Robo2调控小鼠肾脏和输尿管发育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     肾脏的发育是一个复杂过程,需要输尿管芽(UB)和后肾间充质(MM)两种细胞群精确的相互作用来完成的。某一环节出现错误会导致肾脏发育不良、膀胱输尿管反流等严重的肾脏和尿道发育异常。Robo2通过其配体Slit2在肾脏发育过程中发挥重要作用。Robo2/Slit2基因缺失可以导致调节肾脏发育的主要因素Gdnf的表达异常,从而使肾脏和输尿管发育异常,引起多个肾脏、多个输尿管和输尿管扩张改变。但是目前对于Robo2调控肾脏和输尿管发育的研究仍比较缺少,主要是对肾脏发育初期Robo2/Slit2基因敲除导致输尿管芽萌出异常的研究,缺乏Robo2对肾脏发育后期的影响以及Robo2基因缺失导致肾脏和输尿管发育异常的机制研究。
     目的:
     通过观察和分析Robo2在肾脏发育过程中的表达变化、体外过表达Robo2对肾脏发育的影响、Robo2基因敲除对小鼠肾脏和输尿管发育的影响等现象,揭示Robo2在肾脏和输尿管发育过程中的作用及其机制。
     方法:
     (1)显微分离胚龄E12.5d、E13.5d、E14.5d、E15.5d、E16.5d、E17.5d、E18.5d胎鼠肾脏和生后日龄P1d、P1w、P4w小鼠肾脏,石蜡切片进行PAS染色系统观察小鼠肾脏发育各阶段的形态学变化特点;应用实时定量RT-PCR技术对肾脏组织中Robo2mRNA水平表达进行半相对定量分析;应用免疫荧光技术检测小鼠肾脏发育过程中Robo2蛋白水平的表达部位。
     (2)显微分离胚龄E12.5d小鼠胚胎肾组织,应用显微注射及电转染方法,进行表达载体显微注射、转染。实验分为三组,正常对照组、空载体组、转染GFP-Robo2组。将体外转染的胚肾置于Transwell膜上,以气液交界面的方式培养3天后,进行肾小球和输尿管芽标志物(WT1、E-cadherin)和细胞增殖和凋亡(PH3、TUNEL)免疫荧光染色,观察输尿管芽分支、肾小球数目及后肾间充质细胞增殖、凋亡变化情况。
     (3)取野生型胚龄E13.5d和E14.5d小鼠胚胎输尿管膀胱组织,应用免疫荧光染色和实时定量RT-PCR的方法检测Robo2在输尿管、膀胱和中肾管(WD)的表达情况;应用组织PAS染色和免疫荧光染色的方法,观察Robo2基因敲除小鼠胚胎肾脏和输尿管发育异常的情况。
     (4)取野生型胚龄E12.5d小鼠胚胎肾脏、输尿管和膀胱组织,分别进行分离培养,分为正常培养组、去肾组、去膀胱组和去肾去膀胱组,共4组,每组10个,于Transwell气液交界面上培养6天后,进行E-cadherin和α-SMA免疫荧光染色,观察各组输尿管长度的变化情况;并且应用显微注射和电转染的方法,对野生型E12.5d胚胎的膀胱三角区进行GFP-RNAiRobo2质粒转染,体外培养6天后进行E-cadherin和α-SMA免疫荧光染色,观察输尿管长度的变化情况。
     (5)取同窝E13.5d Robo2基因敲除野生型和纯合子胚胎,冰冻包埋连续切片,TUNEL染色观察CND(common nephric duct)凋亡情况。
     结果:
     (1)肾脏发育过程中不同时间点的形态特征:①小鼠肾脏发育各阶段PAS染色结果显示,UB于E11.5d开始分支,E15.5d可见到初步形成的肾盂、肾盏;E16.5d有发育成熟的集合管、肾盂、肾盏;②M M在整个后肾发育阶段围绕UB呈“帽”状分布;E13.5d UB周围的MM聚集成团,可见逗号形体、S形体;E14.5d出现肾小囊腔;E15.5d出现发育成熟的肾小球;E16.5d可见发育成熟的肾单位(肾小球、近端小管、远端小管等);出生后1.5d至1w肾小球数目继续增多;出生后2w肾脏发育成熟。
     (2)肾脏发育过程中Robo2的表达变化:①实时定量RT-PCR结果显示,Robo2在发育的E12.5d~E14.5d表达水平最高,随后水平明显下降,在出生后维持在低水平表达。②免疫荧光染色结果显示,Robo2最初表达在胚肾的后肾间充质,而不在输尿管芽表达。随着胚胎肾脏发育,Robo2表达于后肾间充质细胞膜、围绕输尿管芽的浓缩帽状间充质、逗号形体和“S”形体以及毛细血管袢,最终表达于肾小球足细胞。另外,部分早期肾小管上皮细胞也有微弱Robo2表达。
     (3)过表达Robo2对肾脏发育的影响:①输尿管芽标志物E-cadherin和肾小球标志物WT1免疫荧光染色显示,正常对照组、转染空载体组肾脏输尿管芽分枝和肾小球数目无明显异常;而转染GFP-Robo2组的输尿管芽分枝减少,肾小球数目减少(p <0.05)。②与对照组相比,过表达Robo2组出现后肾间充质减少,输尿管芽顶端缺少聚集的帽状间充质。③与正常对照组和转染空载体组比较,过表达Robo2组肾脏后肾间充质细胞凋亡情况未见明显异常(p>0.05),并且E-cadherin染色显示输尿管芽上皮细胞形态及排列无异常。
     (4) Robo2基因敲除对小鼠肾脏和输尿管发育的影响:①免疫荧光染色显示Robo2表达在膀胱三角区的疏松结缔组织、CND和输尿管;实时定量RT-PCR显示,Robo2在输尿管、膀胱、脑、肺组织中均有不同程度的表达,在膀胱和输尿管的含量多于肺组织但少于脑组织的含量。②与同窝野生型小鼠比较,Robo2基因敲除小鼠表现为肾脏明显变小,有多个肾脏、多个输尿管,输尿管缩短,输尿管积水和输尿管与膀胱连接异常。
     (5)输尿管发育的影响因素及Robo2影响输尿管发育的可能机制:①野生型E12.5d小鼠胚胎肾脏、输尿管和膀胱组织体外培养发现,与正常培养组相比,去肾组输尿管长度延长无明显差异(p>0.05),去膀胱组和去肾去膀胱组输尿管长度延长明显变短(p<0.05)。②在膀胱三角区转染GFP-RNAiRobo2质粒后,与正常培养组相比,输尿管长度延长无明显异常(p>0.05)。③R obo2基因敲除纯合子小鼠膀胱三角区的CND末端可见到凋亡,但异常部位的CND无凋亡。
     结论:
     Robo2在肾脏和输尿管中发育过程中均有表达,对肾脏和输尿管的发育有重要作用;Robo2体外过表达可以导致肾脏输尿管芽减少,后肾间充质聚集减少等异常;体内Robo2基因敲除可以引起输尿管的发育异常,主要是由于异常部位的输尿管未能与膀胱正确连接所致。
Background:
     The development of kidney is a complex process,which requiresthe precise interaction of the ureteric bud (UB) and metanephricmesenchymal (MM). A minim error in this process will lead to renaldysplasia, vesicoureteral reflux, severe kidney and urinary tractdevelopment abnormalities. Roundabout2(Robo2) and its ligand Slitsplay an vital role in the process of kidney development. Slit2or Robo2mouse mutants exhibit multilobular kidneys, multiple ureters, anddilatation of the ureter, renal pelvis, and collecting duct system, whichlead to vesico ureteral reflux. However, there were very little studyabout Robo2regulate kidney and ureter development,mainly about the UB outgrown from WD,and was lack of the mechanism of the Robo2gene deletion lead to kidney and ureter development defect.
     Objective:
     To observe expression characteristics of Robo2and further exploreits role during murine kidney development.To understand the effect ofRobo2overexpression on kidney development in vitro.
     Methods:
     (1) PAS staining for embryonic mouse E12.5d~18.5d and afterbirth P1d、1w、5w, to observed the characteristics of the morphologicalchanges of the kidneys of mice in different developmental stages.qRealTime RT-PCR technique was used to measure the expression level ofRobo2mRNA in the developing murine kidney from12.5-18.5d postcoitum (d.p.c.) and postnatal day1d、1w、5w; Immunofluorescencestaining were used to examine the expression locations of Robo2proteinat different stages of embryonic and adult mice kidney.
     (2) Embryonic kidney was extracted from timed-pregnant femalemice at embryonic day12.5(E12.5d).Using microinjection and electrictransfection method to transfer the expression vector into E12.5dmouse embryonic kidney. The experiment was divided into three groups:normal control group, empty vector group and GFP-Robo2group. Afterthe electroporation, kidneys were immediately placed in Transwells andcultured at the air-liquid interface for3days, immunofluorescencestaining with WT1、E-cadherin、PH3and TUNEL. To observe thebranching of the ureteric bud, glomerular number and and theproliferation and apoptosis of mesenchymal cell.
     (3) Embryonic ureter and bladder was extracted fromtimed-pregnant female mice at E13.5d and E14.5d, usingimmunofluoresence and quantitative real-time PCR method to detect theexpression of Robo2in the ureter, bladder, and WD. Using PAS stainingand immunofluorescence staining method to observe the kidney and ureter development of the Robo2gene knockout mouse.
     (4) Embryonic mouse embryonic kidney, ureter and bladder wasextracted from timed-pregnant female mice at E12.5d, then dividedthem into four groups,normal culture group, removing bladdergroup,removing kidney group and removing kidney and bladdergroup(n=10). After cultured for6days in vitro, immunofluorescencestaining with E-cadherin andα-SMA, observe the ureter growth in eachgroup. Using microinjection and electric transfection method totransfer the GFP-RNAiRobo2plasmid into E12.5d mouse embryonicBladder trigone, After cultured for6days in vitro, immunofluorescencestaining with E-cadherin andα-SMA, observe the ureter growth.Microdissect E12.5d Robo2gene knockout mouse embryonic kidney,ureter and bladder, cultured for1day in vitro, immunofluorescencestaining with E-cadherin, observe the development of the ureter andCND.
     (5) Immunofluorescence staining for the frozen tissue sections ofE13.5d and E14.5d Robo2gene knockout mouse embryonic, observe theapoptosis of the CND.
     Results:
     (1) Morphological characteristics of the different time points in theprocess of developing kidney:①UB began to branchin E11.5d.The renalpelvis, calyceal initial formation in E15.5d. In the whole of the kidneydevelopment, MM surrounded the UB form the cap mesenchyme. MMsurrounding the UB gathered in E13.5d,The comma, s-shaped body andthe renal capsule was seen in E15.5d. The mature nephron was seen inE16.5d. The mouse kidney mature after birth2w.
     (2) Expression of Robo2during the kidney development:①Compared to5w group, Robo2was highly expressed at E12.5d,E13.5d and E14.5d, but which were quickly reduced from E15.5andkept at very low level after Newborn. The expression of Robo2mRNA was reduced with ages.③Immunofluorescence staining showed thatRobo2protein expression could be observed in metanephricmesenchyme,cap mesenchyme,comma, s-shaped body and ultimatelyexpressed in the podocytes, which was also weakly expressed in part ofthe proximal tubular epithelial cells. Robo2deficiency casued nephrondevelopment defect, some tubules and collect ducts were dilated.
     (3) The impact of Robo2overexpression in the kidneydevelopment:①Results show reduced UB branching and decreasedglomerular number after in vitro Robo2overexpression in the embryonickidneys(p<0.05).②We found fewer metanephric mesenchymal (MM)cells surrounding the UB but no abnormal morphology in the branchingepithelial UB.③Meanwhile, no significant change in MM proliferationor apoptosis was observed(p>0.05).
     (4) The impact of Robo2knockout in the kidney and ureterdevelopment:①Immunofluorescence staining shown that Robo2 expressed in the trigone of the bladder,CND. The result of quantitativereal-time PCR shown the different levels of Robo2expressed in theureter, bladder, brain and lung tissue, the most expression is brain, thelest expression is lung,followed by bladder and ureter.②Comparedwith the widetype, Robo2gene knockouts mouse developedsupernumerary ureteric buds,duplex kidneys, hydroureter and renaldysplasia.
     (5) Impact factors and possible mechanism of Robo2in the ureterdevelopment:①There was no significant difference between the normalculture group and the removing kidney group(p>0.05). Comparedwith the normal culture group, the extended length of ureter wassignificantly shorter in removing bladder group and removing kidneyand bladder group(p<0.05).②After transfection the GFP-RNAiRobo2plasmid, compared with the normal culture group, there was nosignificant difference between the normal culture group and the GFP-RNAiRobo2group(p>0.05).⑤There were apoptosis of CND inWT and Robo2gene knockout mouse bladder trigone.
     Conclusions:
     Robo2expresses in the kidney,trigone,CND and ureter during themouse embryonic development,and played an important role duringkidney and ureter development. Overexpression of Robo2causes defectsin the recruitment of metanephric mesenchymal cells and ureteric budbranching morphogenesis.Robo2gene deletion in mice resultsupernumerary ureters,duplex kidneys, hydroureter ureteral lengthshortened, and the renal collecting system and hydroureterexpansion,that’s because the ureter failed linking to the bladder.
引文
[1] Cullen-McEwen LA, Caruana G, Bertram JF. The where, what andwhy of the developing renal stroma. Nephron Experimentalnephrology,2005,99(1): e1-8
    [2] Saxen L, Sariola H. Early organogenesis of the kidney. PediatrNephrol,1987,1(3):385-392
    [3] Hellmich HL, Kos L, Cho ES, et al. Embryonic expression ofglial cell-line derived neurotrophic factor (GDNF) suggestsmultiple developmental roles in neural differentiation andepithelial-mesenchymal interactions. Mech Dev,1996,54(1):95-105
    [4] Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervationand kidney development in mice lacking GDNF. Nature,1996,382(6586):73-76
    [5] Sanchez MP, Silos-Santiago I, Frisen J, et al. Renal agenesis andthe absence of enteric neurons in mice lacking GDNF. Nature,1996,382(6586):70-73
    [6] Miyazaki Y, Oshima K, Fogo A, et al. Bone morphogeneticprotein4regulates the budding site and elongation of the mouseureter. J Clin Invest,2000,105(7):863-873
    [7] Merkel CE, Karner CM, Carroll TJ. Molecular regulation ofkidney development: is the answer blowing in the Wnt? PediatrNephrol,2007,22(11):1825-1838
    [8] Grieshammer U, Le M, Plump AS, et al. SLIT2-mediated ROBO2signaling restricts kidney induction to a single site. Dev Cell,2004,6(5):709-717
    [9] Larman BW, Karolak MJ, Adams DC, et al. Chordin-like1andtwisted gastrulation1regulate BMP signaling following kidneyinjury. J Am Soc Nephrol,2009,20(5):1020-1031
    [10] Sham P, Bader JS, Craig I, et al. DNA Pooling: a tool forlarge-scale association studies. Nat Rev Genet,2002,3(11):862-871
    [11] Livak KJ, Schmittgen TD. Analysis of relative gene expressiondata using real-time quantitative PCR and the2(-Delta Delta C(T))Method. Methods,2001,25(4):402-408
    [12] Yu J, McMahon AP, Valerius MT. Recent genetic studies of mousekidney development. Curr Opin Genet Dev,2004,14(5):550-557
    [13] Davidson AJ. Mouse kidney development. StemBook: Cambridge(MA),2008.
    [14] Dickson BJ, Gilestro GF. Regulation of commissural axonpathfinding by slit and its Robo receptors. Annu Rev Cell DevBiol,2006,22:651-675
    [15] Fricke C, Lee JS, Geiger-Rudolph S, et al. astray, a zebrafishroundabout homolog required for retinal axon guidance. Science,2001,292(5516):507-510
    [16] Lindenmeyer MT, Eichinger F, Sen K, et al. Systematic analysisof a novel human renal glomerulus-enriched gene expressiondataset. PloS one,2010,5(7): e11545
    [17]田娟郭,王堃.成纤维细胞生长因子受体1和受体2在小鼠肾发育中的表达.解放军医学杂志,2010,35(12):1471-1474
    [18] Wang H, Li Q, Liu J, et al. Noninvasive assessment of antenatalhydronephrosis in mice reveals a critical role for Robo2inmaintaining anti-reflux mechanism. PloS one,2011,6(9): e24763
    [19] Rantanen M, Palmen T, Patari A, et al. Nephrin TRAP mice lackslit diaphragms and show fibrotic glomeruli and cystic tubularlesions. J Am Soc Nephrol,2002,13(6):1586-1594
    [20] Self M, Lagutin OV, Bowling B, et al. Six2is required forsuppression of nephrogenesis and progenitor renewal in thedeveloping kidney. The EMBO journal,2006,25(21):5214-5228
    [21] Cheng HT, Kim M, Valerius MT, et al. Notch2, but not Notch1, isrequired for proximal fate acquisition in the mammalian nephron.Development,2007,134(4):801-811
    [22] Luyckx VA, Brenner BM. The clinical importance of nephronmass. J Am Soc Nephrol,2010,21(6):898-910
    [23] Schedl A. Renal abnormalities and their developmental origin. NatRev Genet,2007,8(10):791-802
    [24] Moore MW, Klein RD, Farinas I, et al. Renal and neuronalabnormalities in mice lacking GDNF. Nature,1996,382(6586):76-79
    [25] Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervationand kidney development in mice lacking GDNF. Nature,1996,382(6586):73-76
    [26] Xu PX, Adams J, Peters H, et al. Eya1-deficient mice lack earsand kidneys and show abnormal apoptosis of organ primordia. NatGenet,1999,23(1):113-117
    [27] Brophy PD, Ostrom L, Lang KM, et al. Regulation of ureteric budoutgrowth by Pax2-dependent activation of the glial derivedneurotrophic factor gene. Development,2001,128(23):4747-4756
    [28] Brodbeck S, Besenbeck B, Englert C. The transcription factorSix2activates expression of the Gdnf gene as well as its ownpromoter. Mech Dev,2004,121(10):1211-1222
    [29] Brose K, Tessier-Lavigne M. Slit proteins: key regulators of axonguidance, axonal branching, and cell migration. Curr OpinNeurobiol,2000,10(1):95-102
    [30] Wong K, Park HT, Wu JY, et al. Slit proteins: molecular guidancecues for cells ranging from neurons to leukocytes. Curr OpinGenet Dev,2002,12(5):583-591
    [31] Grieshammer U, Le M, Plump AS, et al. SLIT2-mediated ROBO2signaling restricts kidney induction to a single site. Dev Cell,2004,6(5):709-717
    [32] Huang ZH, Wang Y, Su ZD, et al. Slit-2repels the migration ofolfactory ensheathing cells by triggering Ca2+-dependent cofilinactivation and RhoA inhibition. J Cell Sci,2011,124(Pt2):186-197
    [33] Das RM, Van Hateren NJ, Howell GR, et al. A robust system forRNA interference in the chicken using a modified microRNAoperon. Dev Biol,2006,294(2):554-563
    [34] Nakamura H, Watanabe Y, Funahashi J. Misexpression of genes inbrain vesicles by in ovo electroporation. Dev Growth Differ,2000,42(3):199-201
    [35] Gao X, Chen X, Taglienti M, et al. Angioblast-mesenchymeinduction of early kidney development is mediated by Wt1andVegfa. Development,2005,132(24):5437-5449
    [36] Watanabe T, Costantini F. Real-time analysis of ureteric budbranching morphogenesis in vitro. Dev Biol,2004,271(1):98-108
    [37] Michos O. Kidney development: from ureteric bud formation tobranching morphogenesis. Curr Opin Genet Dev,2009,19(5):484-490
    [38] Bridgewater D, Rosenblum ND. Stimulatory and inhibitorysignaling molecules that regulate renal branching morphogenesis.Pediatr Nephrol,2009,24(9):1611-1619
    [39] Sims-Lucas S, Cusack B, Baust J, et al. Fgfr1and the IIIc isoformof Fgfr2play critical roles in the metanephric mesenchymemediating early inductive events in kidney development. Dev Dyn,2011,240(1):240-249
    [40] Reidy KJ, Rosenblum ND. Cell and molecular biology of kidneydevelopment. Semin Nephrol,2009,29(4):321-337
    [41] Chi X, Michos O, Shakya R, et al. Ret-dependent cellrearrangements in the Wolffian duct epithelium initiate uretericbud morphogenesis. Dev Cell,2009,17(2):199-209
    [42] Kreidberg JA, Sariola H, Loring JM, et al. WT-1is required forearly kidney development. Cell,1993,74(4):679-691
    [43] Thivierge C, Kurbegovic A, Couillard M, et al. Overexpression ofPKD1causes polycystic kidney disease. Mol Cell Biol,2006,26(4):1538-1548
    [44] Osafune K, Takasato M, Kispert A, et al. Identification ofmultipotent progenitors in the embryonic mouse kidney by anovel colony-forming assay. Development,2006,133(1):151-161
    [45] Jiang Q, Fujimura S, Kobayashi C, et al. Overexpression of Sall1in vivo leads to reduced body weight without affecting kidneydevelopment. J Biochem,2010,147(3):445-450
    [46] Dickson BJ, Gilestro GF. Regulation of commissural axonpathfinding by slit and its Robo receptors. Annu Rev Cell DevBiol,2006,22:651-675
    [47] Fricke C, Lee JS, Geiger-Rudolph S, et al. astray, a zebrafishroundabout homolog required for retinal axon guidance. Science,2001,292(5516):507-510
    [48] Saxen L, Sariola H. Early organogenesis of the kidney. PediatrNephrol,1987,1(3):385-392
    [49] Porteous S, Torban E, Cho NP, et al. Primary renal hypoplasia inhumans and mice with PAX2mutations: evidence of increasedapoptosis in fetal kidneys of Pax2(1Neu)+/-mutant mice. Humanmolecular genetics,2000,9(1):1-11
    [50] Poladia DP, Kish K, Kutay B, et al. Role of fibroblast growthfactor receptors1and2in the metanephric mesenchyme. DevBiol,2006,291(2):325-339
    [51] Araki T, Hayashi M, Nakanishi K, et al. Caspase-9takes part inprogrammed cell death in developing mouse kidney. NephronExperimental nephrology,2003,93(3): e117-124
    [52] Polgar K, Burrow CR, Hyink DP, et al. Disruption of polycystin-1function interferes with branching morphogenesis of the uretericbud in developing mouse kidneys. Dev Biol,2005,286(1):16-30
    [53] Alie TM, Vrljicak PJ, Myburgh DB, et al. Microinjection andelectroporation of embryonic kidney explants: an improvedmethod. Kidney Int,2007,72(1):121-125
    [54] Mattoo TK. Vesicoureteral reflux and reflux nephropathy.Advances in chronic kidney disease,2011,18(5):348-354
    [55] Kincaid-Smith PS, Bastos MG, Becker GJ. Reflux nephropathy inthe adult. Contributions to nephrology,1984,39:94-101
    [56] Das SK, Menon PS, Bagga A, et al. Physical growth in childrenwith reflux nephropathy with normal or mildly impaired renalfunction. Indian journal of pediatrics,2010,77(6):684-686
    [57] Schedl A. Renal abnormalities and their developmental origin. NatRev Genet,2007,8(10):791-802
    [58] Davidson AJ. Mouse kidney development. StemBook: Cambridge(MA),2008.
    [59] Basson MA, Akbulut S, Watson-Johnson J, et al. Sprouty1is acritical regulator of GDNF/RET-mediated kidney induction. DevCell,2005,8(2):229-239
    [60] Miyazaki Y, Oshima K, Fogo A, et al. Bone morphogeneticprotein4regulates the budding site and elongation of the mouseureter. J Clin Invest,2000,105(7):863-873
    [61] Torres M, Gomez-Pardo E, Dressler GR, et al. Pax-2controlsmultiple steps of urogenital development. Development,1995,121(12):4057-4065
    [62] Esther CR, Jr., Howard TE, Marino EM, et al. Mice lackingangiotensin-converting enzyme have low blood pressure, renalpathology, and reduced male fertility. Laboratory investigation; ajournal of technical methods and pathology,1996,74(5):953-965
    [63] Oliverio MI, Kim HS, Ito M, et al. Reduced growth, abnormalkidney structure, and type2(AT2) angiotensin receptor-mediatedblood pressure regulation in mice lacking both AT1A and AT1Breceptors for angiotensin II. Proc Natl Acad Sci U S A,1998,95(26):15496-15501
    [64] Lu W, van Eerde AM, Fan X, et al. Disruption of ROBO2isassociated with urinary tract anomalies and confers risk ofvesicoureteral reflux. Am J Hum Genet,2007,80(4):616-632
    [65] Grieshammer U, Le M, Plump AS, et al. SLIT2-mediated ROBO2signaling restricts kidney induction to a single site. Dev Cell,2004,6(5):709-717
    [66] Sham P, Bader JS, Craig I, et al. DNA Pooling: a tool forlarge-scale association studies. Nat Rev Genet,2002,3(11):862-871
    [67] Larman BW, Karolak MJ, Adams DC, et al. Chordin-like1andtwisted gastrulation1regulate BMP signaling following kidneyinjury. J Am Soc Nephrol,2009,20(5):1020-1031
    [68] Livak KJ, Schmittgen TD. Analysis of relative gene expressiondata using real-time quantitative PCR and the2(-Delta Delta C(T))Method. Methods,2001,25(4):402-408
    [69] Avci ME, Konu O, Yagci T. Quantification of SLIT-ROBOtranscripts in hepatocellular carcinoma reveals two groups ofgenes with coordinate expression. BMC cancer,2008,8:392
    [70] Dickinson RE, Myers M, Duncan WC. Novel regulatedexpression of the SLIT/ROBO pathway in the ovary: possible roleduring luteolysis in women. Endocrinology,2008,149(10):5024-5034
    [71] Anitha A, Nakamura K, Yamada K, et al. Genetic analyses ofroundabout (ROBO) axon guidance receptors in autism. Americanjournal of medical genetics Part B, Neuropsychiatric genetics: theofficial publication of the International Society of PsychiatricGenetics,2008,147B(7):1019-1027
    [72] Lechner MS, Dressler GR. The molecular basis of embryonickidney development. Mech Dev,1997,62(2):105-120
    [73] Kume T, Deng K, Hogan BL. Murine forkhead/winged helixgenes Foxc1(Mf1) and Foxc2(Mfh1) are required for the earlyorganogenesis of the kidney and urinary tract. Development,2000,127(7):1387-1395
    [74] Wang H, Li Q, Liu J, et al. Noninvasive assessment of antenatalhydronephrosis in mice reveals a critical role for Robo2inmaintaining anti-reflux mechanism. PloS one,2011,6(9): e24763
    [75] Lindenmeyer MT, Eichinger F, Sen K, et al. Systematic analysisof a novel human renal glomerulus-enriched gene expressiondataset. PloS one,2010,5(7): e11545
    [76] Li X, Oghi KA, Zhang J, et al. Eya protein phosphatase activityregulates Six1-Dach-Eya transcriptional effects in mammalianorganogenesis. Nature,2003,426(6964):247-254
    [77] Bush KT, Vaughn DA, Li X, et al. Development anddifferentiation of the ureteric bud into the ureter in the absence ofa kidney collecting system. Dev Biol,2006,298(2):571-584
    [78] Airik R, Bussen M, Singh MK, et al. Tbx18regulates thedevelopment of the ureteral mesenchyme. J Clin Invest,2006,116(3):663-674
    [79] Mendelsohn C. Going in circles: conserved mechanisms controlradial patterning in the urinary and digestive tracts. J Clin Invest,2006,116(3):635-637
    [80] Batourina E, Tsai S, Lambert S, et al. Apoptosis induced byvitamin A signaling is crucial for connecting the ureters to thebladder. Nat Genet,2005,37(10):1082-1089
    [81] Mendelsohn C. Using mouse models to understand normal andabnormal urogenital tract development. Organogenesis,2009,5(1):306-314
    [82] Le Duc A.[Congenital malformations of the excretory urinarytract]. Revue de l'infirmiere,1984,34(19):18-24
    [83] Mackie GG, Stephens FD. Duplex kidneys: a correlation of renaldysplasia with position of the ureteral orifice. The Journal ofurology,1975,114(2):274-280
    [84] Thomas JC, DeMarco RT, Pope JCt. Molecular biology of ureteralbud and trigonal development. Current urology reports,2005,6(2):146-151
    [85] Quaggin SE, Kreidberg JA. Development of the renal glomerulus:good neighbors and good fences. Development,2008,135(4):609-620
    [86] Saxen L, Sariola H. Early organogenesis of the kidney. PediatrNephrol,1987,1(3):385-392
    [87] Batourina E, Choi C, Paragas N, et al. Distal uretermorphogenesis depends on epithelial cell remodeling mediated byvitamin A and Ret. Nat Genet,2002,32(1):109-115
    [88] Batourina E, Tsai S, Lambert S, et al. Apoptosis induced byvitamin A signaling is crucial for connecting the ureters to thebladder. Nat Genet,2005,37(10):1082-1089
    [89] Ekblom P. Developmentally regulated conversion of mesenchymeto epithelium. FASEB journal: official publication of theFederation of American Societies for Experimental Biology,1989,3(10):2141-2150
    [90] Costantini F, Kopan R. Patterning a complex organ: branchingmorphogenesis and nephron segmentation in kidney development.Dev Cell,2010,18(5):698-712
    [91] Scott JE, Renwick M. Antenatal diagnosis of congenitalabnormalities in the urinary tract. Results from the NorthernRegion Fetal Abnormality Survey. Br J Urol,1988,62(4):295-300
    [92] Mendelsohn C. Using mouse models to understand normal andabnormal urogenital tract development. Organogenesis,2009,5(1):306-314
    [93] Schedl A. Renal abnormalities and their developmental origin.Nat Rev Genet,2007,8(10):791-802
    [94] Costantini F. GDNF/Ret signaling and renal branchingmorphogenesis: From mesenchymal signals to epithelial cellbehaviors. Organogenesis,2010,6(4):252-262
    [95] Airik R, Kispert A. Down the tube of obstructive nephropathies:the importance of tissue interactions during ureter development.Kidney Int,2007,72(12):1459-1467
    [96] Uetani N, Bouchard M. Plumbing in the embryo: developmentaldefects of the urinary tracts. Clin Genet,2009,75(4):307-317
    [97] Costantini F. Renal branching morphogenesis: concepts, questions,and recent advances. Differentiation,2006,74(7):402-421
    [98] Costantini F, Shakya R. GDNF/Ret signaling and the developmentof the kidney. Bioessays,2006,28(2):117-127
    [99] Dressler GR. The cellular basis of kidney development. Annu RevCell Dev Biol,2006,22:509-529
    [100] Dressler GR. Advances in early kidney specification,development and patterning. Development,2009,136(23):3863-3874
    [101] Skinner MA, Safford SD, Reeves JG, et al. Renal aplasia inhumans is associated with RET mutations. Am J Hum Genet,2008,82(2):344-351
    [102] Chi X, Hadjantonakis AK, Wu Z, et al. A transgenic mouse thatreveals cell shape and arrangement during ureteric bud branching.Genesis,2009,47(2):61-66
    [103] Chi X, Michos O, Shakya R, et al. Ret-dependent cellrearrangements in the Wolffian duct epithelium initiate uretericbud morphogenesis. Dev Cell,2009,17(2):199-209
    [104] Mugford JW, Sipila P, McMahon JA, et al. Osr1expressiondemarcates a multi-potent population of intermediate mesodermthat undergoes progressive restriction to an Osr1-dependentnephron progenitor compartment within the mammalian kidney.Dev Biol,2008,324(1):88-98
    [105] Michael L, Davies JA. Pattern and regulation of cell proliferationduring murine ureteric bud development. J Anat,2004,204(4):241-255
    [106] Srinivas S, Goldberg MR, Watanabe T, et al. Expression of greenfluorescent protein in the ureteric bud of transgenic mice: a newtool for the analysis of ureteric bud morphogenesis. Dev Genet,1999,24(3-4):241-251
    [107] Cebrian C, Borodo K, Charles N, et al. Morphometric index of thedeveloping murine kidney. Dev Dyn,2004,231(3):601-608
    [108] Karner CM, Chirumamilla R, Aoki S, et al. Wnt9b signalingregulates planar cell polarity and kidney tubule morphogenesis.Nat Genet,2009,41(7):793-799
    [109] Watanabe T, Costantini F. Real-time analysis of ureteric budbranching morphogenesis in vitro. Dev Biol,2004,271(1):98-108
    [110] Shakya R, Watanabe T, Costantini F. The role of GDNF/Retsignaling in ureteric bud cell fate and branching morphogenesis.Dev Cell,2005,8(1):65-74
    [111] Zhou Q, Law AC, Rajagopal J, et al. A multipotent progenitordomain guides pancreatic organogenesis. Dev Cell,2007,13(1):103-114
    [112] Nogawa H, Morita K, Cardoso WV. Bud formation precedes theappearance of differential cell proliferation during branchingmorphogenesis of mouse lung epithelium in vitro. Dev Dyn,1998,213(2):228-235
    [113] Meyer TN, Schwesinger C, Bush KT, et al. Spatiotemporalregulation of morphogenetic molecules during in vitro branchingof the isolated ureteric bud: toward a model of branching throughbudding in the developing kidney. Dev Biol,2004,275(1):44-67
    [114] Fischer E, Legue E, Doyen A, et al. Defective planar cell polarityin polycystic kidney disease. Nat Genet,2006,38(1):21-23
    [115] Saburi S, Hester I, Fischer E, et al. Loss of Fat4disrupts PCPsignaling and oriented cell division and leads to cystic kidneydisease. Nat Genet,2008,40(8):1010-1015
    [116] Sharma N, Berbari NF, Yoder BK. Ciliary dysfunction indevelopmental abnormalities and diseases. Current topics indevelopmental biology,2008,85:371-427
    [117] Yu J, Carroll TJ, Rajagopal J, et al. A Wnt7b-dependent pathwayregulates the orientation of epithelial cell division and establishesthe cortico-medullary axis of the mammalian kidney.Development,2009,136(1):161-171
    [118] Wu W, Kitamura S, Truong DM, et al. Beta1-integrin is requiredfor kidney collecting duct morphogenesis and maintenance ofrenal function. American journal of physiology Renal physiology,2009,297(1): F210-217
    [119] Liu Y, Chattopadhyay N, Qin S, et al. Coordinate integrin andc-Met signaling regulate Wnt gene expression during epithelialmorphogenesis. Development,2009,136(5):843-853
    [120] Caruana G, Cullen-McEwen L, Nelson AL, et al. Spatial geneexpression in the T-stage mouse metanephros. Gene Expr Patterns,2006,6(8):807-825
    [121] Lu BC, Cebrian C, Chi X, et al. Etv4and Etv5are requireddownstream of GDNF and Ret for kidney branchingmorphogenesis. Nat Genet,2009,41(12):1295-1302
    [122] Schmidt-Ott KM, Yang J, Chen X, et al. Novel regulators ofkidney development from the tips of the ureteric bud. J Am SocNephrol,2005,16(7):1993-2002
    [123] Sakurai H, Bush KT, Nigam SK. Heregulin induces glial cellline-derived neurotrophic growth factor-independent,non-branching growth and differentiation of ureteric bud epithelia.The Journal of biological chemistry,2005,280(51):42181-42187
    [124] Bridgewater D, Cox B, Cain J, et al. Canonical WNT/beta-cateninsignaling is required for ureteric branching. Dev Biol,2008,317(1):83-94
    [125] Iglesias DM, Hueber PA, Chu L, et al. Canonical WNT signalingduring kidney development. American journal of physiologyRenal physiology,2007,293(2): F494-500
    [126] Marose TD, Merkel CE, McMahon AP, et al. Beta-catenin isnecessary to keep cells of ureteric bud/Wolffian duct epitheliumin a precursor state. Dev Biol,2008,314(1):112-126
    [127] Grote D, Boualia SK, Souabni A, et al. Gata3acts downstream ofbeta-catenin signaling to prevent ectopic metanephric kidneyinduction. PLoS genetics,2008,4(12): e1000316
    [128] Grieshammer U, Le M, Plump AS, et al. SLIT2-mediated ROBO2signaling restricts kidney induction to a single site. Dev Cell,2004,6(5):709-717
    [129] Hellmich HL, Kos L, Cho ES, et al. Embryonic expression ofglial cell-line derived neurotrophic factor (GDNF) suggestsmultiple developmental roles in neural differentiation andepithelial-mesenchymal interactions. Mech Dev,1996,54(1):95-105
    [130] Pichel JG, Shen L, Sheng HZ, et al. Defects in enteric innervationand kidney development in mice lacking GDNF. Nature,1996,382(6586):73-76
    [131] Sanchez MP, Silos-Santiago I, Frisen J, et al. Renal agenesis andthe absence of enteric neurons in mice lacking GDNF. Nature,1996,382(6586):70-73
    [132] Brophy PD, Ostrom L, Lang KM, et al. Regulation of ureteric budoutgrowth by Pax2-dependent activation of the glial derivedneurotrophic factor gene. Development,2001,128(23):4747-4756
    [133] Cacalano G, Farinas I, Wang LC, et al. GFRalpha1is an essentialreceptor component for GDNF in the developing nervous systemand kidney. Neuron,1998,21(1):53-62
    [134] Sainio K, Suvanto P, Davies J, et al. Glial-cell-line-derivedneurotrophic factor is required for bud initiation from uretericepithelium. Development,1997,124(20):4077-4087
    [135] Bullock SL, Fletcher JM, Beddington RS, et al. Renal agenesis inmice homozygous for a gene trap mutation in the gene encodingheparan sulfate2-sulfotransferase. Genes&development,1998,12(12):1894-1906
    [136] Davies JA, Yates EA, Turnbull JE. Structural determinants ofheparan sulphate modulation of GDNF signalling. Growth Factors,2003,21(3-4):109-119
    [137] Tanaka M, Xiao H, Kiuchi K. Heparin facilitates glial cellline-derived neurotrophic factor signal transduction. Neuroreport,2002,13(15):1913-1916
    [138] Rider CC. Interaction between glial-cell-line-derived neurotrophicfactor (GDNF) and2-O-sulphated heparin-relatedglycosaminoglycans. Biochemical Society transactions,2003,31(2):337-339
    [139] Fisher CE, Michael L, Barnett MW, et al. Erk MAP kinaseregulates branching morphogenesis in the developing mousekidney. Development,2001,128(21):4329-4338
    [140] Natarajan D, Marcos-Gutierrez C, Pachnis V, et al. Requirementof signalling by receptor tyrosine kinase RET for the directedmigration of enteric nervous system progenitor cells duringmammalian embryogenesis. Development,2002,129(22):5151-5160
    [141] Tang MJ, Cai Y, Tsai SJ, et al. Ureteric bud outgrowth inresponse to RET activation is mediated by phosphatidylinositol3-kinase. Dev Biol,2002,243(1):128-136
    [142] Young HM, Hearn CJ, Farlie PG, et al. GDNF is achemoattractant for enteric neural cells. Dev Biol,2001,229(2):503-516
    [143] Hu J, Shima H, Nakagawa H. Glial cell line-derived neurotropicfactor stimulates sertoli cell proliferation in the early postnatalperiod of rat testis development. Endocrinology,1999,140(8):3416-3421
    [144] Maeshima A, Sakurai H, Choi Y, et al. Glial cell-derivedneurotrophic factor independent ureteric bud outgrowth from theWolffian duct. J Am Soc Nephrol,2007,18(12):3147-3155
    [145] Moore MW, Klein RD, Farinas I, et al. Renal and neuronalabnormalities in mice lacking GDNF. Nature,1996,382(6586):76-79
    [146] Kume T, Deng K, Hogan BL. Murine forkhead/winged helixgenes Foxc1(Mf1) and Foxc2(Mfh1) are required for the earlyorganogenesis of the kidney and urinary tract. Development,2000,127(7):1387-1395
    [147] Basson MA, Akbulut S, Watson-Johnson J, et al. Sprouty1is acritical regulator of GDNF/RET-mediated kidney induction. DevCell,2005,8(2):229-239
    [148] Porteous S, Torban E, Cho NP, et al. Primary renal hypoplasia inhumans and mice with PAX2mutations: evidence of increasedapoptosis in fetal kidneys of Pax2(1Neu)+/-mutant mice. Humanmolecular genetics,2000,9(1):1-11
    [149] Miyazaki Y, Oshima K, Fogo A, et al. Bone morphogeneticprotein4regulates the budding site and elongation of the mouseureter. J Clin Invest,2000,105(7):863-873
    [150] Bush KT, Sakurai H, Steer DL, et al. TGF-beta superfamilymembers modulate growth, branching, shaping, and patterning ofthe ureteric bud. Dev Biol,2004,266(2):285-298
    [151] Basson MA, Watson-Johnson J, Shakya R, et al. Branchingmorphogenesis of the ureteric epithelium during kidneydevelopment is coordinated by the opposing functions of GDNFand Sprouty1. Dev Biol,2006,299(2):466-477
    [152] Choi Y, Tee JB, Gallegos TF, et al. Neuropeptide Y functions as afacilitator of GDNF-induced budding of the Wolffian duct.Development,2009,136(24):4213-4224
    [153] Carroll TJ, Park JS, Hayashi S, et al. Wnt9b plays a central role inthe regulation of mesenchymal to epithelial transitions underlyingorganogenesis of the mammalian urogenital system. Dev Cell,2005,9(2):283-292
    [154] Majumdar A, Vainio S, Kispert A, et al. Wnt11and Ret/Gdnfpathways cooperate in regulating ureteric branching duringmetanephric kidney development. Development,2003,130(14):3175-3185
    [155] Michos O, Goncalves A, Lopez-Rios J, et al. Reduction of BMP4activity by gremlin1enables ureteric bud outgrowth andGDNF/WNT11feedback signalling during kidney branchingmorphogenesis. Development,2007,134(13):2397-2405
    [156] Michos O, Panman L, Vintersten K, et al. Gremlin-mediated BMPantagonism induces the epithelial-mesenchymal feedbacksignaling controlling metanephric kidney and limb organogenesis.Development,2004,131(14):3401-3410
    [157] Mason JM, Morrison DJ, Basson MA, et al. Sprouty proteins:multifaceted negative-feedback regulators of receptor tyrosinekinase signaling. Trends Cell Biol,2006,16(1):45-54
    [158] Brose K, Tessier-Lavigne M. Slit proteins: key regulators of axonguidance, axonal branching, and cell migration. Curr OpinNeurobiol,2000,10(1):95-102
    [159] Wong K, Park HT, Wu JY, et al. Slit proteins: molecular guidancecues for cells ranging from neurons to leukocytes. Curr OpinGenet Dev,2002,12(5):583-591
    [160] Lu W, van Eerde AM, Fan X, et al. Disruption of ROBO2isassociated with urinary tract anomalies and confers risk ofvesicoureteral reflux. Am J Hum Genet,2007,80(4):616-632
    [161] Bertoli-Avella AM, Conte ML, Punzo F, et al. ROBO2genevariants are associated with familial vesicoureteral reflux. J AmSoc Nephrol,2008,19(4):825-831
    [162] Poladia DP, Kish K, Kutay B, et al. Role of fibroblast growthfactor receptors1and2in the metanephric mesenchyme. DevBiol,2006,291(2):325-339
    [163] Michos O, Cebrian C, Hyink D, et al. Kidney development in theabsence of Gdnf and Spry1requires Fgf10. PLoS genetics,2010,6(1): e1000809
    [164] Nishinakamura R, Osafune K. Essential roles of Sall family genesin kidney development. The journal of physiological sciences:JPS,2006,56(2):131-136
    [165] Nishinakamura R, Matsumoto Y, Nakao K, et al. Murine homologof SALL1is essential for ureteric bud invasion in kidneydevelopment. Development,2001,128(16):3105-3115
    [166] Sakaki-Yumoto M, Kobayashi C, Sato A, et al. The murinehomolog of SALL4, a causative gene in Okihiro syndrome, isessential for embryonic stem cell proliferation, and cooperateswith Sall1in anorectal, heart, brain and kidney development.Development,2006,133(15):3005-3013
    [167] Li X, Oghi KA, Zhang J, et al. Eya protein phosphatase activityregulates Six1-Dach-Eya transcriptional effects in mammalianorganogenesis. Nature,2003,426(6964):247-254
    [168] Xu PX, Zheng W, Huang L, et al. Six1is required for the earlyorganogenesis of mammalian kidney. Development,2003,130(14):3085-3094
    [169] Esquela AF, Lee SJ. Regulation of metanephric kidneydevelopment by growth/differentiation factor11. Dev Biol,2003,257(2):356-370
    [170] Andersson O, Reissmann E, Ibanez CF. Growth differentiationfactor11signals through the transforming growth factor-betareceptor ALK5to regionalize the anterior-posterior axis. EMBOreports,2006,7(8):831-837
    [171] Brandenberger R, Schmidt A, Linton J, et al. Identification andcharacterization of a novel extracellular matrix proteinnephronectin that is associated with integrin alpha8beta1in theembryonic kidney. J Cell Biol,2001,154(2):447-458
    [172] Linton JM, Martin GR, Reichardt LF. The ECM proteinnephronectin promotes kidney development via integrinalpha8beta1-mediated stimulation of Gdnf expression.Development,2007,134(13):2501-2509
    [173] Mori H, Gjorevski N, Inman JL, et al. Self-organization ofengineered epithelial tubules by differential cellular motility. ProcNatl Acad Sci U S A,2009,106(35):14890-14895
    [174] Muller U, Wang D, Denda S, et al. Integrin alpha8beta1iscritically important for epithelial-mesenchymal interactionsduring kidney morphogenesis. Cell,1997,88(5):603-613
    [175] Armstrong JF, Pritchard-Jones K, Bickmore WA, et al. Theexpression of the Wilms' tumour gene, WT1, in the developingmammalian embryo. Mech Dev,1993,40(1-2):85-97
    [176] Pellegrini M, Pantano S, Lucchini F, et al. Emx2developmentalexpression in the primordia of the reproductive and excretorysystems. Anat Embryol (Berl),1997,196(6):427-433
    [177] Donovan MJ, Natoli TA, Sainio K, et al. Initial differentiation ofthe metanephric mesenchyme is independent of WT1and theureteric bud. Dev Genet,1999,24(3-4):252-262
    [178] Kreidberg JA, Sariola H, Loring JM, et al. WT-1is required forearly kidney development. Cell,1993,74(4):679-691
    [179] Gao X, Chen X, Taglienti M, et al. Angioblast-mesenchymeinduction of early kidney development is mediated by Wt1andVegfa. Development,2005,132(24):5437-5449
    [180] Shakya R, Jho EH, Kotka P, et al. The role of GDNF in patterningthe excretory system. Dev Biol,2005,283(1):70-84
    [181] Batourina E, Gim S, Bello N, et al. Vitamin A controlsepithelial/mesenchymal interactions through Ret expression. NatGenet,2001,27(1):74-78
    [182] Mendelsohn C, Batourina E, Fung S, et al. Stromal cells mediateretinoid-dependent functions essential for renal development.Development,1999,126(6):1139-1148
    [183] Wilson JG, Warkany J. Malformations in the genito-urinary tractinduced by maternal vitamin A deficiency in the rat. TheAmerican journal of anatomy,1948,83(3):357-407
    [184] Dolle P, Ruberte E, Leroy P, et al. Retinoic acid receptors andcellular retinoid binding proteins. I. A systematic study of theirdifferential pattern of transcription during mouse organogenesis.Development,1990,110(4):1133-1151
    [185] Srinivas S, Wu Z, Chen CM, et al. Dominant effects of RETreceptor misexpression and ligand-independent RET signaling onureteric bud development. Development,1999,126(7):1375-1386
    [186] Kispert A, Vainio S, Shen L, et al. Proteoglycans are required formaintenance of Wnt-11expression in the ureter tips. Development,1996,122(11):3627-3637
    [187] Pepicelli CV, Kispert A, Rowitch DH, et al. GDNF inducesbranching and increased cell proliferation in the ureter of themouse. Dev Biol,1997,192(1):193-198
    [188] Narlis M, Grote D, Gaitan Y, et al. Pax2and pax8regulatebranching morphogenesis and nephron differentiation in thedeveloping kidney. J Am Soc Nephrol,2007,18(4):1121-1129
    [189] Maretto S, Cordenonsi M, Dupont S, et al. MappingWnt/beta-catenin signaling during mouse development and incolorectal tumors. Proc Natl Acad Sci U S A,2003,100(6):3299-3304
    [190] Moriyama A, Kii I, Sunabori T, et al. GFP transgenic mice revealactive canonical Wnt signal in neonatal brain and in adult liverand spleen. Genesis,2007,45(2):90-100
    [191] Merkel CE, Karner CM, Carroll TJ. Molecular regulation ofkidney development: is the answer blowing in the Wnt? PediatrNephrol,2007,22(11):1825-1838
    [192] Stark K, Vainio S, Vassileva G, et al. Epithelial transformation ofmetanephric mesenchyme in the developing kidney regulated byWnt-4. Nature,1994,372(6507):679-683
    [193] Miyamoto N, Yoshida M, Kuratani S, et al. Defects of urogenitaldevelopment in mice lacking Emx2. Development,1997,124(9):1653-1664
    [194] Kobayashi A, Kwan KM, Carroll TJ, et al. Distinct and sequentialtissue-specific activities of the LIM-class homeobox gene Lim1for tubular morphogenesis during kidney development.Development,2005,132(12):2809-2823
    [195] Zhao H, Kegg H, Grady S, et al. Role of fibroblast growth factorreceptors1and2in the ureteric bud. Dev Biol,2004,276(2):403-415
    [196] Qiao J, Uzzo R, Obara-Ishihara T, et al. FGF-7modulates uretericbud growth and nephron number in the developing kidney.Development,1999,126(3):547-554
    [197] Ohuchi H, Hori Y, Yamasaki M, et al. FGF10acts as a majorligand for FGF receptor2IIIb in mouse multi-organ development.Biochemical and biophysical research communications,2000,277(3):643-649
    [198] Ishibe S, Karihaloo A, Ma H, et al. Met and the epidermal growthfactor receptor act cooperatively to regulate final nephron numberand maintain collecting duct morphology. Development,2009,136(2):337-345
    [199] Santos OF, Barros EJ, Yang XM, et al. Involvement of hepatocytegrowth factor in kidney development. Dev Biol,1994,163(2):525-529
    [200] Woolf AS, Kolatsi-Joannou M, Hardman P, et al. Roles ofhepatocyte growth factor/scatter factor and the met receptor in theearly development of the metanephros. J Cell Biol,1995,128(1-2):171-184
    [201] Sakurai H, Tsukamoto T, Kjelsberg CA, et al. EGF receptorligands are a large fraction of in vitro branching morphogenssecreted by embryonic kidney. Am J Physiol,1997,273(3Pt2):F463-472
    [202] Bladt F, Riethmacher D, Isenmann S, et al. Essential role for thec-met receptor in the migration of myogenic precursor cells intothe limb bud. Nature,1995,376(6543):768-771
    [203] Schmidt C, Bladt F, Goedecke S, et al. Scatter factor/hepatocytegrowth factor is essential for liver development. Nature,1995,373(6516):699-702
    [204] Uehara Y, Minowa O, Mori C, et al. Placental defect andembryonic lethality in mice lacking hepatocyte growthfactor/scatter factor. Nature,1995,373(6516):702-705
    [205] Davies JA. Do different branching epithelia use a conserveddevelopmental mechanism? Bioessays,2002,24(10):937-948
    [206] Tran TS, Kolodkin AL, Bharadwaj R. Semaphorin regulation ofcellular morphology. Annu Rev Cell Dev Biol,2007,23:263-292
    [207] Tufro A, Teichman J, Woda C, et al. Semaphorin3a inhibitsureteric bud branching morphogenesis. Mech Dev,2008,125(5-6):558-568
    [208] Tufro A, Teichman J, Banu N, et al. Crosstalk betweenVEGF-A/VEGFR2and GDNF/RET signaling pathways.Biochemical and biophysical research communications,2007,358(2):410-416
    [209] Karihaloo A, Karumanchi SA, Cantley WL, et al. Vascularendothelial growth factor induces branchingmorphogenesis/tubulogenesis in renal epithelial cells in aneuropilin-dependent fashion. Mol Cell Biol,2005,25(17):7441-7448
    [210] Korostylev A, Worzfeld T, Deng S, et al. A functional role forsemaphorin4D/plexin B1interactions in epithelial branchingmorphogenesis during organogenesis. Development,2008,135(20):3333-3343
    [211] Perala N, Jakobson M, Ola R, et al. Sema4C-Plexin B2signallingmodulates ureteric branching in developing kidney.Differentiation,2011,81(2):81-91
    [212] Dudley AT, Robertson EJ. Overlapping expression domains ofbone morphogenetic protein family members potentially accountfor limited tissue defects in BMP7deficient embryos. Dev Dyn,1997,208(3):349-362
    [213] Cain JE, Bertram JF. Ureteric branching morphogenesis in BMP4heterozygous mutant mice. J Anat,2006,209(6):745-755
    [214] Martinez G, Mishina Y, Bertram JF. BMPs and BMP receptors inmouse metanephric development: in vivo and in vitro studies. IntJ Dev Biol,2002,46(4):525-533
    [215] Raatikainen-Ahokas A, Hytonen M, Tenhunen A, et al. BMP-4affects the differentiation of metanephric mesenchyme and revealsan early anterior-posterior axis of the embryonic kidney. Dev Dyn,2000,217(2):146-158
    [216] Hu MC, Piscione TD, Rosenblum ND. ElevatedSMAD1/beta-catenin molecular complexes and renal medullarycystic dysplasia in ALK3transgenic mice. Development,2003,130(12):2753-2766
    [217] Hartwig S, Bridgewater D, Di Giovanni V, et al. BMP receptorALK3controls collecting system development. J Am Soc Nephrol,2008,19(1):117-124
    [218] Takahashi M. The GDNF/RET signaling pathway and humandiseases. Cytokine&growth factor reviews,2001,12(4):361-373
    [219] Jain S, Encinas M, Johnson EM, Jr., et al. Critical and distinctroles for key RET tyrosine docking sites in renal development.Genes&development,2006,20(3):321-333
    [220] Wong A, Bogni S, Kotka P, et al. Phosphotyrosine1062is criticalfor the in vivo activity of the Ret9receptor tyrosine kinaseisoform. Mol Cell Biol,2005,25(21):9661-9673
    [221] Bouchard M. Transcriptional control of kidney development.Differentiation,2004,72(7):295-306
    [222] Patrussi L, Baldari CT. Intracellular mediators ofCXCR4-dependent signaling in T cells. Immunology letters,2008,115(2):75-82
    [223] Murdoch C. CXCR4: chemokine receptor extraordinaire.Immunological reviews,2000,177:175-184
    [224] Schier AF. Chemokine signaling: rules of attraction. Currentbiology: CB,2003,13(5): R192-194
    [225] Takabatake Y, Sugiyama T, Kohara H, et al. The CXCL12(SDF-1)/CXCR4axis is essential for the development of renalvasculature. J Am Soc Nephrol,2009,20(8):1714-1723
    [226] Ueland J, Yuan A, Marlier A, et al. A novel role for thechemokine receptor Cxcr4in kidney morphogenesis: an in vitrostudy. Dev Dyn,2009,238(5):1083-1091
    [227] Chen C, Ouyang W, Grigura V, et al. ERM is required fortranscriptional control of the spermatogonial stem cell niche.Nature,2005,436(7053):1030-1034
    [228] Helmbacher F, Dessaud E, Arber S, et al. Met signaling isrequired for recruitment of motor neurons to PEA3-positive motorpools. Neuron,2003,39(5):767-777
    [229] Livet J, Sigrist M, Stroebel S, et al. ETS gene Pea3controls thecentral position and terminal arborization of specific motor neuronpools. Neuron,2002,35(5):877-892
    [230] Mao J, McGlinn E, Huang P, et al. Fgf-dependent Etv4/5activityis required for posterior restriction of Sonic Hedgehog andpromoting outgrowth of the vertebrate limb. Dev Cell,2009,16(4):600-606
    [231] Kanwar YS, Ota K, Yang Q, et al. Role of membrane-type matrixmetalloproteinase1(MT-1-MMP), MMP-2, and its inhibitor innephrogenesis. Am J Physiol,1999,277(6Pt2): F934-947
    [232] Nagata M, Tanimoto K, Fukamizu A, et al. Nephrogenesis andrenovascular development in angiotensinogen-deficient mice.Laboratory investigation; a journal of technical methods andpathology,1996,75(5):745-753
    [233] Niimura F, Labosky PA, Kakuchi J, et al. Gene targeting in micereveals a requirement for angiotensin in the development andmaintenance of kidney morphology and growth factor regulation.J Clin Invest,1995,96(6):2947-2954
    [234] Takahashi N, Lopez ML, Cowhig JE, Jr., et al. Ren1chomozygous null mice are hypotensive and polyuric, butheterozygotes are indistinguishable from wild-type. J Am SocNephrol,2005,16(1):125-132
    [235] Esther CR, Jr., Howard TE, Marino EM, et al. Mice lackingangiotensin-converting enzyme have low blood pressure, renalpathology, and reduced male fertility. Laboratory investigation; ajournal of technical methods and pathology,1996,74(5):953-965
    [236] Oliverio MI, Kim HS, Ito M, et al. Reduced growth, abnormalkidney structure, and type2(AT2) angiotensin receptor-mediatedblood pressure regulation in mice lacking both AT1A and AT1Breceptors for angiotensin II. Proc Natl Acad Sci U S A,1998,95(26):15496-15501
    [237] Tsuchida S, Matsusaka T, Chen X, et al. Murine doublenullizygotes of the angiotensin type1A and1B receptor genesduplicate severe abnormal phenotypes of angiotensinogennullizygotes. J Clin Invest,1998,101(4):755-760
    [238] Miyazaki Y, Tsuchida S, Fogo A, et al. The renal lesions thatdevelop in neonatal mice during angiotensin inhibition mimicobstructive nephropathy. Kidney Int,1999,55(5):1683-1695
    [239] Gribouval O, Gonzales M, Neuhaus T, et al. Mutations in genes inthe renin-angiotensin system are associated with autosomalrecessive renal tubular dysgenesis. Nat Genet,2005,37(9):964-968
    [240] Gomez RA, Lynch KR, Sturgill BC, et al. Distribution of reninmRNA and its protein in the developing kidney. Am J Physiol,1989,257(5Pt2): F850-858
    [241] Yosipiv IV, Dipp S, el-Dahr SS. Ontogeny of somaticangiotensin-converting enzyme. Hypertension,1994,23(3):369-374
    [242] Norwood VF, Craig MR, Harris JM, et al. Differential expressionof angiotensin II receptors during early renal morphogenesis. AmJ Physiol,1997,272(2Pt2): R662-668
    [243] Yosipiv IV, el-Dahr SS. Activation of angiotensin-generatingsystems in the developing rat kidney. Hypertension,1996,27(2):281-286
    [244] Iosipiv IV, Schroeder M. A role for angiotensin II AT1receptorsin ureteric bud cell branching. American journal of physiologyRenal physiology,2003,285(2): F199-207
    [245] Kakuchi J, Ichiki T, Kiyama S, et al. Developmental expression ofrenal angiotensin II receptor genes in the mouse. Kidney Int,1995,47(1):140-147
    [246] Garcia-Villalba P, Denkers ND, Wittwer CT, et al. Real-timePCR quantification of AT1and AT2angiotensin receptor mRNAexpression in the developing rat kidney. Nephron Experimentalnephrology,2003,94(4): e154-159
    [247] Yosypiv IV, Schroeder M, El-Dahr SS. Angiotensin II type1receptor-EGF receptor cross-talk regulates ureteric bud branchingmorphogenesis. J Am Soc Nephrol,2006,17(4):1005-1014
    [248] Stirling D, Magness RR, Stone R, et al. Angiotensin II inhibitsluteinizing hormone-stimulated cholesterol side chain cleavageexpression and stimulates basic fibroblast growth factorexpression in bovine luteal cells in primary culture. The Journal ofbiological chemistry,1990,265(1):5-8
    [249] Zhang SL, Moini B, Ingelfinger JR. Angiotensin II increasesPax-2expression in fetal kidney cells via the AT2receptor. J AmSoc Nephrol,2004,15(6):1452-1465
    [250] Karihaloo A, O'Rourke DA, Nickel C, et al. Differential MAPKpathways utilized for HGF-and EGF-dependent renal epithelialmorphogenesis. The Journal of biological chemistry,2001,276(12):9166-9173
    [251] Oshima K, Miyazaki Y, Brock JW,3rd, et al. Angiotensin type IIreceptor expression and ureteral budding. The Journal of urology,2001,166(5):1848-1852
    [252] Nishimura H, Yerkes E, Hohenfellner K, et al. Role of theangiotensin type2receptor gene in congenital anomalies of thekidney and urinary tract, CAKUT, of mice and men. Molecularcell,1999,3(1):1-10
    [253] Horiuchi M, Akishita M, Dzau VJ. Molecular and cellularmechanism of angiotensin II-mediated apoptosis. Endocrineresearch,1998,24(3-4):307-314
    [254] Shah MM, Sampogna RV, Sakurai H, et al. Branchingmorphogenesis and kidney disease. Development,2004,131(7):1449-1462
    [255] Nigam SK. Determinants of branching tubulogenesis. Curr OpinNephrol Hypertens,1995,4(3):209-214
    [256] Karihaloo A, Karumanchi SA, Barasch J, et al. Endostatinregulates branching morphogenesis of renal epithelial cells andureteric bud. Proc Natl Acad Sci U S A,2001,98(22):12509-12514
    [257] Rosines E, Schmidt HJ, Nigam SK. The effect of hyaluronic acidsize and concentration on branching morphogenesis and tubuledifferentiation in developing kidney culture systems: potentialapplications to engineering of renal tissues. Biomaterials,2007,28(32):4806-4817
    [258] Sariola H. Nephron induction revisited: from caps to condensates.Curr Opin Nephrol Hypertens,2002,11(1):17-21
    [259] Schmidt-Ott KM, Lan D, Hirsh BJ, et al. Dissecting stages ofmesenchymal-to-epithelial conversion during kidney development.Nephron Physiology,2006,104(1): p56-60
    [260] Hartman HA, Lai HL, Patterson LT. Cessation of renalmorphogenesis in mice. Dev Biol,2007,310(2):379-387
    [261] Gilbert JS, Lang AL, Grant AR, et al. Maternal nutrient restrictionin sheep: hypertension and decreased nephron number in offspringat9months of age. The Journal of physiology,2005,565(Pt1):137-147
    [262] Cox LA, Nijland MJ, Gilbert JS, et al. Effect of30per centmaternal nutrient restriction from0.16to0.5gestation on fetalbaboon kidney gene expression. The Journal of physiology,2006,572(Pt1):67-85
    [263] Brenner BM, Garcia DL, Anderson S. Glomeruli and bloodpressure. Less of one, more the other? American journal ofhypertension,1988,1(4Pt1):335-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700