棉花形态建成模拟及可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于2005~2007年棉花品种、播期、氮素、水分和DPC化控试验,将系统分析方法和数学建模技术应用于棉花形态建成的研究,通过对棉花形态数据的定量分析,构建了棉花形态建成模型。结合OpenGL技术,在Visual C++6.0平台上实现了棉花虚拟生长系统VGSC (Virtual Growth System for Cotton)。
     1.棉花形态模型的构建
     应用2005年试验数据,在综合考虑氮素、水分、化控等因子影响的基础上,通过对棉花形态数据的定量分析,采用Logistic方程描述各器官尺寸随GDD(生长度日,℃·d)的变化过程及其与氮素、水分及DPC的关系,构建棉花形态建成模型,主要包括:主茎叶长和宽、主茎叶柄长、主茎节间长和粗、果枝叶长和宽、果枝叶柄长、果节长和粗以及棉铃长和宽等模型。利用2006年的试验数据对模型进行检验,棉花主茎叶长宽、主茎叶柄长、主茎节间长粗、果枝叶长宽、果枝叶柄长、果节长粗以及棉铃长宽的观测值与模拟值的根均方差分别为0.85 cm、0.82 cm、0.87 cm、0.57 cm、0.86mm、0.65 cm、0.74 cm、0.8 cm、0.73 cm、0.16 mm、0.36 cm、0.4 cm,模型预测性好。此外,为了虚拟显示的需要,利用2007年试验数据,建立了棉花的叶色模型。
     2.棉花各器官的可视化模拟
     根据棉花器官的三维形态特征,利用NURBS曲面描述叶片的几何结构,基于拍摄的叶片照片,选取几张典型的图片(一个裂片、三个裂片、五个裂片),通过photoshop7.0勾勒出反映叶片轮廓的控制点,借助NURBS曲面模拟叶片形状,然后以GDD为主线,以叶片形态模型为基本算法,计算出叶片实际尺寸,再结合已绘制图形进行缩放变形,实现虚拟叶片的伸长。通过叶色模型,完成棉花生长过程中叶色变化的虚拟实现。用圆柱体构建叶柄、节间、果节等形态简单的器官,以柱体的长度和上下底面的直径分别表示茎(节)的长和粗,其取值通过建立的棉花节间形态模型(棉花果节形态模型)获得,将形态模型模拟的茎(节)长和粗数据转化为显示模型中各点的坐标,然后选择合适的绘制模式进行绘制,实现茎(节)形态的可视化输出。最后根据棉花各器官间的拓扑结构将各个器官组合在一起,利用形态模型中各个器官的同伸关系,实现整株棉花的虚拟生长显示。结果表明,该方法具有可控性高、灵活度高等特点,是一种适合于棉花器官三维造型的好方法。
     3.棉花虚拟生长系统
     利用棉花的三维形态几何模型,采用面向对象的方法及OpenGL技术设计实现了棉花三维可视化系统。系统主要由参数输入、模型计算、存储系统、结果输出等几大部分组成。模型计算是本系统的核心部分,主要完成棉花的虚拟建成。数据库中存有品种数据、棉花形态特征参数最大值以及初始化的最优栽培参数值等,用户即可在不输入任何数据的情况下直接实现棉花的虚拟生长,也可根据实际情况,修改数据库中各影响因子参数值,然后调用形态模型为可视化模型提供形态特征参数,实现棉花各器官、单株和群体的三维静态建模及生长过程动态模拟。
Based on the potted plant research of cotton variety, sowing date, nitrogen, water and DPC in the summer seasons of 2005,2006 and 2007, with the systematic analysis principle and mathematical modeling technique applied to cotton morphogenesis, a morphological model was developed by the quantitative analyses of experimental data. And a virtual growth system for cotton was implemented with usage of OpenGL for 3D graphic and MFC for graphical user interface.
     1. Construction of morphogenesis model for cotton
     Based on the pot experiment of cotton in 2005, with the consideration of nitrogen, water and DPC, a morphological model for cotton, which includes several sub-models of leaf, stem, boll, and so on, was developed by the quantitative analyses of measured data, that the dynamic change of each organ size could be characterized by logistic equation in relation to GDD, nitrogen, water and DPC. The model was validated by the data from 2006, and the mean RMSEs were 0.85cm,0.82cm,0.87cm,0.57cm,0.86mm,0.65cm,0.74cm, 0.8cm,0.73cm,0.16mm,0.36cm, and 0.4cm for stem leaf length and width, stem leafstalk length, stem internode length and diameter, fruiting branch leaf length and width, fruiting branch leafstalk length, fruiting node length and diameter, and boll length and width, respectively. Meantime, color model of cotton leaf was analyzed as to the need of virtual display by the data from 2007.
     2. Visual simualtion of cotton organs
     Visual simulation of cotton organ is realized by three-dimensional morphological characteristic of cotton organ. The shape of leaf was modeled with the aid of NURBS. we first got a set of points which represented leaf outlines from picture using Photoshop 7.0, then we used NURBS function to simulate the shape of leaf based on these points. At last, based on the morphogenesis of leaf, the actual size was got, and we combined it with the drawn graphic for scaling deformation. Used the leaf color model, the virtual change of leaf color in the process of leaf growth was fulfilled. The column shaped internode and petiole could be naturally captured by length-to-diameter which was got from their morphogenesis model. Using the growth relationship in each organ and integrating each organ according to structure character in cotton, the system fulfilled virtual growth show of the whole cotton. The results show characteristics of the methodology are high controllability and large agility and etc. It is a good way for geometry modeling in cotton organ.
     3. Realization of virtual growth system for cotton
     Based on the cotton morphological model, a virtual growth system was realized by the usage of OOP and OpenGL.This system included input module, model module, database module and output module. As central part, model module was used to fulfill cotton virtual show. Database contained variety data, maximum value of organ size, the best parameter of cultivation, and so on. The system could realize virtual growth of cotton with no input, or could take a static model for cotton stem, leaf and boll and realize the demonstration of cotton dynamic growth relied on the input of physiological parameter and cotton morphological model.
引文
[1]Room P M, Hanan J S, Prusinkiewicz P. Virtual plants:new perspectives for ecologists, pathologists and agricultural scientists [J]. Trends in Plant Science,1996,1(1):33-38.
    [2]de Reffye P, Edelin C, Franqon J, et al. Plant models faithful to botanical structure and development [J]. Computer Graphics,1988,22(4):151-158.
    [3]Kurth W. Morphological models of plant growth:possibilities and ecological relevance [J]. Ecological Modelling,1994,75:299-308.
    [4]马新明,杨娟,熊淑萍,等.植物虚拟研究现状及展望[J].作物研究,2003,17(3):148-151.
    [5]Prusinkiewicz P, Lindenmayer A. The Algorithmic Beauty of Plants [M]. New York: Springer-Verlag,1990.
    [6]Prusinkiewicz P, Lindenmayer A, Hanan J. Developmental models of herbaceous plants for computer imagery purpose [J]. Computer Graphics,1988,22(4):141-150.
    [7]Mech R, Prusinkiewicz P. Visual models of plants interacting with their environment [J]. Computer Graphics,1996,30(3):397-410.
    [8]Prusinkiewicz P. A look at the visual modeling of plant using L-system [J]. Agronomic,1990: 211-224.
    [9]Prusinkiewicz P, Hammel M, Mjolsness E. Animation of plant development [J]. Computer Graphics,1993,27(3):351-360.
    [10]McCown R L, Hammer G L, Hargreaves J N G, et al. APSIM:An agricultural production system simulation model for operational research [J]. Mathematics and Computers in Simulation, Elsevier Science,1995:3-4.
    [11]Chen J, Reynolds J F. GePSi:A generic plant simulator based on object-oriented principles [J]. Ecological Modeling,1997,94:53-66.
    [12]Gauthier L, Gary C, Zekki H. GPSF:A generic and object-oriented framework for crop simulation [J]. Ecological Modeling,1999,116:253-268.
    [13]Pan X, Hesketh J D, Huck M G. OWSimu:An object-oriented and Web-based simulator for plant growth [J]. Agricultural Systems,2000,63:33-47.
    [14]Wang E, Engel T. SPASS:A generic process-oriented crop model with versatile windows interfaces [J]. Environmental Modeling & Software,2000,15:179-188.
    [15]Prusinkiewicz P, Hammel M, Mech J H R. L-systems:from theory to visual models of plants. Proceedings of the second CSIRO symposium on computational challenges in life sciences [M]. Melbourne, Australia:CSIRO Publishing,1996.
    [16]Prusinkiewicz P, Lindenmayer A. The algorithmic beauty of plants [M]. New York:Springer, 1990.
    [17]Mech R, Prusinkiewicz P. Visual models of plants interacting with their environment. Proceedings of the 23rd annual conference on computer graphics and interactive techniques [M]. New York: ACM Press,1996.
    [18]Prusinkiewicz P, Hammel M S, Mjolsness E. Animation of plant development [J]. Computer Graphics,1993,27:351-60.
    [19]黄艳峰,孙红丽,王建国.植物形态的L-系统基因建模[J].微计算机信息(测控自动化),2007,23(1-1):311-312.
    [20]赵星,de Reffye Philippe,熊范纶,等.虚拟植物生长的双尺度自动机模型[J].计算机学报,2001,24(6):608-615.
    [21]赵星,de Reffye Philippe,熊范纶,等.基于双尺度自动机模型的植物花序模拟[J].计算机学报,2002,25(11):116-124.
    [22]耿瑞平,涂序彦.虚拟植物枝条生长与形态生成模型研究[J].计算机工程与应用,2004,23:4-5.
    [23]Barnsley M F, Demko S. Iterated function systems and the global construction of fractals [J]. Proceedings of the Royal Society of London,1985(A399):243-275.
    [24]Chen S G, Impens I, Ceulemans R, et al. Measurement of gap fraction of fractal generated canopies using digitalize'd image analysis [J]. Agricultural and Forest Meteorolgy,1993,65: 245-259.
    [25]Berezovskava F S, Karev G P, Kisliuk O S, et al. A fractal approach to computer-analytical modeling of tree crowns [J]. Trees Structure and Function,1997,11:323-327.
    [26]刘向东,廖欣,于海,等.迭代函数系IFS吸引子的参数控制与树木的模拟[J].计算机工程与应用,2000,5:28-29.
    [27]Viennot X G, Eyrolles G. Combinatorial analysis of ramified patterns and computer imagery of trees [J]. Computer Graphics,1989,23(3):31-39.
    [28]Reeves W T, Blau R. Approximate and probabilistic algorithms for shading and rendering structured particle systems [J]. Computer Graphics (SIGGRAPH85 Proceedings),1985,19(3): 313-322.
    [29]王小铭.植物形态结构的计算机模拟[J].现代计算机,1999,71(2):43-46.
    [30]Smith A R. Plants, fractals and formal languages [J]. Computer Graphics,1984,18(3):1-10.
    [31]Anon M, Kunii T L. Botanical tree image generation [J]. IEEE Computer Graphics and Applications,1984,4:10-34.
    [32]Oppendheimer P E. Real time design and animation of fractal plants and trees [J]. Computer Graphics,1986,20(4):55-64.
    [33]郝小琴.森林景物的三维迭代函数系统建模技术的研究[J].计算机学报,1999,22(7):768-763.
    [34]雷 蕾,郭新宇,周淑秋.基于粒子系统思想的叶片纹理构造[J].计算机工程与应用,2004,36:218-219.
    [35]李庆忠,韩金妹.一种L系统与IFS相互融合的植物模拟方法[J].工程图学学报,2005,6:135-139.
    [36]Han J. Plant Simulation Based on Fusion of L-System and IFS [C]. ICCS 2007, Part II, LNCS 4488,2007.
    [37]严涛,吴恩华.基于多幅图像的树木造型方法[J].系统仿真学报,2000,12(5):565-571.
    [38]Kutulakos K N, Seitz S M.A Theory of Shape by Space Carving [J]. International Journal of Computer Vision, Marr Prize Special Issue,2000,38(3):199-218.
    [39]Shlyakhter I, Rozenoer M, Dorsey J, et al. Reconstructing 3D Tree Models from Instrumented Photographs [J]. IEEE CG&A,2001,21(3):53-61.
    [40]Klein R, Schilling A, StraBer W. Reconstruction and Simplification of Surfaces from Contours [J]. Graphical Models,2000,62(6):429-443.
    [41]Lintermann B, Deussen O. Interactive modeling of plants [J]. IEEE Computer Graphics and Applications,1999,19(1):56-65.
    [42]Hammel M, Prusinkiewicz P, Wyvill B. Modelling compound leaves using implicit contours. Kunii TL, editor. Visual computing:integrating computer graphics with computer vision [M]. Berlin:Springer,1992.
    [43]Mundermann L, MacMurchy P, Pivovorov J, et al. Modeling lobed leaves [J]. Proceedings of computer graphics international-CGI,2003:60-65.
    [44]Deussen O, Colditz C, Stamminger M, et al. Interactive visualization of complex plant ecosystems [C]. Proceedings of the IEEE visualization conference, IEEE,2002.
    [45]李云峰,汪成亮,曹渝昆,等.结合L系统和图像合成技术的叶表面重建研究[J].计算机工程与应用,2007,43(9):231-233.
    [46]Hanan J. Virtual plants—integrating architectural and physiological models [J]. Environmental Modelling & Software,1997,12(1):35-42.
    [47]Fournier C, Andrieu B. A 3D Architectural and Process-based Model of Maize Development [J]. Annals of Botany,1998,81:233-250.
    [48]Drouet J-L, Pages L. GRAAL:a model of GRowth, Architecture and carbon Allocation during the vegetative phase of the whole maize plant Model description and parameterization [J]. Ecological Modelling 2003,165:147-173.
    [49]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton [J]. Agricultural Systems,2003,75:47-77.
    [50]Yan H P, Kang M Z, de Reffye P, et al. A dynamic, architectural plant model simulating resource-dependent growth [J]. Annals of Botany,2004,93:591-602.
    [51]宋有洪,贾文涛,郭 炎,等.虚拟作物研究进展[J].计算机与农业,2000,(6):6-8.
    [52]Watanabe T, Room P M, Hanan J S. Virtual rice:simulating the development of plant architecture [J]. International Rice Research Notes,2001,26(2):60-62.
    [53]Smith G S, Curtis J P, Edwards C M. A method for analyzing plant architecture as it relates to fruit quality using three-dimensional computer graphics [J]. Annals of Botany,1992,70:265-269.
    [54]郭 炎,李保国.玉米冠层三维结构研究[J].作物学报,1998,24(6):1006-1009.
    [55]郭 炎,李保国.玉米冠层的数学描述与三维重建研究[J].应用生态学报,1999,10(1):39-41.
    [56]聂敏,廖桂平,金 晶,等.油菜虚拟生长的研究[J].农业网络信息,2007,(3):19-21,38.
    [57]刘桃菊,唐建民,戚昌激.水稻形态的分形特征及其可视化模拟研究[J].江西农业大学学报(自然科学版),2002,24(5):583-586.
    [58]雷 蕾,郭新宇,周淑秋,等.黄瓜果实的几何造型及可视化研究[J].计算机应用软件,2006,23(5):24-25.
    [59]方小勇,郭新宇,王丹宏,等.黄瓜叶几何造型研究[J].计算机工程应用,2006,32:183-184,190.
    [60]周淑秋,郭新宇,雷 蕾.黄瓜生长可视化系统的设计与实现[J].计算机技术与发展,2007,17(1):227-228,232.
    [61]Room P M, Hanan J S, Prusinkiewicz P. Virtual plants:New Perspectives for Ecologists, Pathologists and Agricultural Scientists[J]. Trends in Plant Science,1996,1:33-38.
    [62]Hearn A B. OZCOT:A simulation model for cotton crop management[J]. Agricultural Systems, 1994,44:257-299.
    [63]Jallas E, Martin P, Sequeira R, et al. Virtual COTON(?), the Firstborn of the Next Generation of Simulation Model [C]. Springer-Verlag Berlin Heidelberg,2000.
    [64]Boone M Y L, PorterD O, McKinion J M. Calibration of GOSSYM:theory and practice [J]. Computers and Electronics in Agriculture,1993,9:193-203.
    [65]张吴平,李保国.棉花根系生长发育的虚拟研究系统[J].仿真学报,2006,8(1):283-286.
    [66]杨娟,赵明,潘学标.基于NURBS和VC++6.0的棉花生长可视化研究[J].农业工程学报,2006,22(10):159-162.
    [67]杨娟,赵明,潘学标.基于NURBS的棉花器官建模[J].计算机工程与应用,2005,41(30):185-188.
    [68]Prusinkiewicz P. Art and science for life:Designing and growing virtual plants with L-systems [C]. Acta Horticulturae,2004.
    [69]王江,胡包钢,腾军,等.GreenLab模型下的虚拟植物器官造型工具软件[J].中国图形图像学报,2003,8(A):847-851.
    [70]de Reffye P, Houllier F. Modelling plant growth and architecture:some recent advances and applications to agronomy and forestry [J]. Current Science,1997,73:984-992.
    [71]de Reffye P, Blaise F, Chemouny S, et al. Calibration of a hydraulic architecture based growth model of cotton plants [J]. Agronomie,1999,19:265-280.
    [1]潘学标,龙腾芳,董占山,等.棉花生长发育与产量形成模拟模型(CGSM)研究[J].棉花学报,1992,4(增刊):11-20.
    [2]潘学标,韩湘玲,石元春.COTGROW:棉花生长发育模拟模型[J].棉花学报,1996,8(4):180-188.
    [3]邱建军,宇振荣.棉花生产管理系统研究进展及应用[J].棉花学报,1997,9(5):225-229.
    [4]潘学标,韩湘玲,王延琴,等.棉花生长发育模拟模型COTGROW的建立Ⅱ发育与形态发生[J].棉花学报,1999,11(4):174-181.
    [5]邱建军,肖荧南.美国GOSSYM棉花生长模拟模型研究进展[J].世界农业,2000,4:21-22.
    [6]Zhang Jun, Wang Yiming, Dong Qiaoxue, et al. Research advances of cotton dynamic simulation models[J]. Transactions of the CSAE,2007,23(3):257-266.
    [7]Jallas E, Sequeira R A, Martin P, et al. COTONS, a Cotton Simulation Model for the Next Century[C]. Second World Cotton Research Conference, Athens,1998.
    [8]Jallas E, Martin P, Sequeira R, et al. Virtual COTON(?), the Firstborn of the Next Generation of Simulation Model[C]. Springer-Verlag Berlin Heidelberg,2000.
    [9]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton [J]. Agricultural Systems,2003,75:47-77.
    [10]胡继超,姜东,曹卫星,等.短期干旱对水稻叶水势、光合作用及干物质分配的影响[J].应用生态学报,2004,15(1):63-67.
    [11]中国农业科学院棉花研究所.中国棉花栽培学[M].上海:上海科学技术出版社,1983.
    [1]Ivanov N, Boissard P, Chapron M, et al. Computer stereo plotting for 3-D reconstruction of a maize canopy[J]. Agricultural and Forest Meteorology,1995,75:85-102.
    [2]Espana M L, Baret F, Aries F, et al. Modeling maize canopy 3D architecture application to reflectance simualtion[J]. Ecological Modeling,1999,122:25-43.
    [3]郑文刚,郭新宇,赵春江,等.玉米叶片几何造型研究[J].农业工程学报,2004,20(1):152-154.
    [4]刘晓东,曹云飞,刘国荣,等.基于NURBS曲面的水稻叶建模[J].微电子学与计算机,2004,21(9):17-119.
    [5]Dornbusch T, Wernecke P, Diepenbrock W. A method to extract smorphological traits of plant organs from 3D point clouds as a database for an architectural plant model [J]. Ecological Modelling,2007,200:119-129.
    [6]Lintermann B, Deussen O. Interactive modeling of plants[J]. IEEE Computer Graphics and Applications,1999,19(1):56-65.
    [7]Hammel M, Prusinkiewicz P, Wyvill B. Modelling compound leaves using implicit contours. Kunii TL, editor. Visual computing:integrating computer graphics with computer vision [M]. Berlin:Springer,1992.
    [8]Mundermann L, MacMurchy P, Pivovorov J, et al. Modeling lobed leaves[M]. Proceedings of computer graphics international-CGI,2003.
    [9]Prusinkiewicz P, Hammel M, Mech J H R. L-systems:from theory to visual models of plants. Proceedings of the second CSIRO symposium on computational challenges in life sciences [M]. Melbourne, Australia:CSIRO Publishing,1996.
    [10]Deussen O, Colditz C, Stamminger M, et al. Interactive visualization of complex plant ecosystems[C]. Proceedings of the IEEE visualization conference, IEEE,2002.
    [11]刘晓东,罗轶先,郭新宇,等.基于NURBS曲面的玉米叶生长过程中的形态建模[J].计算机工程与应用,2004,40(14):201-203.
    [12]李磊,刘晓东,罗轶先,等.基于控制点的玉米雄穗生长形态建模[J].计算机工程与应用,2004,40(9):203-205.
    [13]陈国庆,朱 艳,刘 惠,等.基于形态模型的小麦器官和单株虚拟生长系统研究[J].农业工程学报,2007,23(3):126-130.
    [14]杨娟,赵 明,潘学标.基于NURBS和VC++6.0的棉花生长可视化研究[J].农业工程学报,2006,22(10):159-162.
    [15]伍铁军,周来水,周儒荣.用OpenGL实现几何模型真实感图形显示[J].计算机工程与应用,1999,35(11):78-79.
    [16]中国农业科学院棉花研究所.中国棉花栽培学[M].上海:上海科学技术出版社,1983.
    [17]雷 蕾,郭新宇,周淑秋.基于粒子系统思想的叶片纹理构造[J].计算机工程与应用,2004,36:218-219.
    [1]王育坚.Visual C++面向对象编程教程[M].北京:清华大学出版社,2003.
    [2]朱海滨.面向对象技术:原理与设计[M].北京:国防科技大学出版社,1992.
    [3]Richard S, et al. OpenGL超级宝典[M].北京:人民邮电出版社,2001.
    [4]朱亚平,白建军,边晓东,等.OpenGL编程实例[M].北京:人民邮电出版社,1999.
    [1]刘布春,王石立,马玉平.国外作物模型区域应用研究进展[J].气象科技,2002,30(4):193-203.
    [2]谢云,Kiniry J R.国外作物生长模型发展综述[J].作物学报,2002,28(2):190-195.
    [3]Prusinkiewicz P, Hammel M, Mech R. L-systems:from theory to visual models of plants. Proceedings of the second CSIRO symposium on computational challenges in life sciences [M]. Australia:CSIRO Publishing,1996.
    [4]Yan H P, Kang M Z, de Reffye P, et al. A dynamic, architectural plant model simulating resource-dependent growth [J]. Annals of Botany,2004,93:591-602.
    [5]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton [J]. Agricultural Systems,2003,75:47-77.
    [6]Jallas E, Martin P, Sequeira R, et al. Virtual COTON(?), the Firstborn of the Next Generation of Simulation Model [C]. Springer-Verlag Berlin Heidelberg,2000.
    [7]杨 娟,赵 明,潘学标.基于NURBS的棉花器官建模[J].计算机工程与应用,2005,41(30):185-188.
    [1]Prusinkiewicz P. Modeling of spatial structure and development of plants:a review [J]. Scientia Horticulturae,1998,74:113-149.
    [2]Han J. Plant simulation based on fusion of L-system and IFS [C]. Springer-Verlag Berlin Heidelberg,2007.
    [3]周淑秋,郭新宇,雷 蕾.黄瓜生长可视化系统的设计与实现[J].计算机技术与发展,2007,14(1):227-229.
    [4]Lacointe A. Carbon allocation among tree organs:a review of basic processes and representation in functional-structural tree models [J]. Annals of Forest Science,2000,57:521-533.
    [5]郑秀琴,冯利平,刘荣花.冬小麦产量形成模拟模型研究[J].作物学报,2006,32(2):260-266.
    [6]Eckersten H, Torssell B, Kornher A, et al. Modeling biomass, water and nitrogen in grass ley: Estimation of N uptake parameters [J]. European Journal of Agronomy,2007,27:89-101.
    [7]Hanan J. Virtual plants—integrating architectural and physiological models[J]. Environmental Modelling & Software,1997,12(1):35-42.
    [8]Yan H P, Kang M Z, de Reffye P, et al. A dynamic, architectural plant model simulating resource-dependent growth[J]. Annals of Botany,2004,93:591-602.
    [9]Duncan W G. A model for simulation photosynthesis in plant communities [J]. Hilgardia,1968, 38(4):1-32.
    [10]高亮之.农业模型研究与21世纪的农业科学[C].香山科学会议第95次学术讨论会,1998.
    [11]曹永华.美国CERES作物模拟模型及其应用[J].世界农业,1991,(9):52-55.
    [12]Boone M Y L, PorterD O, McKinion J M. Calibration of GOSSYM:theory and practice [J]. Computers and Electronics in Agriculture,1993,9:193-203.
    [13]高亮之,金之庆.RCSODS-水稻栽培计算机模拟优化决策系统[J].计算机农业应用,1993,3: 14-20.
    [14]张怀志,朱艳,曹卫星.基于知识模型的棉花管理决策支持系统[J].棉花学报,2005,17(4):201-206.
    [15]朱 艳,曹卫星,王其猛,等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-820.
    [16]Lemmon H E, Ning C. COTTONPLUS:A computer model for simulating the growth of the Cotton Plant[C]. A User's manual,1997.
    [17]Jones J W, Brown L G, Hesketh J D. COTCROP:A computer model for cotton growth and yield[C].In:Hesbeith J D, Jones J W eds. predieting photosynthesis for Eeosystem Model. CRC PubliCation,1980.
    [18]潘学标,韩湘玲,等.COTGROW:棉花生长发育模拟模型[J].棉花学报,1996,8(4):180-188.
    [19]郭新宇,赵春江,刘洋,等.基于生长模型的玉米三维可视化研究[J].农业工程学报,2007,23(3):121-125.
    [20]陈国庆,朱艳,刘 惠,等.基于形态模型的小麦器官和单株虚拟生长系统研究[J].农业工程学报,2007,23(3):126-130.
    [21]石春林,金之庆,曹卫星.水稻植株的虚拟生长[J].江苏农业学报,2006,22(2):105-108.
    [22]黄艳峰.植物形态的L-系统基因建模[J].微计算机信息(测控自动化),2007,23:311:312.
    [23]赵星,de Reffye Philippe,熊范纶,等.虚拟植物生长的双尺度自动机模型[J].计算机学报,2001,24(6):608-615.
    [24]郝小琴.森林景物的三维迭代函数系统建模技术的研究[J].计算机学报,1999,22(7):768-763.
    [25]赵春江,陆声链,郭新宇,等.西瓜三维形态几何建模和真实感绘制技术研究[J].中国农业科学,2008,41(12):4155-4163.
    [26]雷 蕾,郭新宇,周淑秋,等.黄瓜果实的几何造型及可视化研究[J].计算机应用与软件,2006,23(5):24-25.
    [27]方小勇,郭新宇,王丹虹,等.黄瓜叶几何造型研究[J].计算机工程与应用,2006,32:183-184.
    [28]刘晓东,曹云飞,刘国荣,等.基于NURBS曲面的水稻叶形态建模[J].微电子学与计算机,2004,21(9):1 17-1 19.
    [29]陈国庆,朱艳,刘 惠,等.基于形态模型的小麦器官和单株虚拟生长系统研究[J].农业工程学报,2007,23(3):126-130.
    [30]肖伯祥,郭新宇,王丹虹,等.玉米雄穗几何造型研究[J].玉米科学,2006,14(4):162-164.
    [31]Jallas E, Martin P, Sequeira R, et al. Virtual COTON(?), the Firstborn of the Next Generation of Simulation Model[C]. Springer-Verlag Berlin Heidelberg,2000.
    [32]雷 蕾,郭新宇,周淑秋.基于粒子系统思想的叶片纹理构造[J].计算机工程与应用,2004,36:218-219.
    [33]Moulia B, Fournier M, Guitard D. Mechanics and form of the maize leaf:in vivo qualification of flexural behaviour [J]. Journal of Materials Science,1994,29:2359-2366.
    [34]Hanan J S, Room R M. Practical aspects of virtual plant research[C]. In:Michalewics M T,eds.Plants to Ecosystem-Advances in Computational Life Sciences. Melbourne:CSIRO Australia,1997.
    [35]Hanan J. Virtual plants—integrating architectural and physiological models [J]. Environmental Modelling & Software,1997,12(1):35-42.
    [36]Fournier C, Andrieu B. A 3D Architectural and Process-based Model of Maize Development [J]. Annals of Botany,1998,81:233-250.
    [37]Drouet J-L, Pages L. GRAAL:a model of GRowth, Architecture and carbon Allocation during the vegetative phase of the whole maize plant Model description and parameterization [J]. Ecological Modelling,2003,165:147-173.
    [38]Hanan J S, Hearn A B. Linking physiological and architectural models of cotton [J]. Agricultural System,2003,75(1):47-77.
    [39]Yan H P, Kang M Z, de Reffye P, et al. A dynamic, architectural plant model simulating resource-dependent growth [J]. Annals of Botany,2004,93:591-602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700