Z, Mei H W, Xu C G, Shi C H, Wu P, Luo L J. Dissection of component QTLs expression in yield formation in rice. Plant Breed, 2005,124: 127-132
    145. Guo M, Birchler J A. Trans-acting dosage effects on the expression of model gene system in maize aneuploid. Science, 1994, 266: 1999-2002
    146. Guo M, Rupe M A, Danilevskaya O N, Yang X F, Hu Z H. Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J, 2003, 36:30-44
    147. Guo M, Rupe M A, Zinselmeier C, Habben J, Bowen B A, Smith O S. Allelic variation of gene expression in maize hybrids. Plant Cell, 2004, 16: 1707-1716
    148. Guo S W, Lange K. Genetic mapping of complex traits: promises, problems, and prospects. Theor Popul Biol, 2000, 57: 1-11
    149. Haanstra J, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden A W, Tanksley S, Lindhout P, Pelemen J. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicum esculentum L. pennellii F2 populations. Theor Appl Genet, 1999, 99: 254-271
    150. Hackel A, Schauer N, Carrari F, Fernie A R, Grimm B, Kuhn C.. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J, 2006, 45: 180-192
    151. Handa H. The complete nucleotide sequence and RNA editing content of the mitoehondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res, 2003, 31:5907-5916
    152. Harry D E, Temesgen B, Neale D B. Codominant PCR-based markers for Pinus taeda developed from mapped cDNA clones. Theoretical Applied Genetics, 1998, 97:327-336
    153. Hayashi K, Yandell D W. How sensitive is PCR - SSCP?. Human Mutation, 1993, 2:338-346
    154. Hazen S P, Hawley R M, Davis G L, Henrissat B, Walton J D. Quantitative Trait Loci and Comparative Genomics of Cereal Cell Wall Composition. Plant Physiol, 2003, 132:263-271
    155. Herrmann D, Boiler B, Studer B, Widmer F, Kolliker R. QTLs analysis of seed yield components in red clover (Trifolium pratense L.). Theor Appl Genet, 2006, 112:536-545
    156. Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar H E, Zhuang J Y, Zheng K L, Liu G F, Wang G C, Sidhu J S, Srivantaneeyakul S, Singh V P, Bagali P G., Prasanna H C, McLaren G, Khush G S. Identification of QTLs for growth- and grain yield-related traits in rice across nine locations of Asia. TheorAppl Genet, 2003, 107:679-690
    157. Hitzemann R, Malmanger B, Reed C, Lawler M, Hitzemann B, Coulombe S, Buck K, Rademacher B, Walter N, Polyakov Y, Sikela J, Gensler B, Burgers S, Williams RW, Manly K, Flint J, Talbot C. A strategy for the integration of QTLs, gene expression, and sequence analyses. Mamm Genome, 2003, 14:733-747
    158. Hoenecke M, Chyi Y S. Comparison of Brassica napus and B. rapa genomes based on the restriction fragment length polymorphism mapping. Rapeseed in a Changing World: Proc. 8th International Rapeseed Cong. (Saskatchewan, Canada), 1991, pp 1102-1107
    159. Hong D, Wan L, Liu P, Yang G, He Q. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed (Brassica napus L.), Euphitica, 2006, 10.1007/s 10681-006-9162-z
    160. Hongo T, Buzard G S, Calvert R J. Heterogeneity studies. Human Molecular Genetics, 1994, 3: 471-476
    161. Hoshino S, Kimura A, Fukuda Y, Dohi K, Sasazuki T. Polymerase chain reaction-single strand conformation polymorphism analysis of polymorphism in DPA1 and DPB1 genes: a single, economical and rapid method for histocompatibility testing. Hum Immunol, 1992, 33:98
    162. Howell P M, Marshall D F, Lydiate D J. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome, 1996, 39348-39358
    163. Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 2003, 46:454-460
    164. Hua J P, Xing YZ, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Pro. Natl Acad Sci USA, 2003, 100:2574-2579
    165. Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002, 162: 1885-1895
    166. Huang Y, Zhang L, Zhang J, Yuan D, Xu C, Li X, Zhou D, Wang S, Zhang Q. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol, 2006, (in press)
    167. Hughes S L, Hunter P J, Sharpe A G, Kearsey M J, Lydiate D J, Walsh J A. Genetic mapping of the novel Turnip mosaic virus resistance gene TURB03 in Brassica napus, Theor Appl Genet, 2003, 107:1169-1173
    168. Hyne V, Kearsey M J, Pike D J, Snape J W. QTLs analysis: Unreliability and bias in estimation procedures. Molecular Breed ing, 1995, 1: 273-282
    169. Inoue H, Nishio T. Efficiency of PCR-RF-SSCP marker production in Brassica oleraeea using Brassica EST sequences. Euphitica, 2004, 137:233-242
    170. Ito T, Kim G T, Shinozaki K. Disruption of an Arabidopsis S-13 homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J, 2000, 22: 257-264
    171. Jackson S A, Cheng Z, Wang M L, Goodman H M, Jiang J. Comparative fluorescence in situ hybridization Mapping of a 4312 kb Arabidopsis thaliana bacterial artificial chromosome contig reveals the role of chromosomal duplications in the expansion of the Brassica rapa genome. Genetics, 2000, 156: 833-838
    172. James C. Global review of commercialized transgenic crops: 2002. ISAAA briefs, 2002, No. 27
    173. Janeja H S, Banga S K, Bhaskar P B, Banga S S. Alloplasmic male sterile Brassica napus with Enarthrocarpus lyratus cytoplasm: introgression and molecular mapping of an E. lyratus chromosome segment carrying a fertility restoring gene. Genome, 2003, 46: 792-797
    174. Janeja H S, Banga S S, Lakshmikumaran M. Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility system in Brassica napus. Theor Appl Genet, 2003, 107: 148-154
    175. Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for the 'Polima' cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers, Theor Appl Genet, 1997,95:321-328
    176. Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTLs) and two marker gene loci. Theor Appl Genet, 1989, 78: 613-618
    177. Jiang C J, Zeng Z B. Multiple triats analysis of genetic mapping for quantitative trait loci. Genetics, 1995, 140: 1111-1127
    178. Jones D F. Domiance of linked factors as a means of accounting for heterosis. Proc Natl Acad Sci UAS, 1917,3:310-312
    179. Jourdren C, Barret P, Brunei D, Delourme R, Renard M. Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet, 1996, 93: 512-518
    180. Kandemir N, Jones B L, Wesenberg D M, Ullrich S E, Kleinhofs A. Marker-assisted analysis of three grain yield QTLs in barley (Hordeum vulgare L.) using near isogenic lines. Mol Breed, 2000,6:157-167
    181. Ke L, Sun Y, Liu P, Yang G. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica, 2004, 138: 163-168
    182. Kearsey M J, Farquhar A G L. QTLs analysis in plants; where are we now? Heredity, 1998, 80: 137-142
    183. Kearsey M J, Hyne V. QTLs analysis: a simple 'marker regression' approach. Theor Appl Genet, 1994,89:698-702
    184. Knox M R, Ellis T H N. Excess heterozygosity contributes to genetic map expansion in pea recombinant inbred populations. Genetics, 2002, 162: 861-873
    185. Kole C, Thormann C E, Karlsson B H, Palta J P, Gaffney P, Yandell B, Osborn T C. Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol Breed, 2002b, 9: 201-210
    186. Kole C, Williams P H, Rimmer S R, Osborn T C. Linkage mapping of genes controlling resistance to white rust (Albugo Candida) in Brassica rapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome, 2002a, 45: 22-27
    187. Kowalski S, Lan T, Feldmann K, Paterson A. Comparative mapping of Arabidopsis thaliana and Brassica oleracea reveal islands of conserved organization. Genetics, 1994, 138: 499-510
    188. Kresovich S, Szewc-McFadden A K, Bliek S M. Abundance and characterization of simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L (rapeseed). Theor Appl Genet, 1995,91: 206-211
    189. Lagercrantz U, Ellegren H, Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research, 1993, 21:1111-1115
    190. Lagercrantz U, Lydiate D. Comparative genome analysis in Brassica. Genetics, 1996a, 144: 1903-1909
    191. Lagercrantz, U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998, 150, 1217-1228
    192. Lagercrantz, U., Putterill, J., Coupland, G., and Lydiate, D. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J, 1996b, 9: 13-20
    193. Lan T H, Delmonte T A, Reischmann K P, Hyman J, Owalski S P, Mcferson J, Kresovich S, Paterson A H. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res, 2000a, 10: 776-788
    194. Lan T H, Paterson A H. Comparative mapping of QTLs determining the plant size of Brassica oleracea. TheorApp Genet, 2001, 103: 383-397
    195. Lan T H, Paterson A H. Comparative mapping of quantitative trait Loci sculpting the curd of Brassica oleracea. Genetics, 2000b, 155: 1927-1954
    196. Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-192
    197. Landry B S, Hubert N. A genetic map of Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991, 34: 543-552
    198. Lark K. G, Chase K, Adler F, Mansur L M, Orf J H. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci USA, 1995,92:4656-4660
    199. Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arobidopsis genomes by direct transcriptome mapping. TheorAppli Genet, 2003, 107: 168-180
    200. Li G, Quiros C F. Sequen ce-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001, 103:455-461
    201. Li G, Quiros C F. Analysis, Expression and molecular characterization of BoGSL-ELONG, a major gene involved in the Aliphatic Glucosinolate pathway of Brassice species. Genetics, 2002a, 162: 1937-1943
    202. Li G, Quiros C F. Cloning a major gene involved in the synthesis Of Gluosinolates in Brassice Plant. Animal& Microbe Genomes X Conference, San Diego, CA, 2002b
    203. Li J Z, Huang X Q, Heinrichs F, Ganal M W, Roder M S. Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet, 2005,110:356-363
    204. Li Y C, Korol A B, Fathima T, Belles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology, 2002, 11: 2453-2465
    205. Li Z K, Fu B Y, Gao Y M. Genome-wide Introgression Lines and their Use in Genetic and Molecular Dissection of Complex Phenotypes in Rice (Oryza sativa L.). Plant Mol Biol, 2005, 59: 33-52
    206. Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying CS , Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 2001, 158: 1737-1753
    207. Li Z K, Pinson S R M, Park W D, Paterson A H, Stanse J W. Epistasis for three grain yield components in rice (Oryza Sativa L.). Genetics, 1997,145:453-465
    208. Li Z, Pinson S R M, Park W D, Paterson A H, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453-465.
    209. Lin Z, Zhang X, Nie Y, He D, Wu M. Construction of a genetic linkage map for cotton based on SRAP. Chinese Science Bulletin, 2003,48: 2063-2067
    210. Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/ Exp 3. 0. Whitehead Institute Technical Report, Cambridge, MA, USA, 1992
    211. Liu C L, Guan C Y, Li X, Ruan Y, Liao X L, Xiong X H, Zhou X Y, Wang G H, Chen S Y. Construction of linkage map and mapping resistance gene of Scterotinia scterotiorum in Brassica napus. Yi Chuan Xue Bao, 2000, 27: 918-924
    212. Liu H C, Cheng H, Tirunagaru V, Sofer L, Burnside J. A strategy to identify positional candidate genes conferring Marek's disease resistance by integrating DNA microarrays and genetic mapping. Anim Genet, 2001,32: 351-359
    213. Liu L Z, Meng J L, Lin N, Chen L, Tang Z L, Zhang X K, Li J N. QTLs mapping of seed coat color for yellow seeded Brassica napus. Yi Chuan Xue Bao, 2006, 33: 181-187
    214. Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus ×B. campestris). Theor Appl Genet, 2002, 105: 1050-1057
    215. Liu X P, Tu J X, Liu Z W, CHen B Y, Fu T D. Construction of a molecular marker linkage map and Its use for QTLs analysis of Erucic Acid Content in Brassica napus L. Acta Agronomica Sinica, 2005, 31: 275-282
    216. Liu Z, Fu T , Tu J, Chen B. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed (Brassica napus L.). Theor Appl Genet, 2005, 110:303-310
    217. Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet, 2001, 103: 491-507
    218. Lowe A J, Moule C, Trick M, Edwards K J. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet, 2004, 108: 1103-1112
    219. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theoretical Applied Genetics, 2002, 105:622-628
    220. Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet, 2003 107:494-502
    221. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 2003, 164:359-372
    222. Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. Ⅱ. Grain yield components. Genetics, 2001, 158:1755-1771
    223. Luo Z W, Wu C I, Kearsey M J. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics, 2002, 161:915-929
    224. Lydiate D, Sharpe A. Aligning genetic maps of Brassica napus using microsateilite markers. Book of Abstracts, Plant and Animal Genome Ⅺ, San Diego, USA., 2003, P473
    225. Lysak M A, Koch M A, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res, 2005, 15:516-525
    226. Lyttle T W. Segregation distorters. Annual Review of Genetics, 1991, 25:511-557.
    227. Ma Z, Dooner H K.. A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. Plant J, 2004, 37: 92-103
    228. Mackay T F C. Quantitative trait loci in drosophila. Nat Rev Genet, 2001, 2:11-20
    229.Mackey J.杂种优势的遗传和进化原理。见北京农业大学农学系译。植物育种的杂种优势。北京:农业出版社,1981,3-29
    230. Maheswaran M, Subudhi P K and Nandi S. Polymorphism, distribution, and segregation of AFLP markers in a double haploid rice population. Theor Appl Genet, 1997, 94:39-45
    231. Manzanares-Dauleux M J, Delourme R, Baron F, Thomas G. Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus, Theor Appl Genet, 2000, 101:885-891
    232. Maughan P J, Saghai Maroof M A, Buss G R. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet, 1996, 93: 574-579
    233. Mayerhofer R, Bansal V K, Thiagarajah M R, Stringam G R, Good A G. Molecular mapping of resistance to Leptosphaeria maculans in Austrilian cultivars of Brassica napus. Genome, 1997, 40:294-301
    234. Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V, Good A, Parkin I. Complexities of chromosome landing in a highly duplicated genome: Towards map based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics, 2005, 171, 1977-1988
    235. McCallum J, Leite D, Pither-Joyce M, Havey M J. Expressed sequence markers for genetic analysis of bulb onion (Allium cepa L.). TheorAppl Genet, 2001, 103:979-991
    236. McGrath J M, Quiros C F. Generation of alien chromosome addition lines from Synthetic Brassica napus, morphology, cytology, fertility, and chromosome transmission. Genome, 1990, 33,374-383
    237. Meuwissena T H E, Karlsenb A, Lienb S, Olsakerc I, Goddardd M E. Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics, 2002, 161:373-379
    238. Mitchell-Olds T. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics, 1995, 140:1105-1109
    239. Moll R H, Lindsey M F, Robinson H F. Estimates of genetic variances and level of dominance in maize. Genetics, 1964, 49:411-423
    240. Moreau L , Charcosset A , Hospital F, Gallais A. Marker-assisted selection efficiency in populations of finite size. Genetics, 1998, 148:1353-1365
    241. Muangprom A, Osborn T C. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet, 2004, 108: 1378-1384
    242. Muhammad T, Jerzy P. DNA and hitone methylation in plants. TRENDS in Genetics, 2004, 20: 244-251
    243. Mullikin J C, Hunt S E, Cole C G, Mortimore B J, Rice C M, Burton J, Matthews L H, Pavitt R, Plumb R W, Sims S K, Ainscough R M R, Attwood J, Bailey J M, Barlow K, Bruskiewich R M M, Butcher P N, Carter N P, Chen Y, Clee C M, Coggill P. An SNP map of human chromosome 22. Nature, 2000,407: 516-520
    244. Noumi T, Mosher M E, Natori S, Futai M, Kanazawa H. A phenylalanine for serine substitution in the B subunit of Escherichia coli F1-ATPase affects dependence of its acticity on divalenti cation. J Biol Chem, 1984,259: 10071-10075
    245. O'Neill C N, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J, 2000,23: 233-243
    246. Omholt S W, Plahte E, Oyehaug L, Xiang K. Gene regulatory networks generating the phenomena of additivity, dominance and epistasis. Genetics, 2000,155: 969-980
    247. Orita M, Iwahana H, Kanazawa H. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA, 1989, 86: 2766-2770
    248. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of oint mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989b, 5: 874
    249. Osborn T C, Kole C, Parkin I A, Sharpe A G, Kuiper M, Lydiate D J, Trick, M. Comparison of flowering time gene in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997, 146: 1123-1129
    250. Osborn T C, Pires J C, Birchler J A, Auger D L, Chen Z J, Lee H S, Comai L, Madlung A, Doerge R W, Colot V, Martienssen R A. Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 2003, 19: 141-147
    251. Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122-1131
    252. Parkin I A, Gulden S M., Sharpe A G, Lukens L, Trick M, Osborn, T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-781
    253. Parkin I A, Lydiate D J, Trick M. Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome, 2002,45: 356-366
    254. Parkin I A, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome, 2003,46: 291-303
    255. Paterson A H, Bowersa J E, Burow M D, Draye, Elsikc C G, Jiang C, Katsarb C S, Lanb T, Linb Y, MingReiguang, Wright R J. Comparative genomics of plant chromosomes. Plant Cell, 2000, 12: 1523-1539
    256. Paterson A H, Damon S, Hewitt J D, Zamir D, Rabinowitch H D, Lincoln S E, Tanksley S D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Gentrics, 1991, 127: 181-197.
    257. Paterson A H, Lander E S M, Hewitt J D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphism. Nature, 1988, 335: 721-726
    258. Peleman J D, Wye C, Zethof J, Sorensen A P, Verbakel H, van Oeveren J, Gerats T, van der Voort J R. Quantitative trait locus (QTLs) isogenic recombinant analysis: a method for high-resolution mapping of QTLs within a single population. Genetics, 2005, 171: 1341-1352
    259. Peng J , Richard E D , Hartley MN , George P , Murphy , Devos KM, FlinthamJ E , Beales J , Fish L J , Worland A J , Pelica F , Sudhakar D , Christou P, Snape J W, Gale MD , Harberd N P. 'Green revolution'genes encode mutant gibberellin reponse modulators. Nature, 1999, 400: 256-261
    260. Pflieger S, Lefebvre V, Causse M.. The candidate gene approach in plant genetics: a review. Mol Breed, 2001, 7:275-291
    261.Piggott M P, Banks S C, Beheregaray L B. Use of SSCP to improve the efficiency of microsatellite identification from microsatellite-enriched libraries. Molecular Ecology Notes, 2006,6:613-615
    262. Pilet M L, Delourme R, Foisset N, Renard M. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans (Desm) Ces et de Not., in winter rapeseed (Brassica napus L.). Theor Appl Genet, 1998a, 96: 23-30
    263. Pilet M L, Delourme R, Foisset N, Renard M. Identification of QTLs involved in field resistance to light leaf spot (Pyrenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L). TheorAppl Genet, 1998b, 97: 398-406
    264. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P. Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet, 2005, 111:1514-1523
    265. Plieske J, Struss D. Microsatellite markers for genome analysis in Brassica.I. development in Brassicanapus and abundance in Brassicaceae species. Theor Appl Genet, 2001, 102: 689-694
    266. Plieske J, Struss D. STS markers linked to Phoma resistance genes of the Brassica B genome revealed sequence homology between Brassica nigra and Brassica napus. Theor Appl Genet, 2001,102:483-488
    267. Power L. An expansion of Jone's theory for explanation of heterosis. Amer Nat, 1944 78: 275-280
    268. Pressoir G, Albar L, Ahmadi N, Rimbault I, Lorieux M, Fargette D, Ghesquiere A. Genetic basis and mapping of the resistance to rice yellow mottle virus. II. Evidence of a complementary epistasis between two QTLs. Theoretical Applied Genetics, 1998,97: 1155-1161
    269. Price A H. Believe it or not, QTLs are accurate! TRENDS in Plant Science, 2006, 11:213-216
    270. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTLs analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, (in press)
    271. Quijada P A, Maureira I J, Osborn T C. Confirmation of QTLs controlling seed yield in spring canola (Brassica napus) hybrids. Mol Breed, 2004, 13: 193-200
    272. Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. identification of genomic regions from winter germplasm. Theor Appl Genet, 2006, 113: 549-561
    273. Quinby J R, Karper R E. Heterosis in sorghum resulting from the heterozygous condition of sigle gene that affects duration of growth. Am J Bot, 1946, 33: 716-721
    274. Rafalski J A, Tingey S V. Genetic diagnostics in plant breeding: RAPDs, microsatellites, and machines. Trends Genetics, 1993, 9:275-280
    275. Rajcan I, Kasha K J, Kott L S, Beversdorf W D. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napur L.). Euphitica, 1999, 105: 173-181.
    276. Ramsay L D, Jennings D S. The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome, 1996, 39: 558-567
    277. Rana D T, Boogaart van den O'Neill C M, Hynes L, Bent E, Macpherson L, Park J Y,, Lim Y P, Bancroft I.. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J, 2004,40: 725-733.
    278. Rao G U., Ben C A., Borovsky Y, Paran I.. Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. 2003, Theor Appl Genet, 106: 1457-1466
    279. Riaz A, Li G, Quresh Z, Swati M S, Quiros C F. Genetic diversity of oilseed Brassica napus inbred lines based on sequence—related amplified polym orphism and its relation to hybrid performance. Plant Breeding, 2001,120: 411-415
    280. Ribaut J M, Banziger M, Betran J, Jiang C. Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize. In: M.S. Kang, Editor, Quantitative Genetics, Genomics, and Plant Breeding, CABI Publishing, 2002, pp 85-99
    281. Ribaut J M. Genetic dissection of drought tolerance in maize: a case study. In: H.T. Nguyen and A. Blum, Editors, Physiology and Biotechnology Integration for Plant Breeding, Marcel Dekker, 2004, pp 571-609
    282. Riesmeier J W, Willmitzer L, Frommer W B. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J, 1994,13: 1-7
    283. Robert L S, Robson F, Sharpe A , Lydiate D, Coupland G. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus, PMB, 1998, 37: 763-772
    284. Romagnoli S, Maddaloni M, Livini C, Motto M. Relationship between gene expression and hybrid vigor in primary root tips of young maize (Zea mays L.) plantlets. Theor Appl Genet, 1990, 80:767-775
    285. Ryder C D, Smith L B, Teakle G R, King G J. Contrasting genome organisation: two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome, 2001, 44:808-817
    286. Sadowski J, Gaubier P, Delseny M, Quiros C F. Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Gen Genet, 1996, 251: 298-306
    287. Sadowski J, Quiros C F. Organization of an Arabidopsis thaliana gene cluster on chromosome 4 including the RPS2 gene, in the Brassica nigra genome. Theor Appl Genet, 1998, 96:468-474
    288. Salvi S, Tuberosa R, Chiapparino E. Toward positional cloning of Vgt1, a QTLs controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol, 2002, 48: 601-613
    289. Sarkissian I V, Sfivastava H K. High efficiency, heterosis and homestasis in mitochondria of wheat. Proc Nat Acad Sci USA, 1969, 63:302-309
    290. Sato Y, Nishio T.. Mutation detection in rice waxy mutants by PCR-RF-SSCP. Theor Appl Genet, 2003, 107:560-567
    291. Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet, 2000, 101: 897-901
    292. Schranz M E, Quijada P, Sung S B, Lukens L, Amasino R, Osborn T C. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics, 2002, 162, 1457-1468
    293. Schug M D, Wetterstrand K A, Gaudette M S. The distribution and frequency of microsatellite loci in Drosophila melanogaster. Molecular Ecology, 1998, 7:57-70
    294. Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA, 2006, 103:12981-12986
    295. Sernyk J L, Stefansson B R. Heterosis in summer rape (B. napus). Can J Plant Sci, 1983, 63: 407-413
    296. Sheffield V C, Beck J S, Kwitek A E. The sensitivity of single -strand conformation polymorphism analysis for the detection of single base substitutions. Genomics, 1993, 16: 325-332
    297. Shen L, Courtois B, McNally K L. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection, Theor Appl Genet, 2001, 103: 75-83
    298. Shi C H, Wu J G, Fan L J, Zhu J, Wu P. Developmental genetic analysis of brown rice weight under different environmental conditions in indica rice. Acta Bot Sin, 2001, 43:603-609
    299. Shimkets R A, Lowe D G, Tai J T. Gene expression analysis by transcript profiling coupled to a gene query. Nat Biotechnol, 1999, 17:798-803
    300. Shull G H. The composition of a field of maize. Am Breeders Assoc Rep, 1908, 4:296-301
    301. Shull GH. What is "heterosis"? Genetics, Brooklyn, New York, 1994, 33:439-446
    302. Slabaugh M B, Huestis G M, Leonard J, Holloway J L, Rosato C, Hongtrakul V, Martini N, Toepfer R, Voetz M, Schell J, Knapp S J.. Sequence-based genetic markers for genes and gene families: single-strand conformational polymorphisms for the fatty acid synthesis genes of Cuphea. Theor Appl Genet, 1997, 94:400-408
    303. Snowdon R J, Friedt W. Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breeding, 2004, 123: 1-8
    304. Somers D J, Rakow G, Prabhu V K, Friesen K R. Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome, 2001, 44:1077-1082
    305. Song K, Slocum M K, Osborn T C. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. campestris). Theor Appl Genet, 1995, 90:1-10
    306. Song L Q, Fu T D, Tu J X, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genie male sterility gene in Brassica napus L. TheorAppl Genet, 2006, 113:55-62
    307. Song R T, Liaca V, Linton E, Messing J. Sequence, regulation, and evolution of the maize 22-kDαZein gene family. Genome research, 2001, 11:1817-1825
    308. Song R T, Messing J. Gene expression of a gene family in maize based on noncollinear haplotypes, Proc. Natl. Acad. Sci. USA, 2003, 100:9055-9060
    309. Sprague G F, Russell W A. Some evidence on type of gene action involved in yield heterosis in maize. Proc. Int. Gent. Symp, Tokyo & Kyoto, 1956, pp 522-526.
    310. Sprague G F. Heterosis in maize: theory and practice. Monogr. Theor Appl Genet. 1983, 6: 47-70
    311. Srivastava H K. Heterosis and intergenomic complementation mitochondria, chloroplast, and nucleus. In: Frankel R (ed), heterosis, reappraisal of theory and practice. Springer Berlin Heidelberg, New York, 1983, pp 260-286
    312. Stoerker J, Mayo J D, Tetzlaff C N, Sarracino D A, Schwope I, Richert C. Rapid genotyping by MALDI-monitored nuclease selection from probe libraries. Nat Biotech, 2000, 18: 1213-1216
    313. Struss D, Quiros C F, Pliieske J. Construction of Brassica B genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular marker. Theor Appl Genet, 1996, 93: 1026-1032
    314. Stuber C W, Edwards M D, Wendel J F. Molecular marker facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639-648
    315. Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823-839
    316. Stuber C W, Williams W P, Moll R H. Epistasis in maize (Zea mays L.): significance in predictions of hybrid performances, Crop science, 1973,13: 195-200
    317. Sun Q X, Wu L M, Ni Z F, Meng F R, Wang Z K, Lin Z.. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Sci, 2004, 166: 651-657
    318. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M. Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet, 2002, 104: 1092-1098
    319. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics, 2006, 173:309-319
    320. Swanson-Wagner R A, Jia Y, DeCook R, Borsuk L A, Nettleton D, Schnable P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc Natl Acad Sci U S A, 2006, 103: 6805-6810
    321.Syed N H, Chen Z J. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity, 2005, 94: 295-304
    322. Szewc-McFadden A K, Kresovich S, Bliek S M, et al. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica sepecies. Theor Appl Genet, 1996, 93: 534-538
    323. Tanhuanpaa P K, Vilkki J P, Vilkki H J. Association of RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). Genome, 1995, 38: 414-416
    324. Tanksley S. Mapping polygenes. Annu Rev Genet, 1993,27: 205-233
    325. Thomas M. Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics, 1995, 140:1105-1109
    326. Thormann C E, Romero J, Mantet J, Osborn T C. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 1996,93: 282-286
    327. Tommasini L, Batley J, Arnold G M, Cooke R J, Donini P, Lee D, Law J R, Lowe C, Moule C, Trick M, Edwards K J. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet, 2003, 106: 1091-1101
    328. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Stanca AM, Pecchioni N. Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet, 2006,112: 445-454
    329. Town C D, Cheung F, Maiti R, Crabtree J, Haas B J, Wortman J R, Hine E E, Althoff R, Arbogast T S, Tallon L J, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell, 2006, 18: 1348-1359
    330. Truco M J, Hu J, Sadowski J, Quiros C F. Inter- and intra-genomic homology of the Brassica genomes: implications for their origin and evolution. Theor App Genet, 1996, 93: 1225-1233
    331. Tsaftaris A S, Polidoros AN. Studying the expression of genes in maize parental inbreds and their heterotic and nonheterotic hybrids. Proc Eucarpia Maize and Sorghum Conference, Bergamo, Italy, 1993, pp283-292
    332. Tuinstra M R. Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci, 1996, 36: 1337 - 1344
    333. U, N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Japan J Bot, 1935, 7: 389-452
    334. Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. dentification of alleles from unadapted germplasm. Theor Appl Genet, 2006,113: 597-609
    335. Udall J A, Quijada P A, Osborn T C. Detection of chromosomal rearrangements derived from homoeologous recombination in four mapping populations of Brassica napus L. Genetics, 2005, 169:967-979
    336. Uzunova M I, Ecke W. Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica napus L.). Plant Breeding, 1999, 118: 323-326
    337. Uzunova M, Ecke W, Weissleder K, Rowelen G. Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet, 1995, 90: 194-204
    338. Vidal - Puig A , Moller D E . Comparative sensitivity of alternative single - strand conformation polymorhpism (SSCP) Methods. Bio Techniques, 1994, 17: 490-496
    339. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Freijters A, Pot J, Peleman J, Kuiper M and Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acid Res, 1995, 23:4407-4414
    340. Vuylsteke M, van Eeuwijk F, Van Hummelen P, Kuiper M, Zabeau M. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics, 2005, 171: 1267-1275
    341. Walsh J A, Sharpe A G, Jenner C E, Lydiate D J. Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet, 1999, 99: 1149-1154
    342. Wang D L, Zhu J ,Li Z K ,Paterson A H. Mapping QTLs with epistatic effects and QTLs environment interactions . Theor Appl Genet, 1999, 99: 1255-1264
    343. Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theoretical Applied Genetics, 1994,88: 1-6
    344. Weijers D, Franke-van Dijk M, Venken R J, Quint A.. An Arabidopsis minute-like phenotype caused by a semi-dominant mutation in a ribosomal protein S5. Genes Dev, 2001, 128: 4289-4299
    345. Weller J I, Soller M, Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycoperdicon esculentum×Lycopersicon pimpinellifolium) by means of genetic markers. Genetics, 1988,118:329-339
    346. Wen Y X, Zhu J. Multivariable conditional analysis for complex trait and its components. Acta Genet Sin, 2005, 32: 289-296
    347. Wrights, evolution and genetics of population. Univ of Chicago press, Chicago, Vol 1,1968
    348. Wu L M, Ni Z F, Meng F R, Lin Z, Sun Q X.. Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents. Mol Gen Genet, 2003, 270: 281-286
    349. Wu R L, Ma C X, Zhu J, Casella G. Mapping epigenetic quantitative trait loci (QTLs) altering a developmental trajectory. Genome, 2002,45: 28-33
    350. Wu W R, Li W M. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theor Appl Genet, 1994, 89: 535-539
    351. Xiao J H, Li J M, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTLs analysis using molecular markers. Genetics, 1995,140: 745-754
    352. Xiong L Z, Yang G P, Xu C G, Zhang Q, Maroof M A S.. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross. Mol Breed, 1998, 4: 129-136
    353. Xu F S, Wang Y H, Meng J L. Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding, 2001,120: 319-324
    354. Xu S J, Singh R J, Hymowitz T. Establishment of a cytogenetic map soybean: progress and prospective. Soybean genetics newsletter, 1997,24: 121-122.
    355. Yamamoto T, Lin H, Sasaki T, Yano M. Identification of Heading Date Quantitative Trait Locus Hd6 and Characterization of Its Epistatic Interactions With Hd2 in Rice Using Advanced Backcross Progeny. Genetics, 2000,154: 885-891
    356. Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Quantitative t rait loci analysis for developmental behavior of tiller number in rice (Oryzasativa L.) Theor Appl Genet, 1998a, 97: 267-274
    357. Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L .). Genetics, 1998b, 150: 1257-1265
    358. Yan L , Loukoianov A , Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA , 2003 , 100 : 6263-6268
    359. Yang T J, Kim J S, Kwon S J, Lim K B, Choi B S, Kim J A, Jin M, Park J Y, Lim M H, Kim H I, Lim Y P, Kang J J, Hong J H, Kim C B, Bhak J, Bancroft I, Park B S. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell, 2006, 18: 1339-1347
    360. Yang T J, Kim J S, Lim K B, Kwon S J, Kim J A, Jin M, Park J Y, Lim M H, Kim H I, Kim S H, Lim Y P, Park B S. The Korea Brassica Genome Project: A glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genom, 2005, 6: 138-146
    361. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol, 1997,35: 145-153
    362. Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Molecular Biology, 2005, 58: 367-384
    363. Ye Z H, Lu Z Z, Zhu J. Genetic analysis for developmental behavior of some seed quality traits in upland cotton (Gossypum hirsutum L.). Euphytica, 2003, 129: 183-191
    364. Yi B, Chen Y, Lei S, Tu J, Fu T. Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet, 2006, 113: 643-650
    365. Yousef G G, Juvik J A. Comparison of Phenotypic and Marker-Assisted Selection for Quantitative Traits in Sweet Corn. Crop Sci, 2001, 41: 645-655
    366. Yu C Y, Hu S W, Zhao H X, Guo A G, Sun G L. Genetic distances revealed by morphological characters, isozymes, proteins and RAPD markers and their relationships with hybrid performance in oilseed rape (Brassica napus L.). Theor Appl Genet, 2005, 110: 511-518
    367. Yu F, Lydiate D J, Rimmer S R. Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet, 2005, 110: 969-979
    368. Yu S B, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997,94: 9226-9231
    369. Zebeau M , Vos P. Selective restriction fragment amplification: A general method for DNA fingerprinting. Paris: European Patent Office, European Patent Application Number: 94202629. 7 (Publication No. 0534858A 1). 1993
    370. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    371. Zhang F, Aoki S and Takahata Y. RAPD markers linked to microspore embryogenic ability in Brassica crops, Euphytica, 2003, 131: 207-213
    372. Zhang F, Wan X Q, Pan G T. QTLs mapping of Fusarium moniliforme ear rot resistance in maize. 1. Map construction with microsatellite and AFLP markers. Journal of Applied Genetics, 2006, 47:9-15
    373. Zhang Q, Gao Y J, Saghai Maroof M A, Yang S H, Li J X. Molecular divergence and hybrid performance in rice. Molecular breeding, 1995, 1:133-142
    374. Zhang Q, Gao Y J, Yang S H, Ragab R A, Saghai Maroof M A, Li Z B. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet, 1994, 89: 185-192
    375. Zhang Q, Zhou Z Q, Yang G P, Xu C G, Liu K D, Saghai Maroof M A. Molecular marker heterozygosity and hyrid performance in indica and japonica rice. Theor Appl Genet, 1996, 93: 1218-1224
    376. Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTLs mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet, 2004, 108: 1131-1139
    377. Zhao J, Becker H C, Zhang D, Zhang Y, Ecke W. Conditional QTLs mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet, 2006 113: 33-38
    378. Zhao J, Meng J. Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant breed, 2003b, 122: 19-23
    379. Zhao J, Meng J. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet, 2003a, 106:759-764.
    380. Zhao J, Udall J A, Quijada P A, Grau C R, Meng J, Osborn T C. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet, 2006, 112: 509-516
    381. Zhong G V, Burns J K. Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol Biol, 2003, 53: 117-131
    382. Zhu J, Weir B S. Mixed model approaches for genetic analysis of quantitative traits[A]. In : Chen L S , Ruan S G, and Zhu J (eds) Advanced Topics in Biomathematics : Procceedings of International Conference on Mathematical Biology. Singapore :World Scientific , 1999, 25: 1552-1601
    383. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700